Poultry Slaughterhouse Wastewater Treatment by Green Algae: An Eco-Friendly Restorative Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Wastewater Characteristics
2.2. Microalgae and Experimental Set Up
2.3. Assessment of Algal Cultures Growth, Nutrient Removal, and Content of Biomass
2.4. Microbial Community Structure Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Growth in PSW and Bioremediation Capacity
3.2. Biomass Composition and Its Biotechnological Potential
3.3. Microalgal Impacts on Composition of PSW Microbial Communities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BBM | Bold’s basal medium |
CFU | colony-forming units |
DW | dry weight |
OD750nm | optical density at 750 nm |
PSW | poultry slaughterhouse wastewater |
PSW_mod | modified poultry slaughterhouse wastewater |
TBC | total bacterial count |
TCB | total coliform bacteria |
VS | volatile solids |
References
- Gohil, A.; Budholiya, S.; Mohan, C.G.; Prakash, R. Utilization of poultry waste as a source of biogas production. Mater. Today Proc. 2021, 45, 783–787. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Ziganshin, A.M. Magnetite nanoparticles and carbon nanotubes for improving the operation of mesophilic anaerobic digesters. Microorganisms 2023, 11, 938. [Google Scholar] [CrossRef]
- Fatima, F.; Du, H.; Kommalapati, R.R. Treatment of poultry slaughterhouse wastewater with membrane technologies: A review. Water 2021, 13, 1905. [Google Scholar] [CrossRef]
- Ng, M.; Dalhatou, S.; Wilson, J.; Kamdem, B.P.; Temitope, M.B.; Paumo, H.K.; Djelal, H.; Assadi, A.A.; Nguyen-Tri, P.; Kane, A. Characterization of slaughterhouse wastewater and development of treatment techniques: A review. Processes 2022, 10, 1300. [Google Scholar] [CrossRef]
- Kothari, R.; Azam, R.; Bharti, A.; Goria, K.; Allen, T.; Ashokkumar, V.; Pathania, D.; Singh, R.P.; Tyagi, V.V. Biobased treatment and resource recovery from slaughterhouse wastewater via reutilization and recycling for sustainable waste approach. J. Water Process. Eng. 2024, 58, 104712. [Google Scholar] [CrossRef]
- Ngobeni, V.; Basitere, M.; Thole, A. Treatment of poultry slaughterhouse wastewater using electrocoagulation: A review. Water Pract. Technol. 2022, 17, 38–59. [Google Scholar] [CrossRef]
- Hilares, R.T.; Atoche-Garay, D.F.; Pagaza, D.A.P.; Ahmed, M.A.; Andrade, G.J.C.; Santos, J.C. Promising physicochemical technologies for poultry slaughterhouse wastewater treatment: A critical review. J. Environ. Chem. Eng. 2021, 9, 105174. [Google Scholar] [CrossRef]
- Karchiyappan, T.; Ettiyagounder, P.; Selvaraj, P.S.; Veeraswamy, D.; Ponnusamy, J.; Ramanujam, K. A review on sustainable poultry slaughterhouse wastewater management based on electrochemical technology. Desalination Water Treat. 2025, 322, 101212. [Google Scholar] [CrossRef]
- Pereira, A.K.S.; Teixeira, K.C.; Pereira, D.H.; Cavallini, G.S. A critical review on slaughterhouse wastewater: Treatment methods and reuse possibilities. J. Water Process. Eng. 2024, 58, 104819. [Google Scholar] [CrossRef]
- Patel, A.; Gami, B.; Patel, P.; Patel, B. Microalgae: Antiquity to era of integrated technology. Renew. Sustain. Energy Rev. 2017, 71, 535–547. [Google Scholar] [CrossRef]
- Viegas, C.; Gouveia, L.; Goncalves, M. Evaluation of microalgae as bioremediation agent for poultry effluent and biostimulant for germination. Environ. Technol. Innov. 2021, 24, 102048. [Google Scholar] [CrossRef]
- Hilares, T.R.; Bustos, G.K.A.; Vera, S.F.P.; Andrade, C.G.J.; Tanaka, P.D.A. Acid precipitation followed by microalgae (Chlorella vulgaris) cultivation as a new approach for poultry slaughterhouse wastewater treatment. Bioresour. Technol. 2021, 335, 125284. [Google Scholar] [CrossRef]
- Banadaki, D.F.; Nematollahi, M.A.; Jamali, H.A.; Hamidi, Z. The use of Chlorella vulgaris in reducing the organic load of poultry slaughterhouse wastewater: Modeling and optimization of influential factors in the process. Environ. Health Eng. Manag. 2024, 11, 147–159. [Google Scholar] [CrossRef]
- Svierzoski, N.D.S.; Matheus, M.C.; Bassin, J.P.; Brito, Y.D.; Mahler, C.F.; Webler, A.D. Treatment of a slaughterhouse wastewater by anoxic-aerobic biological reactors followed by UV-C disinfection and microalgae bioremediation. Water Environ. Res. 2021, 93, 409–420. [Google Scholar] [CrossRef]
- Geremia, E.; Ripa, M.; Catone, C.M.; Ulgiati, S. A Review about microalgae wastewater treatment for bioremediation and biomass production—A new challenge for Europe. Environments 2021, 8, 136. [Google Scholar] [CrossRef]
- Selvaratnam, T.; Sivanantharajah, S.; Sriram, K. Beyond biomass: Reimagining microalgae as living environmental nano-factories. Environments 2025, 12, 221. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Chiang, A.; Herojit, N.; Arumugam, M. Sustainable microalgal cultivation in poultry slaughterhouse wastewater for biorefinery products and pollutant removal. Bioresour. Technol. 2023, 374, 128790. [Google Scholar] [CrossRef]
- Pérez-Guzmán, S.M.; Hernández-Aguilar, E.; Alvarado-Lassman, A.; Méndez-Contreras, J.M. Kinetics of obtaining microalgal biomass and removal of organic contaminants in photobioreactors operated with microalgae–study case: Treatment of wastewater from a poultry slaughterhouse. Water 2024, 16, 1558. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. [Google Scholar] [CrossRef]
- Musie, W.; Gonfa, G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon 2023, 9, e18685. [Google Scholar] [CrossRef] [PubMed]
- Bulynina, S.S.; Ziganshina, E.E.; Ziganshin, A.M. Growth efficiency of Chlorella sorokiniana in synthetic media and unsterilized domestic wastewater. BioTech 2023, 12, 53. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Bulynina, S.S.; Yureva, K.A.; Ziganshin, A.M. Growth parameters of various green microalgae species in effluent from biogas reactors: The importance of effluent concentration. Plants 2022, 11, 3583. [Google Scholar] [CrossRef] [PubMed]
- Ziganshina, E.E.; Ziganshin, A.M. Influence of nutrient medium composition on the redistribution of valuable metabolites in the freshwater green alga Tetradesmus obliquus (Chlorophyta) under photoautotrophic growth conditions. BioTech 2025, 14, 60. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Bulynina, S.S.; Yureva, K.A.; Ziganshin, A.M. Optimization of photoautotrophic growth regimens of Scenedesmaceae alga: The influence of light conditions and carbon dioxide concentrations. Appl. Sci. 2023, 13, 12753. [Google Scholar] [CrossRef]
- Nayak, M.; Karemore, A.; Sen, R. Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res. 2016, 16, 216–223. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Bulynina, S.S.; Ziganshin, A.M. Comparison of the photoautotrophic growth regimens of Chlorella sorokiniana in a photobioreactor for enhanced biomass productivity. Biology 2020, 9, 169. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Chen, C.-Y. Coupled photocatalysis and microalgal–bacterial synergy system for continuously treating aquaculture wastewater containing real phthalate esters. Environments 2023, 10, 215. [Google Scholar] [CrossRef]
- Devrajani, S.K. A sustainable microalgal cultivation approach for the treatment of poultry abattoir wastewater and biofuel production. Environ. Monit. Assess. 2025, 197, 1038. [Google Scholar] [CrossRef]
- Primo, T.A.R.C.; Vargas, L.B.; Alves, R.D.; Neves, F.F.; Skoronski, E. New insights into chicken processing wastewater treatment: The role of the microalgae Parachlorella kessleri on nitrogen removal. Environ. Technol. 2025, 46, 1229–1241. [Google Scholar] [CrossRef]
- Lu, Q. A state-of-the-art review of microalgae-based food processing wastewater treatment: Progress, problems, and prospects. Water 2025, 17, 536. [Google Scholar] [CrossRef]
- Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the potential beneficial effects of carotenoids on consumer health and well-being. Antioxidants 2023, 12, 1069. [Google Scholar] [CrossRef]
- Borowiak, D.; Lenartowicz, P.; Grzebyk, M.; Wiśniewski, M.; Lipok, J.; Kafarski, P. Novel, automated, semi-industrial modular photobioreactor system for cultivation of demanding microalgae that produce fine chemicals—The next story of H. pluvialis and astaxanthin. Algal Res. 2021, 53, 102151. [Google Scholar] [CrossRef]
- Mosibo, O.K.; Ferrentino, G.; Udenigwe, C.C. Microalgae proteins as sustainable ingredients in novel foods: Recent developments and challenges. Foods 2024, 13, 733. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.P.F.; Bragotto, A.P.A. Microalgae-based products: Food and public health. Future Foods 2022, 6, 100157. [Google Scholar] [CrossRef]
- Yaakob, Z.; Ali, E.; Zainal, A.; Mohamad, M.; Takriff, M.S. An overview: Biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. 2014, 21, 6. [Google Scholar] [CrossRef]
- Zanchetta, E.; Damergi, E.; Patel, B.; Borgmeyer, T.; Pick, H.; Pulgarin, A.; Ludwig, C. Algal cellulose, production and potential use in plastics: Challenges and opportunities. Algal Res. 2021, 56, 102288. [Google Scholar] [CrossRef]
- Chen, C.Y.; Zhao, X.Q.; Yen, H.W.; Ho, S.H.; Cheng, C.L.; Lee, D.J.; Bai, F.W.; Chang, J.S. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 2013, 78, 1–10. [Google Scholar] [CrossRef]
- Di Caprio, F.; Amenta, S.; Francolini, I.; Altimari, P.; Pagnanelli, F. Microalgae biorefinery: Optimization of starch recovery for bioplastic production. ACS Sustain. Chem. Eng. 2023, 11, 16509–16520. [Google Scholar] [CrossRef]
- Demuez, M.; Mahdy, A.; Tomás-Pejó, E.; González-Fernández, C.; Ballesteros, M. Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol. Bioeng. 2015, 112, 1955–1966. [Google Scholar] [CrossRef]
- Dragone, G.; Fernandes, B.D.; Abreu, A.P.; Vicente, A.A.; Teixeira, J.A. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energy 2011, 88, 3331–3335. [Google Scholar] [CrossRef]
- Mathiot, C.; Ponge, P.; Gallard, B.; Sassi, J.F.; Delrue, F.; Le Moigne, N. Microalgae starch-based bioplastics: Screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydr. Polym. 2019, 208, 142–151. [Google Scholar] [CrossRef]
- Xu, H.; Yang, J.; Wang, X.; Peng, Q.; Han, Y.; Liu, X.; Liu, K.; Dou, S.; Li, L.; Liu, G.; et al. Starch accumulation dynamics and transcriptome analysis of Chlorella sorokiniana during transition of sulfur nutritional status. Front. Mar. Sci. 2022, 9, 986400. [Google Scholar] [CrossRef]
- Noguchi, M.; Aizawa, R.; Nakazawa, D.; Hakumura, Y.; Furuhashi, Y.; Yang, S.; Ninomiya, K.; Takahashi, K.; Honda, R. Application of real treated wastewater to starch production by microalgae: Potential effect of nutrients and microbial contamination. Biochem. Eng. J. 2021, 169, 107973. [Google Scholar] [CrossRef]
- Udayan, A.; Pandey, A.K.; Sirohi, R.; Sreekumar, N.; Sang, B.I.; Sim, S.J.; Kim, S.H.; Pandey, A. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem. Rev. 2023, 22, 833–860. [Google Scholar] [CrossRef] [PubMed]
- Nishshanka, G.K.S.H.; Anthonio, R.A.D.P.; Nimarshana, P.H.V.; Ariyadasa, T.U.; Chang, J.S. Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochem. Eng. J. 2022, 187, 108593. [Google Scholar] [CrossRef]
- Ran, W.; Wang, H.; Liu, Y.; Qi, M.; Xiang, Q.; Yao, C.; Zhang, Y.; Lan, X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. Bioresour. Technol. 2019, 291, 121894. [Google Scholar] [CrossRef]
- Almalki, M.A.; Khalifa, A.Y.Z.; Alkhamis, Y.A. In vitro antibiosis of Chlorella vulgaris extract against the phytopathogen, Stenotrophomonas maltophilia. J. Pure Appl. Microbiol. 2022, 16, 630–637. [Google Scholar] [CrossRef]
- Torres, M.J.; Fakhimi, N.; Dubini, A.; González-Ballester, D. Stenotrophomonas goyi sp. nov.; a novel bacterium associated with the alga Chlamydomonas reinhardtii. F1000Research 2023, 12, 1373. [Google Scholar] [CrossRef]
- Yarbro, J.; Khorunzhy, E.; Boyle, N. The phycosphere and its role in algal biofuel production. Front. Clim. 2024, 6, 1277475. [Google Scholar] [CrossRef]
- Amaro, H.M.; Salgado, E.M.; Nunes, O.C.; Pires, J.C.; Esteves, A.F. Microalgae systems-environmental agents for wastewater treatment and further potential biomass valorisation. J. Environ. Manag. 2023, 337, 117678. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiang, S.; Li, Y.; Cheng, R.; Lai, Q.; Wang, L.; Li, G.; Dong, C.; Shao, Z. Arcobacteraceae are ubiquitous mixotrophic bacteria playing important roles in carbon, nitrogen, and sulfur cycling in global oceans. Microorganisms 2024, 9, 1584. [Google Scholar] [CrossRef] [PubMed]
- Buzzanca, D.; Chiarini, E.; Alessandria, V. Arcobacteraceae: An exploration of antibiotic resistance featuring the latest research updates. Antibiotics 2024, 13, 669. [Google Scholar] [CrossRef] [PubMed]
- Venâncio, I.; Luís, A.; Domingues, F.; Oleastro, M.; Pereira, L.; Ferreira, S. The prevalence of Arcobacteraceae in aquatic environments: A systematic review and meta-analysis. Pathogens 2022, 11, 244. [Google Scholar] [CrossRef]
- Ruas, G.; Farias, S.L.; dos Reis, B.A.B.; Serejo, M.L.; da Silva, G.H.R.; Boncz, M.A. Removal of Clostridium perfringens and Staphylococcus spp. in microalgal–bacterial systems: Influence of microalgal inoculum and CO2/O2 addition. Water 2023, 15, 5. [Google Scholar] [CrossRef]
- Syed, S.; Arasu, A.; Ponnuswamy, I. The uses of Chlorella vulgaris as antimicrobial agent and as a diet: The presence of bio-active compounds which caters the vitamins, minerals in general. Int. J. Bio-Sci. Bio-Technol. 2015, 7, 185–190. [Google Scholar] [CrossRef]
- Song, Y.; Jia, J.; Liu, D.; Choi, L.; Wang, G.; Li, M. Sediminibacterium roseum sp. nov.; isolated from sewage sediment. Int. J. Syst. Evol. Microbiol. 2017, 67, 4674–4679. [Google Scholar] [CrossRef]
- Ayarza, J.M.; Figuerola, E.L.; Erijman, L. Draft genome sequences of type strain Sediminibacterium salmoneum NJ-44 and Sediminibacterium sp. strain C3, a novel strain isolated from activated sludge. Genome Announc. 2014, 2, e01073-13. [Google Scholar] [CrossRef]
- Bai, Y.; Mori, K.; Tanaka, Y.; Toyama, T. Isolation and characterization of bacteria from natural microbiota regrown with Chlamydomonas reinhardtii in synthetic co-cultures. Algal Res. 2025, 86, 103954. [Google Scholar] [CrossRef]
- Toyama, T.; Kasuya, M.; Hanaoka, T.; Kobayashi, N.; Tanaka, Y.; Inoue, D.; Sei, K.; Morikawa, M.; Mori, K. Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent. Biotechnol. Biofuels 2018, 11, 176. [Google Scholar] [CrossRef]
- Sethuraman, A.; Stancheva, R.; Sanders, C.; Caceres, L.; Castro, D.; Hausknecht-Buss, H.; Henry, S.; Johansen, H.; Kasler, A.; Lastor, S.; et al. Genome of a novel Sediminibacterium discovered in association with two species of freshwater cyanobacteria from streams in Southern California. G3 2022, 12, jkac123. [Google Scholar] [CrossRef]
- Park, Y.; Je, K.W.; Lee, K.; Jung, S.E.; Choi, T.J. Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga. Hydrobiology 2007, 598, 219–228. [Google Scholar] [CrossRef]
- Lakatos, G.; Deak, Z.; Vass, I.; Retflvi, T.; Rozgonyi, S.; Rakhely, G.; Ordog, V.; Kondorosi, E.; Maroti, G. Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae. Green Chem. 2014, 16, 4716–4727. [Google Scholar] [CrossRef]
- Zhang, C.; van der Heijden, M.G.A.; Dodds, B.K.; Nguyen, T.B.; Spooren, J.; Valzano-Held, A.; Cosme, M.; Berendsen, R.L. A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Microbiome 2024, 12, 13. [Google Scholar]
- Wang, M.; Chen, H.; Cheng, J.; Wang, Y.; Zheng, H. Mechanism of molecular communication and bacterial community succession in microalgal bacterial biofilms under different photoperiods. J. Environ. Manag. 2025, 373, 123905. [Google Scholar] [CrossRef]
- Cho, D.H.; Ramanan, R.; Heo, J.; Lee, J.; Kim, B.H.; Oh, H.M.; Kim, H.S. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 2015, 175, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, D.H.; Ramanan, R.; Kim, B.H.; Oh, H.M.; Kim, H.S. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 2013, 131, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Mora-Salguero, D.; Florez, M.J.V.; Orjuela, J.H.; Fernández-Niño, M.; Barrios, A.F.G. Evaluation of the phenol degradation capacity of microalgae-bacteria consortia from the bay of Cartagena, Colombia. TecnoLógicas 2019, 22, 149–158. [Google Scholar] [CrossRef]
- Pessoa, R.B.G.; de Oliveira, W.F.; Correia, M.T.D.S.; Fontes, A.; Coelho, L.C.B.B. Aeromonas and human health disorders: Clinical approaches. Front. Microbiol. 2022, 13, 868890. [Google Scholar] [CrossRef]
- Akan, M.; Eyigor, A.; Diker, K.S. Motile aeromonads in the feces and carcasses of broiler chickens in turkey. J. Food Prot. 1998, 61, 113–115. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Nzimande, S.B.; Mkize, N.G. Antimicrobial resistance and virulence signatures of Listeria and Aeromonas species recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. BMC Microbiol. 2015, 15, 234. [Google Scholar] [CrossRef]
Treatment | pH | NH4+–N, mg L−1 | PO43−–P, mg L−1 | SO42−–S, mg L−1 |
---|---|---|---|---|
AM-02_PSW | 7.32 ± 0.02 | 67 ± 3.8 | 11 ± 0.5 | 3 ± 0.4 |
AM-02_PSW_mod | 7.43 ± 0.01 | 144 ± 1.2 | 35 ± 0.4 | 10 ± 0.2 |
SB-M4_PSW | 7.09 ± 0.02 | 65 ± 1.4 | 9 ± 0.8 | 3 ± 0.7 |
SB-M4_PSW_mod | 7.21 ± 0.02 | 143 ± 1.7 | 34 ± 0.6 | 10 ± 0.3 |
EZ-B11_PSW | 7.30 ± 0.03 | 60 ± 1.4 | 9 ± 0.6 | 4 ± 0.6 |
EZ-B11_PSW_mod | 7.08 ± 0.02 | 144 ± 1.6 | 35 ± 0.7 | 11 ± 0.3 |
EE-M8_PSW | 7.15 ± 0.02 | 62 ± 1.8 | 10 ± 0.4 | 2 ± 0.5 |
EE-M8_PSW_mod | 7.11 ± 0.01 | 145 ± 1.7 | 36 ± 0.2 | 10 ± 0.5 |
EE-K3_PSW | 7.10 ± 0.01 | 65 ± 1.7 | 11 ± 0.7 | 3 ± 0.2 |
EE-K3_PSW_mod | 6.93 ± 0.02 | 142 ± 4.3 | 35 ± 0.4 | 11 ± 0.4 |
Treatment | Volatile Solids, g L−1 | Biomass Productivity, g L−1 day−1 | Final Pigments, % of DW | PO43−–P Removal, % | SO42−–S Removal, % | Period of Cultivation, Day |
---|---|---|---|---|---|---|
AM-02_PSW | 2.82 ± 0.16 b | 0.49 ± 0.03 cd | 0.93 ± 0.05 b | 100 | 100 | 7 |
AM-02_PSW_mod | 4.13 ± 0.19 a | 0.62 ± 0.03 ab | 1.69 ± 0.08 a | 100 | 100 | 8 |
SB-M4_PSW | 2.96 ± 0.15 b | 0.52 ± 0.02 abc | 0.67 ± 0.03 c | 100 | 100 | 7 |
SB-M4_PSW_mod | 4.25 ± 0.11 a | 0.63 ± 0.03 a | 1.71 ± 0.07 a | 100 | 100 | 8 |
EZ-B11_PSW | 2.88 ± 0.14 b | 0.51 ± 0.03 bcd | 0.56 ± 0.03 c | 100 | 100 | 7 |
EZ-B11_PSW_mod | 3.90 ± 0.18 a | 0.50 ± 0.02 cd | 1.56 ± 0.07 a | 100 | 100 | 8 |
EE-M8_PSW | 2.94 ± 0.14 b | 0.52 ± 0.03 abc | 0.64 ± 0.04 c | 100 | 100 | 7 |
EE-M8_PSW_mod | 3.93 ± 0.17 a | 0.51 ± 0.03 bcd | 1.47 ± 0.08 a | 100 | 100 | 8 |
EE-K3_PSW | 2.21 ± 0.11 c | 0.41 ± 0.02 de | 0.71 ± 0.03 bc | 100 | 100 | 7 |
EE-K3_PSW_mod | 2.43 ± 0.14 bc | 0.34 ± 0.02 e | 1.54 ± 0.10 a | 81 ± 3 | 88 ± 4 | 8 |
Isolate (bp) | Highest BLAST+ 2.17.0 Hit (Acc. No.)/Percent Identity | Taxonomic Affiliation |
---|---|---|
PSW_1 (737) | Aeromonas salmonicida strain CECT 894 (NR_043324.1)/98.7% | Aeromonas sp. |
PSW_2 (640) | Aeromonas salmonicida strain CECT 894 (NR_043324.1)/97.3% | Aeromonas sp. |
PSW_3 (830) | Aeromonas media strain RM (NR_036911.2)/99.8% | Aeromonas sp. |
PSW_4 (823) | Shewanella putrefaciens strain Hammer 95 (NR_044863.1)/99.8% | Shewanella sp. |
PSW_5 (844) | Citrobacter gillenii strain CDC 4693-86 (NR_041697.1)/100% | Citrobacter sp. |
PSW_6 (849) | Citrobacter gillenii strain CDC 4693-86 (NR_041697.1)/99.9% | Citrobacter sp. |
PSW_7 (827) | Pseudomonas putida strain NBRC 14164 (NR_113651.1)/98.4% | Pseudomonas sp. |
PSW_8 (895) | Pseudomonas putida B33 (KT767698)/99.7% | Pseudomonas sp. |
PSW_9 (812) | Pseudomonas sp. CmLB7 (HM352331)/99.9% | Pseudomonas sp. |
PSW_10 (835) | Stenotrophomonas lactitubi strain M15 (NR_179509.1)/98.8% | Stenotrophomonas sp. |
PSW_11 (807) | Stenotrophomonas tumulicola cqsG1 (MN826536)/99.5% | Stenotrophomonas sp. |
PSW_12 (885) | Stenotrophomonas sp. V10R15 (MT165571)/100% | Stenotrophomonas sp. |
PSW_13 (805) | Escherichia coli MAK15 (OP060224)/99.9% | Escherichia coli |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziganshina, E.E.; Yureva, K.A.; Ziganshin, A.M. Poultry Slaughterhouse Wastewater Treatment by Green Algae: An Eco-Friendly Restorative Process. Environments 2025, 12, 331. https://doi.org/10.3390/environments12090331
Ziganshina EE, Yureva KA, Ziganshin AM. Poultry Slaughterhouse Wastewater Treatment by Green Algae: An Eco-Friendly Restorative Process. Environments. 2025; 12(9):331. https://doi.org/10.3390/environments12090331
Chicago/Turabian StyleZiganshina, Elvira E., Ksenia A. Yureva, and Ayrat M. Ziganshin. 2025. "Poultry Slaughterhouse Wastewater Treatment by Green Algae: An Eco-Friendly Restorative Process" Environments 12, no. 9: 331. https://doi.org/10.3390/environments12090331
APA StyleZiganshina, E. E., Yureva, K. A., & Ziganshin, A. M. (2025). Poultry Slaughterhouse Wastewater Treatment by Green Algae: An Eco-Friendly Restorative Process. Environments, 12(9), 331. https://doi.org/10.3390/environments12090331