Fuel Treatments and Potential Fire Behavior in Peri-Urban Forests in Northern Greece
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Experimental Design and Sampling
2.3. Fuel Characteristics
2.3.1. Aerial Fuel
2.3.2. Surface Fuel
2.3.3. Simulation
2.3.4. Silvicultural Treatments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thanos, C.; Marcou, S.; Christodoulakis, D.; Yiannitsaros, S. Early post-fire Regeneration in Pinus brutia forest ecosystem of Samos island (Greece). Acta Oecol. Oec. Plant. 1989, 10, 79–94. [Google Scholar]
- Thanos, C.; Marcou, S. Postfire regeneration in Pinusbrutia forest ecosystems of Samos Island (Greece): 6 years after. Acta Oecol. 1991, 10, 633–642. [Google Scholar]
- Thanos, C.; Doussi, M. Postfire Regeneration of Pinus brutia Forests, Ecology, Biogeography and Management of Pinus halepensis and Pinus brutia Forest Ecosystems in the Mediterranean Basin; Neeman, G., Trabaud, L., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2000; pp. 291–301. [Google Scholar]
- Zagas, T. Research of Pinus halepensis natural regeneration after fire at Mount “Pateras” (Attiki, Greece). Sci. Ann. Fac. For. Nat. Environ. 1987, 11, 303–327. [Google Scholar]
- Spanos, I.; Spanos, K. Postfire establishment and survival of Pinus brutia in the island Thasos. In Proceedings of the 2nd Balkan Scientific Conference ‘Investigation, Preservation and Utilization of Forest Resources’, Sofia, Bulgaria, 3–5 June 1996; Volume 1, pp. 163–168. [Google Scholar]
- Spanos, I.; Daskalakou, E.; Thanos, C. Postfire, natural regeneration of Pinus brutia forests in Thasos island, Greece. Act. Oecol. 2000, 21, 13–20. [Google Scholar] [CrossRef]
- Spanos, I.; Radoglou, K.; Raftoyiannis, Y. Site quality effects on post-fire regeneration of Pinus brutia forest on a Greek island. Appl. Veg. Sci. 2001, 4, 229–236. [Google Scholar] [CrossRef]
- Tsitsoni, T.; Ganatsas, P.; Zagas, T.; Tsakaldimi, M. Dynamics of postfire regeneration of Pinus brutia Ten. in an artificial forest. Plant Ecol. 2004, 171, 165–174. [Google Scholar] [CrossRef]
- Spanos, I.; Raftoyannis, Y.; Goudelis, G.; Xanthopoulou, E.; Samara, T.; Tsiontsis, A. Effects of postfire logging on soil and vegetation recovery in a Pinus halepensis Mill. forest of Greece. Plant Soil. 2005, 278, 171–179. [Google Scholar] [CrossRef]
- Pausas, J.G.; Vallejo, R. The role of fire in the European Mediterranean ecosystems. In Remote Sensing of Large Wildfires in the European Mediterranean Basin; Chuvieco, E., Ed.; Springer: Berlin, Germany, 1999; pp. 3–16. [Google Scholar]
- Alexandrian, D.; Esnault, F.; Calabri, G. Forest fires in the Mediterranean area. In Proceedings of FAO Meeting on Public Policies Affecting Forest Fires; FAO, Ed.; FAO: Rome, Italy, 2008; Available online: http://www.fao.org/docrep/x1880e/x1880e07.htm (accessed on 6 June 2018).
- Christopoulou, O.; Polyzos, S.; Minetos, D. Peri-urban and urban forests in Greece: Obstacle or advantage to urban development? Manag. Env. Qual. 2007, 18, 382–395. [Google Scholar] [CrossRef]
- Caballero, D.; Beltran, I.; Velasco, A. Forest Fires and Wildland-Urban Interface in Spain: Types and Risk Distribution. In Proceedings of the 4th International Wildland Fire Conference, Sevilla, Spain, 14–17 May 2007. [Google Scholar]
- Lampin-Maillet, C.; Jappiot, M.; Long, M.; Bouillon, C.; Morge, D.; Ferrier, J.-P. Mapping wildland–urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J. Environ. Manag. 2010, 91, 732–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badia, A.; Serra, P.; Modugno, S. Identifying dynamics of fire ignition prob-abilities in two representative Mediterranean wildland-urban interface areas. Appl. Geogr. 2011, 31, 930–940. [Google Scholar] [CrossRef]
- Galiana-Martin, L.; Herrero, G.; Solana, J. A wildland–urban interface typology for forest fire risk management in Mediterranean areas. Landsc. Res. 2011, 36, 151–171. [Google Scholar] [CrossRef]
- Vélez, R. The Causing Factors: A Focus on Economic and Social Driving Forces. In European Forest Institute Discussion Paper ‘Living with Wildfires: What Science Can Tell Us’; Birot, Y., Ed.; European Forest Institute: Joensuu, Finland, 2008. [Google Scholar]
- Vélez, R. Causes of forest fires in the Mediterranean Basin. In European Forest Institute Discussion Paper ‘Risk Management and Sustainable Forestry’; Arbez, M., Birot, Y., Carnus, J.-M., Eds.; European Forest Institute: Joensuu, Finland, 2002. [Google Scholar]
- Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z. Estimation of wildfire size and risk changes due to fuels treatments. Int. J. Wildland Fire 2012, 21, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Fischer, W.C.; Arno, S.F. Protecting people and homes from wildfire. In Proceedings of the Symposium and Workshop on Protecting People and Homes in the Interior West, Missoula, MT, USA, 6–8 October 1988; Volume 213. [Google Scholar]
- National Wildfire Foundation. The power of politics, the media and the public to affect wildland/urban fire protection programs in the 1990′s. In Proceedings of the 1992 Symposium and Workshop Proceedings, Missoula, MT, USA, 21–25 April 1992; Volume 109, pp. 72–76. [Google Scholar]
- Queen, P.L. Fighting Fire in the Wildland/Urban Interface; Fire Publications Inc.: Bellflower, CA, USA, 1993; Volume 115. [Google Scholar]
- Slaughter, R. California’s l-Zone: Urban/Wildland Fire Prevention and Mitigation; Slaughter, R., Ed.; CFESTES bookstore: Sacramento, CA, USA, 1996; Volume 301. [Google Scholar]
- Salvati, L. Profiling forest fires along the urban gradient: A Mediterranean case study. Urban Ecosyst. 2014, 17, 1175–1189. [Google Scholar] [CrossRef]
- Xanthopoulos, G. Particular difficulties in dealing suburban forest fires. Fire Rev. 2000, 80, 22. (In Greek) [Google Scholar]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Agee, J.K.; Lolley, M.R. Thinning and prescribed fire effects on fuels and potential fire behavior in an eastern Cascades forest, Washington. Fire Ecol. 2006, 2, 3–19. [Google Scholar] [CrossRef]
- Harrington, M.G.; Noonan-Wright, E.; Doherty, M. Testing the modeled effectiveness of an operational fuel reduction treatment in a small western Montana interface landscape using two spatial scales. In Proceedings of the Conference ‘Fuels Management—How to Measure Success’, Destin, FL, USA, 26–30 March 2007; pp. 301–314. [Google Scholar]
- Horschel, E.A. Using NEXUS to Assess the Effectiveness of Experimental Black Spruce Forest Fuel Breaks to Reduce Fire Potential in Alaska; Independent Research; University of Alaska Fairbanks: Fairbanks, AK, USA, 2007. [Google Scholar]
- Huggett, R.G.; Abt, K.L.; Shepperd, W. Efficacy of mechanical fuel treatment for reducing wildfire hazard. For. Policy Econ. 2008, 10, 408–414. [Google Scholar] [CrossRef]
- Roccaforte, J.P.; Fule, P.Z.; Covington, W.W. Landscape-scale changes in canopy fuels and potential fire behaviour following ponderosa pine restorations treatments. Int. J. Wildland Fire 2008, 17, 293–303. [Google Scholar] [CrossRef]
- Molina, J.R.; Rodriguez y Silva, F.; Herrera, M.A. Potential crown fire behaviour in Pinuspinea stands following different fuel treatments. For. Syst. 2011, 20, 266–277. [Google Scholar]
- Finney, M.A. FARSITE: Fire Area Simulator—Model Development and Evaluation; Res. Pap. RMRSRP-4; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998; Volume 47.
- Finney, M.A. An overview of FlamMap fire modeling capabilities. In Proceedings of the Fuels Management-How to Measure Success Conference, Portland, OR, USA, 28–30 March 2006; pp. 213–220. [Google Scholar]
- Scott, J.H. NEXUS: A system for assessing crown fire hazard. Fire Manag. Notes 1999, 59, 20–24. [Google Scholar]
- Zagas, T.; Raptis, D.; Zagas, D.; Karamanolis, D. Planning and assessing the effectiveness of traditional silvicultural treatments for mitigating wildfire hazard in pine woodlands of Greece. Nat. Hazards 2013, 65, 545–561. [Google Scholar] [CrossRef]
- Tsitsoni, T.; Raptis, D.; Zagas, D.; Zagas, T. Evaluating the effects of simulated silvicultural treatments and management on wildfire severity in Pinus halepensis Mill. even-aged stands. Curr. Environ. Eng. 2014, 1, 136–147. [Google Scholar] [CrossRef]
- Piqué, M.; Domènech, R. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Sci. Total Environ. 2017, 618, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Elia, M.; Lafortezza, R.; Lovreglio, R.; Sanesi, G. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland–Urban Interfaces in Southern Italy. Environ. Manag. 2015, 56, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Ottmar, R.D.; Vihnanek, R.E.; Wright, C.S. Stereo Photo Series for Quantifying Natural Fuels. Volume I: Mixed-Conifer with Mortality, Western Juniper, Sagebrush, and Grassland Types in the Interior Pacific Northwest; National Fire Equipment System Publication (NFES): Boise, Idaho, 1998; Volume 2580. [Google Scholar]
- Lemmon, P.E. A spherical densiometer for estimating forest overstory density. For. Sci. 1956, 2, 314–320. [Google Scholar]
- Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Allometric equations for crown fuel biomass of Aleppo pine (Pinus halepensis Mill.) in Greece. Int. J. Wildland Fire 2007, 16, 642–645. [Google Scholar] [CrossRef]
- Alexander, M.E. Help with making crown fire hazard assessments. In Proceedings of the Symposium and Workshop on Protecting People and Homes in the Interior West, Missoula, MT, USA, 6–8 October 1988; pp. 147–156. [Google Scholar]
- Fernades, P.M.; Loureiro, C.; Botelho, H.S. Fire behaviour and severity in a maritime pine stand under differing fuel conditions. Ann. For. Sci. 2004, 61, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for use with Rothermel’s Surface Fire Spread Model; General Technical Report RMRS-GTR-153; USDA, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; Volume 72. [Google Scholar]
- Dimitrakopoulos, A.P.; Papaioannou, K.K. Flammability assessment of Mediterranean forest fuels. Fire Technol. 2001, 37, 143–152. [Google Scholar] [CrossRef]
- Fire Star. DB Particles ONLINE. Online database and management system of physical and chemical characteristics of fuel particles. In Fire Star: A Decision Support System for Fuel Management and Fire Hazard Reduction in Mediterranean Wildland—Urban Interfaces; Project No. EVG1-CT-2001-00041; European Commission: Brussels, Belgium, 2007. [Google Scholar]
- Bacciu, V.M. Maquis Fuel Model Development to Support Spatially-Explicit Fire Modeling Applications. Ph.D. Thesis, Universita Degli Studi Di Sassari, Sassari, Italy, 2009. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA Forest Service, Research Paper, INT-115; Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972; Volume 40. [Google Scholar]
- Rothermel, R.C. Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains; USDA Forest Service, Research Paper, INT-438; Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1991; Volume 46. [Google Scholar]
- Van Wagner, C.E. Conditions for the start and spread of crown fire. Can. J. For. Res. 1977, 7, 23–24. [Google Scholar] [CrossRef]
- Scott, J.H. Sensitivity analysis of a method for assessing crown fire hazard in the Northern Rochy Mountains, USA. In Proceedings of the III International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, Luso, Portugal, 16–20 November 1998; Volume II, pp. 2517–2532. [Google Scholar]
- Fule, P.Z.; McHugh, C.; Heinlein, T.A.; Covington, W.W. Potential fire behaviour is redused following forest restoration treatments. In Proceedings of the Symposium and Workshop on Ponderosa Pine Ecosystems Restoration and Conservation: Steps toward Stewardship, Flagstaff, AZ, USA, 25–27 April 2000; pp. 22–28. [Google Scholar]
- Cheyetee, D.; Rupp, S.T.; Rodman, S. Development Fire Behaviour, Fuel Models for the Wildland-Urban Interface in Anchorage, Alaska. West. J. Appl. For. 2008, 23, 149–155. [Google Scholar]
- Silva, J.S.; Fernandes, P.A.M.; Vasconcelos, J. The effect on surface fuels and fire behavior of thinning a Pinuspinaster stand in central Portugal. In Proceedings of the Joint Fire Science Conference and Workshop on Crossing the Millennium: Integrating Spatial Technologies and Ecological Principles for a New Age in Fire Management, Boise, ID, USA, 15–17 June 1999; Volume II, pp. 275–277. [Google Scholar]
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior; Research Paper RMRS-RP-29; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001; pp. 1–66.
- Loureiro, C.; Fernandes, P.; Botelho, H. A simulation-based test of a landscape fuel management project in the Maraõ range of northern Portugal. For. Ecol. Manag. 2006, 234–245. [Google Scholar] [CrossRef]
- Keyes, C.R. Quantifying stand targets for silvicultural prevention of crown fires. West. J. Appl. For. 2002, 17, 101–109. [Google Scholar]
- Agee, J.K. Fire strategies and priorities for forest health in the Western United States. In Proceedings of the Conference on Fire and Forest Meteorology, International Association of Wildland Fire, Fairfield, Lorne, Australia, 12–14 January 1998; pp. 297–303. [Google Scholar]
Properties | Custom Fuel Model (CFM) | |
---|---|---|
CFM 1: Shrub (kermesoak) | CFM 2: Pinelitter | |
1 h (tonne/ha) | 1.232 | 1.109 |
10 h (tonne/ha) | 0.408 | 0.522 |
100 h (tonne/ha) | - | 0.389 |
Live Herbaceous Fuel Load (tonne/ha) | - | - |
Live Woody Fuel Load (tonne/ha) | 8.857 | - |
1 h SA/V (m2/m3) | 2427 | 6249 |
Live Herbaceous SA/V (m2/m3) | - | - |
Live Woody SA/V (m2/m3) | 5960 | - |
Fuel Bed Depth (m) | 1.977 | 0.210 |
Extinction Moisture (%) | 25 | 35 |
Dead Heat Content (kJ/kg) | 19,460 | 22,137 |
Live Heat Content (kJ/kg) | 19,460 | - |
Caption | Experimental Plot 1 | Experimental Plot 2 |
---|---|---|
Stems per Hectare | 460 | 360 |
Diameter at Breast Height (cm) | 20.16 | 30.27 |
Tree Height (m) | 12.27 | 17.19 |
Basal Area (m2/ha) | 16.16 | 27.40 |
Crown Radii | 4.19 | 6.5 |
Canopy Base Height (m) | 4.97 | 10.57 |
Canopy Fuel Load (kg/m2) | 0.577 | 0.862 |
Crown Bulk Density (kg/m3) | 0.079 | 0.134 |
Weather | Inputs |
---|---|
Temperature (°C) | 31.5–42.4 |
Relative humidity (%) | 20–25 |
Month | August |
Hemisphere | Northern |
Time | 15:00–17:00 |
Wind (km/h) | 25 |
Wind direction | Upslope |
Shading (Canopy Cover—%) | >51 |
Topography | |
Slope (%) | 30 |
Aspect | East |
Pyric Parameters (before Treatment) | Plot | |
---|---|---|
1 | 2 | |
Fire type | Passive crown fire | Intermediate crown fire |
Rate of spread (m/min) | 18.63 | 15.3 |
Fireline intesity (kW/m) | 19,153 | 7737 |
Flame length (m) | 18 | 10.4 |
Crowning index (km/h) | 35.6 | 26.4 |
Pyric Parameters (after Treatment) | Plot | ||
---|---|---|---|
1 | 2 (25%) | 2 (50%) | |
Fire type | Surface fire | Surface fire | Surface fire |
Rate of spread (m/min) | 1.46 | 0.81 | 0.87 |
Fireline intesity (kW/m) | 149 | 82 | 93 |
Flame length (m) | 0.8 | 0.6 | 0.6 |
Crowning index (km/h) | 35.6 | 33.3 | 44.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samara, T.; Raptis, D.; Spanos, I. Fuel Treatments and Potential Fire Behavior in Peri-Urban Forests in Northern Greece. Environments 2018, 5, 79. https://doi.org/10.3390/environments5070079
Samara T, Raptis D, Spanos I. Fuel Treatments and Potential Fire Behavior in Peri-Urban Forests in Northern Greece. Environments. 2018; 5(7):79. https://doi.org/10.3390/environments5070079
Chicago/Turabian StyleSamara, Theano, Dimitrios Raptis, and Ioannis Spanos. 2018. "Fuel Treatments and Potential Fire Behavior in Peri-Urban Forests in Northern Greece" Environments 5, no. 7: 79. https://doi.org/10.3390/environments5070079