Effects of Climate Change on Urban Rainwater Harvesting in Colombo City, Sri Lanka
Abstract
:1. Introduction
Model Name | Available SRES Scenarios | Grid Resolution | Time Periods | Agency |
---|---|---|---|---|
CM2.1-AOGCM-GFDL-(GFCM21) | A1B/A2/B1 | 2.0 × 2.5° | B, T1,T2,T3 | U.S. Dept. of Commerce /NOAA/Geophysical Fluid Dynamics Laboratory (GFDL) (USA) |
UKMO-HadCM3 (HADCM3) | A1B/A2/B1 | 2.5 × 3.75° | B, T1,T2,T3 | Hadley Center (Had) for Climate Prediction and Research/Met Office (MO) (U.K.) |
INM-CM3.0 (INCM3) | A1B/A2/B1 | 4 × 5° | B, T1,T2,T3 | Institute of Numerical Mathematics (INM), Russian Academy of Science, Russia. |
IPSL-CM4 (IPCM4) | A1B/A2/B1 | 2.5 × 3.75° | B, T1,T2,T3 | Institut Pierre Simon Laplace (IPSL) (France) |
MPI_ECHAM5 (MPEH5) | A1B/A2/B1 | 1.9 × 1.9° | B, T1,T2,T3 | Max Planck Institute (MPI) for Meteorology (Germany) |
CCSM3/ NCCCSM | A1B/A2/B1 | 1.4 × 1.4° | B, T1,T2,T3 | National Climate Center (NCC) (USA) |
2. Methodology
2.1. Study Area
2.2. Data
2.3. Statistical Downscaling of Climate Change Projections
2.4. Climate Change Detection
2.5. Rainwater Harvesting System Modelling
Scenario Type | Water Use | Water Use Rate (L/Day) | Average Number of People in Concern | Catchment Area Category | Average Catchment Area Size (m2) | Average Size of the Rainwater Storage Tank (m3) | Potential Irrigated Area (m2) |
---|---|---|---|---|---|---|---|
Residential Type A | Low | 100 | 4 | Small | 200 | 50 | 2 |
Residential Type B | High | 200 | 4 | Small | 200 | 50 | 2 |
Non-residential Type A | Low | 15 | 50 | Medium | 2000 | 200 | 10 |
Non-residential Type B | High | 30 | 50 | Medium | 2000 | 200 | 10 |
Non-residential large scale (indoor) Type C | Medium | 20 | 2500 | Large | 25,000 | 1000 | 500 |
Non-residential large scale (outdoor) Type D | Medium | 20 | 750 | Large | 25,000 | 1000 | 25,000 |
2.6. Water Security
3. Results and Discussions
3.1. Weather Data Analysis
Parameters | Values |
---|---|
Time period (years) | 30 |
Mean (mm) | 2,301.98 |
Median (mm) | 2,249.05 |
Maximum (mm) | 3,369.90 |
Minimum (mm) | 1,456.60 |
Standard deviation | 374.45 |
Average annual wet days | 171.84 |
Average annual dry days | 193.41 |
Wet/total ratio | 0.47 |
Dry/total ratio | 0.53 |
3.2. Statistical Downscaling of Climate Change Projections
3.3. Modelling the Rainwater Harvesting System
3.4. Water Security Analysis
Rainwater Harvesting System Scenario | GFCM21 | HADCM3 | INCM3 | IPCM4 | MPEH5 | NCCCSM |
---|---|---|---|---|---|---|
Residential Type A | −2.85 | −0.20 | 0.00 | 0.00 | 0.00 | 0.00 |
Residential Type B | −3.96 | 2.41 | 2.82 | 4.46 | 5.02 | 2.90 |
Non-residential Type A | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Non-residential Type B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Non-residential Type C, large scale (indoor) | −0.54 | −0.04 | 0.00 | 0.01 | 0.01 | −0.01 |
Non-residential Type D, large scale (outdoor) | −4.77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Kerr, R.A. The greenhouse consensus. Science 1990, 249, 481–482. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Rosenzweig, C.; Casassa, G.; Karoly, D.J.; Imeson, A.; Liu, C.; Menzel, A.; Rawlins, S.; Root, T.L.; Seguin, B.; Tryjanowski, P. Assessment of observed changes and responses in natural and managed systems. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 79–131. [Google Scholar]
- Ghisi, E.; Montibeller, A.; Schmidt, R.W. Potential for potable water savings by using rainwater: An analysis over 62 cities in Southern Brazil. Build. Environ. 2006, 41, 204–210. [Google Scholar]
- Helmreich, B.; Horn, H. Opportunities in rainwater harvesting. Desalination 2009, 248, 118–124. [Google Scholar]
- Herrmann, T.; Hasse, K. Ways to get water: Rainwater utilization or long-distance water supply? A holistic assessment. Water Sci. Technol. 1997, 36, 313–318. [Google Scholar]
- Zhang, Y.; Chen, D.H.; Chen, L.; Ashbolt, S. Potential for rainwater use in high-rise buildings in Australian cities. J. Environ. Manage. 2009, 91, 222–226. [Google Scholar]
- Bastiaanssen, W.G.M.; Chandrapala, L. Water balance variability across Sri Lanka for assessing agricultural and environmental water use. Agric. Water Manage. 2003, 58, 171–192. [Google Scholar]
- Sri Lanka Gazette 1597/8 of 2009; The Gazette of the Democratic Socialist Republic of Sri Lanka: Colombo, Sri Lanka, 2009.
- Arnbjerg-Nielsen, K.; Willems, P.; Olsson, J.; Beecham, S.; Pathirana, A.; Gregersen, I.B.; Madsen, H.; Nguyen, V.T.V. Impacts of climate change on rainfall extremes and urban drainage systems: A review. Water Sci. Technol. 2013, 68, 16–28. [Google Scholar]
- Ariyananda, T. Rainwater harvesting for the urban buildings in Sri Lanka. In Subtropical Green Building International Conference; Architecture and Building Research Institute: Taipei, Taiwan, 2007. [Google Scholar]
- Salathé, E.P. Comparison of various precipitation downscaling methods for the simulation of streamflow in a rainshadow river basin. Int. J. Climatol. 2003, 23, 887–901. [Google Scholar]
- Racsko, P.; Szeidl, L.; Semenov, M. A serial approach tolocal stochastic weather models. Ecol. Model. 1991, 57, 27–41. [Google Scholar]
- Semenov, M.A. Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric. For. Meteorol. 2007, 144, 127–138. [Google Scholar]
- Semenov, M.A.; Stratonovitch, P. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res. 2010, 41, 1–14. [Google Scholar]
- Hashmi, M.Z.; Shamseldin, A.Y.; Melville, B.W. Statistical downscaling of precipitation: State-of-the-art and application of bayesian multi-model approach for uncertainty assessment. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 6535–6579. [Google Scholar]
- Herrmann, T.; Hasse, K. Ways to get water: Rainwater utilization or long-distance water supply? A holistic assessment. Water Sci. Technol. 1997, 36, 313–318. [Google Scholar]
- Semenov, M.A.; Barrow, E.M. LARS-WG—A Stochastic Weather Generator for Use in Climate Impact Studies, User Manual; Harpenden: Hertfordshire, UK, 2002. [Google Scholar]
- De Silva, C.S. Impacts of climate change on water resources in Sri Lanka. In 32nd WEDC International Conference on Sustainable Development of Water Resources, Water Supply and Environmental Sanitation; The Water, Engineering and Development Center (WEDC), Loughborough University: Loughborough, UK, 2006; pp. 289–295. [Google Scholar]
- Ranatunge, E.; Malmgren, B.; Hayashi, Y.; Mikami, T.; Morishima, W.; Yokozawa, M.; Nishimori, M. Changes in the Southwest Monsoon mean daily rainfall intensity in Sri Lanka: Relationship to the El Niño-southern oscillation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 197, 1–14. [Google Scholar]
- NWS & DB. “Water Coverage.” Regional Support Center Western Central, National Water Supply and Drainage Board. Available online: http://www.waterboard.lk/web/index.php?option=com_content&view=article&id=99:water-coverage&catid=34:western-central&Itemid=202&lang=en (accessed on 4 March 2015).
- Lutz, A.F.; Immerzeel, W.W.; Gobiet, A.; Pellicciotti, F.; Bierkens, M.F.P. Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers. Hydrol. Earth Syst. Sci. 2013, 17, 3661–3677. [Google Scholar]
- Jenkins, G.; Lowe, J. Handling Uncertainties in the UKCIP02 Scenarios of Climate Change, Technical Report 44; Hadley Center: Devon, UK, 2003. [Google Scholar]
- Costello, L.R.; Matheny, N.P.; Clark, J.R. Estimating water needs for landscape plantings. In A Guide to Estimating Irrigation Water Needs of Landscape Plantings in California; University of California Cooperative Extension, California Department of Water Resources: Sacramento, CA, USA, 2000; Part I, Chapter 2. [Google Scholar]
- Punyawardena, B.V.R. Rainfall and Agro-Ecological Regions of Sri Lanka; Natural Resource Management Center, Department of Agriculture: Peradeniya, Sri Lanka, 2008. [Google Scholar]
- World Resources Institute. Watersheds of the World [CD]; World Resources Institute: Washington, DC, USA, 2003. [Google Scholar]
- Punyawardena, B.V.R.; De Silva, R.P.; Nijananthy, S. Influence of El Nino/La Nina Episodes on the rainfall regime of the Dl, region of the north central province of Sri Lanka. J. Natn. Sci. Found. Sri Lanka 2004, 32, 149–156. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, K.F.A.; Koralegedara, S.B. Effects of Climate Change on Urban Rainwater Harvesting in Colombo City, Sri Lanka. Environments 2015, 2, 105-124. https://doi.org/10.3390/environments2010105
Lo KFA, Koralegedara SB. Effects of Climate Change on Urban Rainwater Harvesting in Colombo City, Sri Lanka. Environments. 2015; 2(1):105-124. https://doi.org/10.3390/environments2010105
Chicago/Turabian StyleLo, Kwong Fai A., and Suranjith Bandara Koralegedara. 2015. "Effects of Climate Change on Urban Rainwater Harvesting in Colombo City, Sri Lanka" Environments 2, no. 1: 105-124. https://doi.org/10.3390/environments2010105
APA StyleLo, K. F. A., & Koralegedara, S. B. (2015). Effects of Climate Change on Urban Rainwater Harvesting in Colombo City, Sri Lanka. Environments, 2(1), 105-124. https://doi.org/10.3390/environments2010105