Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review
Abstract
:1. Background and Introduction
2. Commonly-Used Laboratory Techniques for Measuring Lead Levels in Drinking Water
3. Techniques for Onsite and Discrete Measurements of Lead Levels
4. Ion-Selective Electrode (ISE) Technology for Detecting Lead in Water
4.1. Liquid-Contact Ion-Selective Electrodes
4.2. Solid-Contact Ion-Selective Electrodes
4.3. Challenges of Using Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water
4.3.1. Interference from Other Ions and the Selectivity Coefficient
4.3.2. Effects of Ionic Strength of Solution and Activity Coefficient
4.3.3. Potential Drift over Time
4.3.4. Detection of Bound and Particulate Lead in Drinking Water
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Environmental Protection Agency (EPA). Basic Information about Lead in Drinking Water. Available online: https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water (accessed on 30 March 2018).
- Renner, R. Out of plumb: When water treatment causes lead contamination. Environ. Health Perspect. 2009, 117, A542–A547. [Google Scholar] [CrossRef] [PubMed]
- Renner, R. Exposure on tap: Drinking water as an overlooked source of lead. Environ. Health Perspect. 2010, 118, A68–A72. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Safe drinking water act lead and copper rule (LCR). Fed. Regist. 1991, 56, 26460–26564. [Google Scholar]
- Edwards, M.; Triantafyllidou, S.; Best, D. Elevated blood lead in young children due to lead-contaminated drinking water: Washington, DC, 2001-2004. Environ. Sci. Technol. 2009, 43, 1618–1623. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.C. Lead contamination in Flint—An abject failure to protect public health. N. Engl. J. Med. 2016, 374, 1101–1103. [Google Scholar] [CrossRef] [PubMed]
- Hanna-Attisha, M.; LaChance, J.; Sadler, R.C.; Champney, S.A. Elevated blood lead levels in children associated with the Flint drinking water crisis: A spatial analysis of risk and public health response. Am. J. Public Health 2016, 106, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Philadelphia Water. 2015. Available online: http://www.phila.gov/water/PDF/LeadStandard_2015.pdf (accessed on 12 January 2017).
- U.S. Environmental Protection Agency. Lead and Copper Rule Revisions White Paper; U.S. Environmental Protection Agency: Washington, DC, USA, 2016.
- Hayes, C.R.; Skubala, N.D. Is there still a problem with lead in drinking water in the European Union? J. Water Health 2009, 7, 569–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, C.R.; Hydes, O.D. UK Experience in the Monitoring and Control f Lead in Drinking Water. J. Water Health 2012, 10, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Gauglitz, G.; Vo-Dinh, T. Handbook of Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Vuković, J.; Matsuoka, S.; Yoshimura, K.; Grdinić, V.; Jurišić Grubešić, R.; Županić, O. Simultaneous determination of traces of heavy metals by solid-phase spectrophotometry. Talanta 2007, 71, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, N.L.; Ariza, M.; Olmos, A.M.; Vukovic, J.; Palma, A.J.; Capitan-Vallvey, L.F. Handheld colorimeter for determination of heavy metal concentrations. J. Phys. Conf. Ser. 2011, 307, 1–6. [Google Scholar] [CrossRef]
- Bhargavi, M.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—In electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar]
- Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 2014, 63, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.H.; Tulock, J.J. Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device. Environ. Sci. Technol. 2005, 29, 3756–3761. [Google Scholar] [CrossRef]
- Long, F.; Zhu, A.; Shi, H.; Wang, H.; Liu, J. Rapid on-site/in situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci. Rep. 2013, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Clever, G.H.; Kaul, C.; Carell, T. DNA–metal base Pairs. Angew. Chem. Int. Ed. 2007, 46, 6226–6236. [Google Scholar] [CrossRef] [PubMed]
- Willner, I.; Zayats, M. Electronic aptamer-based sensors. Angew. Chem. Int. Ed. 2007, 46, 6408–6418. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Rowe, A.A.; Plaxco, K.W. Electrochemical detection of parts-perbillion lead via an electrode-bound DNAzyme assembly. J. Am. Chem. Soc. 2007, 129, 262–263. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Dong, S.; Wang, E. A lead(II)-driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity. J. Am. Chem. Soc. 2010, 132, 13156–13157. [Google Scholar] [CrossRef] [PubMed]
- ANDalyze. Available online: http://andalyze.com/products/fluorimeter/ (accessed on 15 January 2017).
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Palintest Water Analysis Technologies. Available online: http://www.palintest.com/en/support/research-insight/lead-drinking-water-testing (accessed on 15 January 2017).
- Modern Water. Available online: https://www.environmental-expert.com/products/model-pdv-6000-ultra-portable-metal-monitor-310298 (accessed on 15 January 2017).
- Tutulea-Anastasiu, M.D.; Wilson, D.; Valle, M.D.; Schreiner, C.M.; Cretescu, I. A Solid-Contact Ion Selective Electrode for Copper(II) Using a Succinimide Derivative as Ionophore. Sensors 2013, 13, 4367–4377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M. Studies on the Preparation and Analytical Applications of Various Metal Ion-Selective Membrane Electrodes Based on Polymeric, Inorganic and Composite Materials—A Review. J. Macromol. Sci. Part A 2008, 45, 1084–1101. [Google Scholar]
- Gupta, V.K.; Ganjali, M.R.; Norouzi, P.; Khani, H.; Nayak, A.; Agarwal, S. Electrochemical Analysis of Some Toxic Metals by Ion–Selective Electrodes. J. Crit. Rev. Anal. Chem. 2011, 41, 282–313. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS Sustain. Chem. Eng. 2013, 1, 713–723. [Google Scholar] [CrossRef]
- Hanrahan, G.; Patil, D.G.; Wang, J. Electrochemical sensors for environmental monitoring: Design, development and applications. J. Environ. Monit. 2004, 6, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mason, A.J. Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 2013, 13, 3929–3934. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; LaFratta, C.N.; Agarwal, V.; Yu, X. CMOS microelectrode array for electrochemical lab-on-a-chip applications. IEEE Sens. J. 2009, 9, 609–614. [Google Scholar] [CrossRef]
- Erkal, J.L.; Selimovic, A.; Gross, B.C.; Lockwood, S.Y. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 2014, 14, 2023–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Economou, A. Recent developments in on-line electrochemical stripping analysis—An overview of the last 12 years. Anal. Chem. Acta 2010, 683, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Guziński, M.; Lisak, G.; Kupis, J.; Jasiński, A.; Bocheńska, M. Lead(II)-Selective Ionophores for Ion-Selective Electrodes: A Review. Anal. Chim. Acta 2013, 791, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, A.; Pretsch, E. Determination of Formal Complex Formation Constants of Various Pb2+ Ionophores in the Sensor Membrane Phase. Anal. Chim. Acta 1999, 395, 41–52. [Google Scholar] [CrossRef]
- Lindner, E.; Toth, E.; Pungor, E. Lead-selective neutral carrier based liquid membrane electrode. Anal. Chem. 1984, 56, 1127–1131. [Google Scholar] [CrossRef]
- Malinowska, E. Lead-Selective Membrane Electrodes Based on Neutral Carriers. Part I. Acyclic Amides and Oxamides. Analyst 1990, 115, 1085–1087. [Google Scholar] [CrossRef]
- Ohki, A.; Kim, J.S.; Suzuki, Y.; Hayashita, T.; Maeda, S. Lead-Selective Poly(vinyl chloride) Membrane Electrodes Based on Acyclic Dibenzopolyether Diamides. Talanta 1997, 44, 1131–1135. [Google Scholar] [CrossRef]
- Hasse, W.; Ahlers, B.; Reinbold, J.; Cammann, K. PbOH+ -selective membrane electrode based on crown ethers. Sens. Actuators B Chem. 1994, 19, 383–386. [Google Scholar] [CrossRef]
- Yang, X.; Kumar, N.; Chi, H.; Hibbert, D.B.; Alexander, P.W. Lead(II)-selective Membrane Electrodes Based on Dithiophenediazacrown Ether Derivatives. Electroanalysis 1997, 9, 549–553. [Google Scholar] [CrossRef]
- Yang, X.; Kumar, N.; Hibbert, D.B.; Alexander, P.W. Lead(II)-Selective Membrane Electrodes Based on 4,7,13,16-Tetrathenoyl-1,10-dioxa-4,7,13,16-tetraazacyclooctadecane. Electroanalysis 1998, 10, 827–831. [Google Scholar] [CrossRef]
- Malinowska, E.; Brzozka, Z.; Kasiura, K.; Egberink, R.J.M.; Reinhoudt, D.N. Lead Selective Electrodes Based on Thioamide Functionalized Calix[4] Arenes as Ionophores. Anal. Chim. Acta 1994, 298, 253–258. [Google Scholar] [CrossRef]
- Kamal, A.; Tejpal, R.; Bhalla, V.; Kumar, M.; Mahajan, R.K. Selective and sensitive lead (II) solid-contact potentiometric sensor based on naphthalene-sulfonamide derivative. Int. J. Environ. Sci. Technol. 2015, 12, 2567–2578. [Google Scholar] [CrossRef]
- Anastasova, S.; Radu, A.; Matzeu, M.; Zuliani, C.; Mattinen, U.; Bobacka, J.; Diamond, D. Disposable Solid-Contact Ion-Selective Electrodes for Environmental Monitoring of Lead with ppb Limit-of-Detection. Electrochim. Acta 2012, 73, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Chang, J.; Cui, S.; Pu, H.; Wen, Z.; Chen, J. Real-Time, Selective Detection of Pb2+ in Water Using a Reduced Graphene Oxide/Gold Nanoparticle Field-Effect Transistor Device. ACS Appl. Mater. Interfaces 2014, 6, 19235–19241. [Google Scholar] [CrossRef] [PubMed]
- Ganjali, M.R.; Motakef-Kazami, N.; Faridbod, F.; Khoee, S.; Norouzi, P. Determination of Pb2+ ions by a Modified Carbon Paste Electrode Based on Multi-Walled Carbon Nanotubes (MWCNTs) and Nanosilica. J. Hazard. Mater. 2010, 173, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Li, X.G.; Feng, H.; Huang, M.R.; Gu, G.L.; Moloney, M.G. Ultrasensitive Pb(II) Potentiometric Sensor Based on Copolyaniline Nanoparticles in a Plasticizer-Free Membrane with a Long Lifetime. Anal. Chem. 2012, 84, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Polymer Membrane Ion-Selective Electrods-What are the Limits? Electroanalysis 1999, 11, 915–933. [Google Scholar] [CrossRef]
- Mi, Y.; Mathison, S.; Goines, R.; Logue, A.; Bakker, E. Detection Limit of Polymeric Membrane Potentiometric Ion Sensors: How Can We Go Down to Trace Level? Anal. Chim. Acta 1999, 397, 103–111. [Google Scholar] [CrossRef]
- Mathison, S.; Bakker, E. Effect of Transmembrane Electrolyte Diffusion on the Detection Limit of Carrier-Based Potentiometric Ion Sensors. Anal. Chem. 1998, 70, 303–309. [Google Scholar] [CrossRef]
- Szigeti, Z.; Vigassy, T.; Bakker, E.; Pretsch, E. Approaches to Improving the Lower Detection limit of Polymeric Membrane Ion-Selective Electrodes. Electroanalysis 2006, 18, 1254–1265. [Google Scholar] [CrossRef] [PubMed]
- Sokalski, T.; Ceresa, A.; Zwickl, T.; Pretsch, E. Large Improvement of the Lower Detection Limit of Ion-Selective Polymer Membrane Electrodes. J. Am. Chem. Soc. 1997, 119, 11347–11348. [Google Scholar] [CrossRef]
- Ceresa, A.; Bakker, E.; Hattendorf, B.; Günther, D.; Pretsch, E. Potentiometric Polymeric Membrane Electrodes for Measurement of Environmental Samples at Trace Levels: New Requirements for Selectivities and Measuring Protocols, and Comparison with ICPMS. Anal. Chem. 2001, 73, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.; Peper, S.; Bakker, E.; Diamonda, D. Guidelines for Improving the Lower Detection Limit of Ion-Selective Electrodes: A Systematic Approach. Electroanalysis 2007, 19, 144–154. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. The New Wave of Ion-Selective. Anal. Chem. 2002, 74, 420A–426A. [Google Scholar] [CrossRef] [PubMed]
- Hirata, H.; Dato, K. Copper(I) Sulphide-Impregnated Silicone Rubber Membranes as Selective Electrodes for Copper(II) Ions. Talanta 1970, 17, 883–887. [Google Scholar] [CrossRef]
- Cattrall, R.W.; Freiser, H. Coated Wire Ion-Selective Electrodes. Anal. Chem. 1971, 43, 1905–1906. [Google Scholar] [CrossRef]
- Bobacka, J. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Oyama, N.; Hirokawa, T.; Yamaguchi, S.; Ushizawa, N.; Shimomura, T. Hydrogen Ion Selective Microelectrode Prepared by Modifying an Electrode with Polymers. Anal. Chem. 1987, 59, 258–262. [Google Scholar] [CrossRef]
- Cadogan, A.; Gao, Z.; Lewenstam, A.; Ivaska, A.; Diamond, D. All-Solid-State Sodium-Selective Electrode Based on a Calixarene Ionophore in a Poly(vinyl chloride) Membrane with a Polypyrrole Solid Contact. Anal. Chem. 1992, 64, 2496–2501. [Google Scholar] [CrossRef]
- Pandey, P.C.; Prakash, R. Polyindole Modified Potassium Ion-Sensor using Dibenzo-18-Crown-6 Mediated PVC Matrix Membrane. Sens. Actuators B Chem. 1998, 46, 61–65. [Google Scholar] [CrossRef]
- Bobacka, J.; Lindfors, T.; McCarrick, M.; Ivaska, A.; Lewenstam, A. Single-piece all-solid-state ion-selective electrode. Anal. Chem. 1995, 67, 3819–3823. [Google Scholar] [CrossRef]
- Veder, J.P.; De Marco, R.; Patel, K.; Si, P.C.; Grygolowicz-Pawlak, E.; James, M.; Alam, M.T.; Sohail, M.; Lee, J.; Pretsch, E.; et al. Evidence for a Surface Confined Ion-to-Electron Transduction Reaction in Solid-Contact Ion-Selective Electrodes Based on Poly(3- octylthiophene). Anal. Chem. 2013, 85, 10495–10502. [Google Scholar] [CrossRef] [PubMed]
- Bobacka, J.; McCarrick, M.; Lewenstam, A.; Ivaska, A. All Solid-State Poly(vinyl chloride) Membrane Ion-Selective Electrodes with Poly(3-Octylthiophene) Solid Internal Contact. Analyst 1994, 119, 1985–1991. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bϋhlmann, P. Rational Design of All-Solid-State Ion-Selective Electrodes and Reference Electrodes. Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Vanamo, U.; Bobacka, J. Instrument-Free Control of the Standard Potential of Potentiometric Solid-Contact Ion-Selective Electrodes by Short-Circuiting with a Conventional Reference Eelectrode. Anal. Chem. 2014, 86, 10540–10545. [Google Scholar] [CrossRef] [PubMed]
- Vanamo, U.; Bobacka, J. Electrochemical Control of the Standard Potential of Solid-Contact Ion-Selective Electrodes Having a Conducting Polymer as Ion-to-Electron Transducer. Electrochim. Acta 2014, 12, 316–321. [Google Scholar] [CrossRef]
- Vanamo, U.; Hupa, E.; Yrjana, V.; Bobacka, J. New Signal Readout Principle for Solid-Contact Ion-Selective Electrodes. Anal. Chem. 2016, 88, 4369–4374. [Google Scholar] [CrossRef] [PubMed]
- Lindner, E.; Gyurcsἀnyi, R.E. Quality Control Criteria for Solid-Contact, Solvent Polymeric Membrane Ion-Selective Electrodes. J. Solid State Electrochem. 2009, 13, 51–68. [Google Scholar] [CrossRef]
- Bobacka, J. Conducting Polymer-Based Solid-State Ion-Selective Electrodes. Electroanalysis 2006, 18, 7–18. [Google Scholar] [CrossRef]
- Lai, C.Z.; Fierke, M.A.; Stein, A.; Bühlmann, P. Ion-Selective Electrodes with Three-Dimensionally Ordered Macroporous Carbon as the Solid Contact. Anal. Chem. 2007, 79, 4621–4626. [Google Scholar] [CrossRef] [PubMed]
- Crespo, G.A.; Macho, S.; Xavier Rius, F. Ion-Selective Electrodes Using Carbon Nanotubes as Ion-to-Electron Transducers. Anal. Chem. 2008, 80, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Hernἀndez, R.; Riu, J.; Bobacka, J.; Vallés, C.; Jiménez, P.; Benito, A.M.; Maser, W.K.; Xavier Rius, F. Reduced Graphene Oxide Films as Solid Transducers in Potentiometric All-Solid-State Ion-Selective Electrodes. J. Phys. Chem. C 2012, 116, 22570–22578. [Google Scholar] [CrossRef] [Green Version]
- Crespo, G.A.; Macho, S.; Bobacka, J.; Xavier Rius, F. Transduction Mechanism of Carbon Nanotubes in Solid-Contact Ion-Selective Electrodes. Anal. Chem. 2009, 81, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Martinhon, P.T.; Carreño, J.; Sousa, C.R.; Barcia, O.E.; Mattos, O.R. Electrochemical impedance spectroscopy of lead(II) ion-selective solid-state membranes. Electrochim. Acta 2016, 51, 3022–3028. [Google Scholar] [CrossRef]
- Vassilev, V.S.; Boycheva, S.V. Chemical Sensors with Chalcogenide Glassy Membranes. Talanta 2005, 67, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Schöning, M.J.; Kloock, J.P. About 20 Years of Silicon-Based Thin-Film Sensors with Chalcogenide Glass Materials for Heavy Metal Analysis: Technological Aspects of Fabrication and Miniaturization. Electroanalysis 2007, 19, 2029–3208. [Google Scholar] [CrossRef]
- Vassilev, V.K.; Tomova, K.; Boycheva, S. Pb(II)-Ion-Selective Electrodes Based on Chalcogenide Glasses. J. Non-Cryst. Solids 2007, 353, 2779–2784. [Google Scholar] [CrossRef]
- Mourzinaa, Y.; Schöning, M.J.; Schubert, J.; Zander, W.; Legin, A.V.; Vlasov, Y.G.; Kordos, P.; Lüth, H. A New Thin-Film Pb Microsensor Based on Chalcogenide Glasses. Sens. Actuators B Chem. 2000, 71, 13–18. [Google Scholar] [CrossRef]
- Joachim, P.K.; Mourzina, Y.G.; Schubert, J.; Schöning, M.J. A First Step towards a Microfabricated Thin-Film Sensor Array on the Basis of Chalcogenide Glass Materials. Sensors 2002, 2, 356–365. [Google Scholar]
- Moreno, T.V.; Malacarne, L.C.; Baesso, M.L.; Qu, W.; Dy, E.; Xie, Z.; Fahlman, J.; Shen, J.; Astrath, N.G.C. Potentiometric Sensors with Chalcogenide Glasses as Sensitive Membranes: A Short Review. J. Non-Cryst. Solids 2018, 495, 8–18. [Google Scholar] [CrossRef]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity Coefficients for Ion-Selective Electrodes: Recommended Methods for Reporting Values. Pure Appl. Chem. 1995, 67, 507–518. [Google Scholar] [CrossRef]
- Molina-Holgado, T.; Pinilla-Macias, J.M.; Hernández-Hernández, L. Voltammetric Determination of Lead with a Chemically Modified Carbon Paste Electrode with Diphenylthiocarbazone. Anal. Chim. Acta 1995, 309, 117–122. [Google Scholar] [CrossRef]
- Bates, R.G.; Dickson, A.G.; Gratzl, M.; Hrabeczy-Pall, A.; Lindner, E.; Pungor, E. Determination of Mean Activity Coefficient with Ion-Selective Electrodes. Anal. Chem. 1983, 55, 1275–1280. [Google Scholar] [CrossRef]
- Radu, A.; Meir, A.J.; Bakker, E. Dynamic diffusion model for tracing the real-time potential response of polymeric membrane ion-selective electrodes. Anal. Chem. 2004, 76, 6402–6409. [Google Scholar] [CrossRef] [PubMed]
- Zook, J.M.; Buck, R.P.; Langmaier, J.; Lindner, E. Mathematical Model of Current-Polarized Ionophore-Based Ion-Selective Membranes. J. Phys. Chem. 2008, 112, 2008–2015. [Google Scholar] [CrossRef] [PubMed]
- Guzinski, M.; Lisak, G.; Sokalski, T.; Bobacka, J.; Ivaska, A.; Bochenska, M.; Lewenstam, A. Solid-Contact Ion-Selective Electrodes with Highly Selective Thioamide Derivatives of p-tert-Butylcalix[4]arene for the Determination of Lead(II) in Environmental Samples. Anal. Chem. 2013, 85, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Lisak, G.; Ciepiela, F.; Bobacka, J.; Sokalski, T.; Harju, L.; Lewenstam, A. Determination of Lead(II) in Groundwater Using Solid-State Lead(II) Selective Electrodes by Tuned Galvanostatic Polarization. Electroanalysis 2012, 25, 123–131. [Google Scholar] [CrossRef]
- Toral, M.A.D.; Porter, A.; Schock, M.R. Detection and Evaluation of Elevated Lead Release from Service Lines: A Field Study. Environ. Sci. Technol. Lett. 2013, 47, 9300–9307. [Google Scholar] [CrossRef] [PubMed]
- Hulsmann, A.D. Particulate Lead in Water Supplies. Water Environ. J. 1990, 4, 19–25. [Google Scholar] [CrossRef]
- Triantafyllidou, S.; Parks, J.; Edwards, M. Lead Particles in Potable Water. J. Am. Water Works Assoc. 2007, 99, 107–117. [Google Scholar] [CrossRef]
- Deshommes, E.; Laroche, L.; Nour, S.; Cartier, C.; Prévost, M. Source and Occurrence of Particulate Lead in Tap Water. Water Res. 2010, 44, 3734–3744. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.; Edwards, M. 3-D Lead Profiling to Characterize Particulate Lead Risks in Potable Water. In Proceedings of the AWWA Water Quality Technology Conference, Toronto, ON, Canada, 4−7 November 2012. [Google Scholar]
- Abokifa, A.A.; Biswas, P. Modeling Soluble and Particulate Lead Release into Drinking Water from Full and Partially Replaced Lead Service Lines. Environ. Sci. Technol. 2017, 51, 3318–3326. [Google Scholar] [CrossRef] [PubMed]
Major Materials | Linear Response Range (M) | Limit of Detection (M) | Durability | References |
---|---|---|---|---|
Lipophilic oxa- and dioxadicarboxylic amides | 10–2 to 10–5 | - | - | [39] |
Lipophilic acyclic dibenzopolyether diamides | 10–2 to 10–7 | - | 3 months | [41] |
Dithiophenediazacrown ether derivatives | 10–2.7 to 10–5 | 10–5.7 | [43] | |
4,7,13,16-tetrathenoyl-1,10-dioxa-4,7,13,16-tetraazacyclooctadecane | 10–3 to 10–5.3 | 10–5.7 | [44] | |
Calix[4]arenes | 10–2 to 10–6 | 10–6.5 | 6 weeks | [45] |
Naphthalene-sulfonamide derivative | 10–1 to 10–7 | 5.62 × 10–8 | 4 months | [46] |
Ionophore Pb IV and NaTFPB | 10–3 to 10–8 | 1.20 × 10–9 | Several days | [47] |
Reduced graphene oxide/Gold nanoparticle | - | 10–8 | - | [48] |
Multi-walled carbon nanotubes and nanosilica | 10–2 to 10–7 | 7.3 × 10–8 | >2 months | [49] |
Tetraphenylborate—Copolyaniline nanoparticles | 10–3 to 10–10 | 2.2 × 10–11 | 15 months | [50] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Wang, P.-Y.; Buchter, G. Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. Environments 2018, 5, 95. https://doi.org/10.3390/environments5090095
Tang X, Wang P-Y, Buchter G. Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. Environments. 2018; 5(9):95. https://doi.org/10.3390/environments5090095
Chicago/Turabian StyleTang, Xiaochao, Po-Yen Wang, and Gabrielle Buchter. 2018. "Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review" Environments 5, no. 9: 95. https://doi.org/10.3390/environments5090095
APA StyleTang, X., Wang, P. -Y., & Buchter, G. (2018). Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. Environments, 5(9), 95. https://doi.org/10.3390/environments5090095