Next Article in Journal
Estimating Ambient Ozone Effect of Kansas Rangeland Burning with Receptor Modeling and Regression Analysis
Previous Article in Journal
Model to Evaluate Pro-Environmental Consumer Practices
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessArticle
Environments 2017, 4(1), 12;

Distribution of Polybrominated Diphenyl Ethers in Sewage Sludge, Sediments, and Fish from Latvia

Latvian Institute of Aquatic Ecology, Voleru Street 4, Riga LV1007, Latvia
Author to whom correspondence should be addressed.
Academic Editor: Yu-Pin Lin
Received: 1 December 2016 / Revised: 29 January 2017 / Accepted: 1 February 2017 / Published: 8 February 2017
Full-Text   |   PDF [1422 KB, uploaded 8 February 2017]   |  


The polybrominated diphenyl ethers (PBDEs) are bioaccumulative, persistent, and toxic. They have a high risk of emission into the environment via volatile losses and diffuse sources, such as commercial product disposal or the use of sewage sludge. The PBDEs’ congeners were analyzed in municipal waste water treatment plant (WWTP) sludge, river and lake water, sediment, and fish samples, to investigate the concentrations in urban and natural locations. The sum of eight PBDE congener (∑8PBDE 28, 47, 99, 100, 153, 154, 183, 209) concentrations in WWTP sludge varied from 78 ng·g−1 DW, to 714 ng·g−1 DW. The BDE 209 constituted up to 93%–98% of ∑8PBDE. In water, the concentrations of all of the measured PBDE congeners were below the limit of detection. Similarly, the concentration of BDE 209 in the sediments was below the limit of detection in all samples. The sum of seven PBDE congener concentrations in the sediments varied from 0.01 to 0.13 ng·g−1 DW. The sum of eight PBDE congener concentrations in fish (European perch) tissues varied from 0.13 to 0.82 ng·g−1 WW. As was recorded for the WWTP sludge, the BDE 209 was the dominant congener, constituting 24%–93% of ∑8PBDE. The sum of seven PBDE congener concentrations, excluding BDE 209, as well as the concentrations of BDE 209 that were measured in WWTP sludge, exhibited a weak negative correlation (Pearson’s r = −0.56, p = 0.1509 and r = −0.48, p = 0.2256, respectively) with the content of dry matter in the sludge. The sum of seven PBDE congener concentrations measured in sediments exhibited a strong negative correlation (Pearson’s r = −0.82, p = 0.0006) with the content of dry matter in the sediments, and a strong positive correlation (Pearson’s r = 0.68, p = 0.0109) with the total carbon content. The obtained results indicated that the fine-grained WWTP sludge particles, with a larger relative surface area, adsorbed BDE 209 the most effectively. This finding was supported by the relatively low environmental concentrations of PBDE congeners, especially BDE 209, which can be explained by the lack of using sewage sludge in agricultural application in Latvia. Furthermore, it seems that, at present, the observed differences in the PBDE congener concentrations in sediments can be attributed to differences in the physical-chemical properties of sediments. View Full-Text
Keywords: PBDEs; sewage sludge; sediments; fish; distribution PBDEs; sewage sludge; sediments; fish; distribution

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Aigars, J.; Suhareva, N.; Poikane, R. Distribution of Polybrominated Diphenyl Ethers in Sewage Sludge, Sediments, and Fish from Latvia. Environments 2017, 4, 12.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Environments EISSN 2076-3298 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top