Next Article in Journal
Development of ICT for Leaching Monitoring in Taiwan Agricultural LTER Stations
Next Article in Special Issue
Biotrickling Filtration of Air Contaminated with 1-Butanol
Previous Article in Journal
Incorporating Air Quality Improvement at a Local Level into Climate Policy in the Transport Sector: A Case Study in Bandung City, Indonesia
Previous Article in Special Issue
Indoor Air Quality Assessment and Study of Different VOC Contributions within a School in Taranto City, South of Italy
Article Menu
Issue 3 (September) cover image

Export Article

Open AccessArticle
Environments 2017, 4(3), 46;

Lean VOC-Air Mixtures Catalytic Treatment: Cost-Benefit Analysis of Competing Technologies

Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Author to whom correspondence should be addressed.
Received: 4 May 2017 / Revised: 13 June 2017 / Accepted: 18 June 2017 / Published: 25 June 2017
(This article belongs to the Special Issue Volatile Organic Compounds in Environment)
Full-Text   |   PDF [3685 KB, uploaded 28 June 2017]   |  


Various processing routes are available for the treatment of lean VOC-air mixtures, and a cost-benefit analysis is the tool we propose to identify the most suitable technology. Two systems have been compared in this paper, namely a “traditional” plant, with a catalytic fixed-bed reactor with a heat exchanger for heat recovery purposes, and a “non-traditional” plant, with a catalytic reverse-flow reactor, where regenerative heat recovery may be achieved thanks to the periodical reversal of the flow direction. To be useful for decisions-making, the cost-benefit analysis must be coupled to the reliability, or availability, analysis of the plant. Integrated Dynamic Decision Analysis is used for this purpose as it allows obtaining the full set of possible sequences of events that could result in plant unavailability, and, for each of them, the probability of occurrence is calculated. Benefits are thus expressed in terms of out-of-services times, that have to be minimized, while the costs are expressed in terms of extra-cost for maintenance activities and recovery actions. These variable costs must be considered together with the capital (fixed) cost required for building the plant. Results evidenced the pros and cons of the two plants. The “traditional” plant ensures a higher continuity of services, but also higher operational costs. The reverse-flow reactor-based plant exhibits lower operational costs, but a higher number of protection levels are needed to obtain a similar level of out-of-service. The quantification of risks and benefits allows the stakeholders to deal with a complete picture of the behavior of the plants, fostering a more effective decision-making process. With reference to the case under study and the relevant operational conditions, the regenerative system was demonstrated to be more suitable to treat lean mixtures: in terms of time losses following potential failures the two technologies are comparable (Fixed bed plant: 0.35 h/year and Reverse flow plant: 0.56 h/year), while in terms of operational costs, despite its higher complexity, the regenerative system shows lower costs (1200 €/year). View Full-Text
Keywords: cost-benefit analysis; VOC treatment; lean mixtures; reverse-flow reactor; Integrated Dynamic Decision Analysis cost-benefit analysis; VOC treatment; lean mixtures; reverse-flow reactor; Integrated Dynamic Decision Analysis

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Baldissone, G.; Demichela, M.; Fissore, D. Lean VOC-Air Mixtures Catalytic Treatment: Cost-Benefit Analysis of Competing Technologies. Environments 2017, 4, 46.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Environments EISSN 2076-3298 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top