Small-Scale Farming, Pesticide Exposure, and Respiratory Health: A Cross-Sectional Study in Bolivia
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Setting of the Study
2.2. Study Population and Sampling
2.3. Data Collection and Variable Definition
2.3.1. Assessment of Pesticide Exposure
- (a)
- Do you use pesticides (insecticides, fungicides, herbicides, acaricides, etc.) in agriculture? (no = 0; yes = 2);
- (b)
- Do you use pesticides for purposes other than agricultural exposure? (e.g., treatment of contaminated clothes and domestic use for pest control (no = 0; yes = 1);
- (c)
- Presence of previous signs or symptoms after pesticide exposure (including nausea, headache, vomiting, dizziness, muscle weakness, salivation, blurred vision, extreme tiredness, loss of appetite, slurred speech, skin irritation, tremor, lack of coordination, dry mouth, shortness of breath, abdominal pain, excessive perspiration) (no = 0; yes = 1);
- (d)
- Frequency of pesticide handling (no contact= 0; rarely (mostly diluted pesticides) = 1; sometimes = 2; frequently = 3);
- (e)
- Use of personal protective equipment when handling pesticides (handling pesticides yes = 0; no = 1);
- (f)
- Distance from home to crop areas (˃400 m = 0; 61 to 400 m = 1; or ≤60 m = 2).
2.3.2. Assessment of Respiratory Health
- (a)
- Chronic cough or phlegm was considered present if the individual reported coughing on most days for at least three months per year or if sputum production occurred on most days for at least three months per year.
- (b)
- Presence of wheeze was defined as the occurrence of any whistling in the chest at any time during the last 12 months.
- (c)
- Nasal allergy was considered present if the individual reported having any nasal allergies, including rhinitis.
- (d)
- Chest tightness was defined as present if the individual reported a sensation of chest oppression or whistling.
2.3.3. Assessment of the Lung Function
2.4. Data Analysis
2.5. Ethics Considerations
3. Results
3.1. Respiratory Symptoms and Pesticide Exposure
3.2. Lung Function and Pesticide Exposure
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GDP | Gross Domestic Product |
IEB | Individual Exposure Burden |
FVC (L) | Forced Vital Capacity (FVC), which is the total volume of air exhaled in a forced expiratory maneuver. |
FEV1 (L) | The amount of air that a person exhales during the first second of a forced expiratory maneuver. |
FEV1/FVC (%) | The ratio of FEV1 to FVC is obtained by dividing the FEV1 by the FVC and is expressed as a percentage (100 × FEV1/FVC). |
References
- Conroy, H.; Rondinone, G.; De Salvo, C.P.; Muñoz, G. Agricultural policies in Latin America and the Caribbean 2023; Inter-American Development Bank: Washington, DC, USA, 2024. [Google Scholar]
- Shattuck, A.; Werner, M.; Mempel, F.; Dunivin, Z.; Galt, R. Global pesticide use and trade database (GloPUT): New estimates show pesticide use trends in low-income countries substantially underestimated. Glob. Environ. Change 2023, 81, 102693. [Google Scholar] [CrossRef]
- Zhou, W.; Li, M.; Achal, V. A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerg. Contam. 2025, 11, 100410. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Pourhassan, B.; Meysamie, A.; Alizadeh, S.; Habibian, A.; Beigzadeh, Z. Risk of obstructive pulmonary diseases and occupational exposure to pesticides: A systematic review and meta-analysis. Public Health 2019, 174, 31–41. [Google Scholar] [CrossRef]
- Fishwick, D.; Harding, A.H.; Chen, Y.; Pearce, N.; Frost, G. Asthma in pesticide users: An update from the Great Britain Prospective Investigation of Pesticide Applicators’ Health (PIPAH) cohort study. Occup. Environ. Med. 2022, 79, 380–387. [Google Scholar] [CrossRef]
- Tarmure, S.; Alexescu, T.G.; Orasan, O.; Negrean, V.; Sitar-Taut, A.V.; Coste, S.C.; Todea, D.A. Influence of pesticides on respiratory pathology-a literature review. Ann. Agric. Environ. Med. 2020, 27, 194–200. [Google Scholar] [CrossRef]
- Shekhar, C.; Khosya, R.; Thakur, K.; Mahajan, D.; Kumar, R.; Kumar, S.; Sharma, A.K. A systematic review of pesticide exposure, associated risks, and long-term human health impacts. Toxicol. Rep. 2024, 13, 101840. [Google Scholar] [CrossRef]
- Ratanachina, J.; De Matteis, S.; Cullinan, P.; Burney, P. Pesticide exposure and lung function: A systematic review and meta-analysis. Occup. Med. 2020, 70, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Buralli, R.J.; Ribeiro, H.; Mauad, T.; Amato-Lourenço, L.F.; Salge, J.M.; Diaz-Quijano, F.A.; Leão, R.S.; Marques, R.C.; Silva, D.S.; Guimarães, J.R.D. Respiratory Condition of Family Farmers Exposed to Pesticides in the State of Rio de Janeiro, Brazil. Int. J. Environ. Res. Public Health 2018, 15, 1203. [Google Scholar] [CrossRef] [PubMed]
- Curl, C.L.; Spivak, M.; Phinney, R.; Montrose, L. Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers. Curr. Environ. Health Rep. 2020, 7, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Deckers, J.; Lambrecht, B.N.; Hammad, H. How a farming environment protects from atopy. Curr. Opin. Immunol. 2019, 60, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Wunschel, J.; Poole, J.A. Occupational agriculture organic dust exposure and its relationship to asthma and airway inflammation in adults. J. Asthma 2016, 53, 471–477. [Google Scholar] [CrossRef]
- Buralli, R.J.; Ribeiro, H.; Iglesias, V.; Muñoz-Quezada, M.T.; Leão, R.S.; Marques, R.C.; Almeida, M.M.C.d.; Guimarães, J.R.D. Occupational exposure to pesticides and health symptoms among family farmers in Brazil. Revista Saúde Pública 2020, 54, 133. [Google Scholar] [CrossRef]
- Lari, S.; Jonnalagadda, P.R.; Yamagani, P.; Medithi, S.; Vanka, J.; Pandiyan, A.; Naidu, M.; Jee, B. Assessment of dermal exposure to pesticides among farmers using dosimeter and hand washing methods. Front. Public Health 2022, 10, 957774. [Google Scholar] [CrossRef]
- Keleb, A.; Daba, C.; Asmare, L.; Bayou, F.D.; Arefaynie, M.; Mohammed, A.; Tareke, A.A.; Kebede, N.; Tsega, Y.; Endawkie, A.; et al. The association between children’s exposure to pesticides and asthma, wheezing, and lower respiratory tract infections. A systematic review and meta-analysis. Front. Public Health 2024, 12, 1402908. [Google Scholar] [CrossRef]
- Lu, C.; Fenske, R.A.; Simcox, N.J.; Kalman, D. Pesticide exposure of children in an agricultural community: Evidence of household proximity to farmland and take home exposure pathways. Environ. Res. 2000, 84, 290–302. [Google Scholar] [CrossRef]
- Jørs, E.; Morant, R.C.; Aguilar, G.C.; Huici, O.; Lander, F.; Bælum, J.; Konradsen, F. Occupational pesticide intoxications among farmers in Bolivia: A cross-sectional study. Environ. Health 2006, 5, 10. [Google Scholar] [CrossRef]
- Haj-Younes, J.; Huici, O.; Jørs, E. Sale, storage and use of legal, illegal and obsolete pesticides in Bolivia. Cogent Food Agric. 2015, 1, 1008860. [Google Scholar] [CrossRef]
- Barrón Cuenca, J.; Dreij, K.; Tirado, N. Human Pesticide Exposure in Bolivia: A Scoping Review of Current Knowledge, Future Challenges and Research Needs. Int. J. Environ. Res. Public Health 2024, 21, 305. [Google Scholar] [CrossRef]
- Gobierno Autónomo Municipal de Sucre. Plan Territorial de Desarrollo Integral para “Vivir Bien” del Municipio de Sucre 2021–2025; Gobierno Autónomo Municipal de Sucre: Sucre, Bolivia, 2021. [Google Scholar]
- Burney, P.G.; Luczynska, C.; Chinn, S.; Jarvis, D. The European Community Respiratory Health Survey. Eur. Respir. J. 1994, 7, 954–960. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.; Gustafsson, P. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C. Standardization of spirometry 2019 update. An official American thoracic society and European respiratory society technical statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef]
- Bangdiwala, S.I. Are injuries correlated? Interpreting the intraclass correlation coefficient. Int. J. Inj. Control Saf. Promot. 2011, 18, 169–171. [Google Scholar] [CrossRef]
- WMA. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2023, 310, 2191–2194. [Google Scholar] [CrossRef]
- Hoffmann, W.; Latza, U.; Baumeister, S.E.; Brünger, M.; Buttmann-Schweiger, N.; Hardt, J.; Hoffmann, V.; Karch, A.; Richter, A.; Schmidt, C.O. Guidelines and recommendations for ensuring Good Epidemiological Practice (GEP): A guideline developed by the German Society for Epidemiology. Eur. J. Epidemiol. 2019, 34, 301–317. [Google Scholar] [CrossRef]
- Salcedo, S.; Guzmán, L. Agricultura Familiar en América Latina y el Caribe: Recomendaciones de Política; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Santiago, Chile, 2014. [Google Scholar]
- Romero Asís, M.F.; Eandi, M.A.; Duque Garzón, M.O.; Builes, N.; Arias Gonzalez, C.; Butinof, M. Assessing occupational pesticide exposure in Latin America and the Caribbean: Methods review for agricultural vulnerability reduction. Arch. Environ. Occup. Health 2024, 79, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Dowling, K.C.; Seiber, J.N. Importance of respiratory exposure to pesticides among agricultural populations. Int. J. Toxicol. 2002, 21, 371–381. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef]
- Mamane, A.; Baldi, I.; Tessier, J.-F.; Raherison, C.; Bouvier, G. Occupational exposure to pesticides and respiratory health. Eur. Respir. Rev. 2015, 24, 306–319. [Google Scholar] [CrossRef]
- Lee, S.; Han, J.; Woo, S.H.; Lee, S.-J. Occupational factors affecting the decline in pulmonary function among male farmers using occupational pesticide in Gyeonggi-do, South Korea. Ann. Occup. Environ. Med. 2022, 34, e42. [Google Scholar] [CrossRef] [PubMed]
- Olguín-Hernández, L.; Carrillo-Rodríguez, J.C.; Mayek-Pérez, N.; Aquino-Bolaños, T.; Vera-Guzmán, A.M.; Chávez-Servia, J.L. Patterns and relationships of pesticide use in agricultural crops of Latin America: Review and analysis of statistical data. Agronomy 2024, 14, 2889. [Google Scholar] [CrossRef]
- Sidthilaw, S.; Sapbamrer, R.; Pothirat, C.; Wunnapuk, K.; Khacha-Ananda, S. Factors associated with respiratory symptoms among herbicide applicators and assistant applicators in maize field. Arch. Environ. Occup. Health 2022, 77, 320–327. [Google Scholar] [CrossRef]
- Gonzales Ortiz, C.F.; Mendez Ramos, R.A.; Quispe Macias, S.; Lenis Llanos, L.M.; Rodríguez Gonzalez, A. Análisis de la comercialización de pesticidas: Un estudio transversal en Sucre, Bolivia. Rev. Cienc. Tecnol. Innovación 2024, 22, 61–72. [Google Scholar]
- Blair, A.; Stewart, P.; Lubin, J.H.; Forastiere, F. Methodological issues regarding confounding and exposure misclassification in epidemiological studies of occupational exposures. Am. J. Ind. Med. 2007, 50, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Frei, R.; Heye, K.; Roduit, C. Environmental influences on childhood allergies and asthma—The Farm effect. Pediatr. Allergy Immunol. 2022, 33, e13807. [Google Scholar] [CrossRef]
- Gerretsen, V.I.; Schuijs, M.J. The role of LPS and CpG in the farm effect against allergies, and beyond. Allergol. Sel. 2022, 6, 104. [Google Scholar] [CrossRef]
- Bustos, P.; Amigo, H.; Oyarzun, M.; Rona, R. Is there a causal relation between obesity and asthma? Evidence from Chile. Int. J. Obes. 2005, 29, 804–809. [Google Scholar] [CrossRef]
Variables | Categories | n Missing | Total | Farmers (N = 277) | Non-Farmers (N = 214) | p-Value | ||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
Age (years) | ˂30 | 0 | 138 (28.1) | 55 | 19.9 | 83 | 38.8 | ˂0.001 |
30–49 | 143 (29.1) | 83 | 30.0 | 60 | 28.0 | |||
≥50 | 210 (42.8) | 139 | 50.2 | 71 | 33.2 | |||
Gender | Male | 0 | 232 (47.3) | 154 | 55.6 | 78 | 36.4 | ˂0.001 |
Female | 259 (52.7) | 123 | 44.4 | 136 | 63.6 | |||
Educational level | None | 1 | 107 (21.8) | 53 | 19.2 | 54 | 25.2 | ˂0.001 |
Primary | 217 (44.3) | 152 | 55.1 | 65 | 30.4 | |||
Secondary or higher | 166 (33.9) | 71 | 25.7 | 95 | 44.4 | |||
Smoking status | Never | 3 | 375 (76.8) | 193 | 69.9 | 182 | 85.8 | ˂0.001 |
Former | 44 (9.0) | 31 | 11.2 | 13 | 6.1 | |||
Current | 69 (14.1) | 52 | 18.8 | 17 | 8.0 | |||
Fuel for cooking or heating | Gas | 4 | 437 (89.7 | 240 | 87.0 | 197 | 93.4 | 0.021 |
Wood or coal | 50 (10.3) | 36 | 13.0 | 14 | 6.6 | |||
Height (cm; mean and SD) | 57 | 156 (9.0) | 158 | 8.6 | 153 | 8.8 | ˂0.001 *** | |
BMI (mean and SD) | 57 | 26.6 (5.2) | 25.9 | 5.1 | 27.4 | 5.3 | 0.003 *** | |
Use of pesticides in agriculture | Yes | 0 | 157 (32.0) | 157 | 56.7 | 0 | 0 | - |
Use of pesticides for other purposes | Yes | 9 | 236 (48.0) | 150 | 54.5 | 86 | 41.5 | 0.005 |
Signs or symptoms after pesticide exposure | Yes | 0 | 251 (51.1) | 251 | 90.6 | 0 | 0.0 | - |
Frequency of pesticide handling | No contact | 0 | 339 (69.0) | 125 | 45.1 | 214 | 100.0 | |
Rarely | 10 (2.0) | 10 | 3.6 | 0 | 0.0 | |||
Sometimes | 31 (6.3) | 31 | 11.2 | 0 | 0.0 | ˂0.001 | ||
Frequently | 111 (22.6) | 111 | 40.1 | 0 | 0.0 | |||
Use of PPE when handling pesticides * | Yes | 0 | 424 (86.4) | 210 | 75.8 | 214 | 100.0 | ˂0.001 |
Distance to crop areas (m) | ˃400 | 0 | 308 (62.7) | 166 | 59.9 | 142 | 66.4 | 0.34 |
61 to 400 | 126 (25.7) | 77 | 27.8 | 49 | 22.9 | |||
≤60 | 57 (11.6) | 34 | 12.3 | 23 | 10.7 | |||
IEB (Mean; SD) ** | 9 | 2.79 (2.5) | 4.25 | 0.8 | 0.86 | 0.8 | ˂0.001 *** |
Chest Tightness (n = 166) | Chronic Phlegm/Cough (n = 63) | ||||||
---|---|---|---|---|---|---|---|
n (%) | OR (95% CI) | aOR (95% CI) * | n (%) | OR (95% CI) | aOR (95% CI) * | ||
Farmer | No | 52 (25.2) | 1 | 1 | 24 (11.4) | 1 | 1 |
Yes | 114 (41.6) | 2.11 (1.4–3.1) | 1.29 (0.2.4) | 41 (14.9) | 1.37 (0.8–2.3) | 0.95 (0.4–2.2) | |
IEB ** (mean; SD) | 3.39 (2.6) | 1.15 (1.1–1.2) | 1.14 (1.0–1.3) | 3.57 (2.6) | 1.14 (1.0–1.3) | 1.22 (1.0–1.5) |
Wheeze (n = 183) | Nasal Allergies (n = 76) | ||||||
---|---|---|---|---|---|---|---|
n (%) | OR (95% CI) | aOR (95% CI) * | n (%) | OR (95% CI) | aOR (95% CI) * | ||
Farmer | No | 60 (28.3) | 1 | 1 | 37 (17.5) | 1 | 1 |
Yes | 129 (46.6) | 2.21 (1.5–3.2) | 2.1 (1.1–3.7) | 40 (14.5) | 0.80 (0.5–1.3) | 0.31 (0.1–0.8) | |
IEB ** (mean; SD) | 3.39 (2.6) | 1.04 (0.9–1.1) | 1.03 (0.9–1.2) | 3.04 (2.7) | 1.04 (0.9–1.1) | 1.21 (1.0–1.4) |
Farmers | Pesticide Exposure * | |||||
---|---|---|---|---|---|---|
Yes Mean (SE) | No Mean (SE) | p Values ** | High Mean (SE) | Low Mean (SE) | p Values ** | |
FVC (L) | 3.95 (0.04) | 3.79 (0.04) | 0.012 | 3.98 (0.04) | 3.82 (0.04) | 0.008 |
FEV1 (L) | 3.15 (0.03) | 3.10 (0.04) | 0.306 | 3.19 (0.04) | 3.10 (0.03) | 0.049 |
FEV1/FVC (%) | 79.80 (0.41) | 81.52 (0.41) | 0.008 | 80.44 (0.46) | 80.72 (0.43) | 0.666 |
FVC * | FEV1 * | FEV1/FVC (%) * | ||||
---|---|---|---|---|---|---|
β-Coefficient | 95% CI | β-Coefficient | 95% CI | β-Coefficient | 95% CI | |
IEB ** | 0.033 | 0.001; 0.066 | 0.020 | −0.007; 0.047 | 0.006 | −0.350; 0.361 |
Farmer | −0.011 | −0.163; 0.142 | −0.052 | −0.180; 0.075 | −1.568 | −3.249; −0.112 |
R2 | 0.72 | 0.72 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solís-Soto, M.T.; Walber, J.; Basagoitia, A.; Ehrenstein, O.S.v.; Radon, K. Small-Scale Farming, Pesticide Exposure, and Respiratory Health: A Cross-Sectional Study in Bolivia. Environments 2025, 12, 290. https://doi.org/10.3390/environments12080290
Solís-Soto MT, Walber J, Basagoitia A, Ehrenstein OSv, Radon K. Small-Scale Farming, Pesticide Exposure, and Respiratory Health: A Cross-Sectional Study in Bolivia. Environments. 2025; 12(8):290. https://doi.org/10.3390/environments12080290
Chicago/Turabian StyleSolís-Soto, Maria Teresa, Jonas Walber, Armando Basagoitia, Ondine S. von Ehrenstein, and Katja Radon. 2025. "Small-Scale Farming, Pesticide Exposure, and Respiratory Health: A Cross-Sectional Study in Bolivia" Environments 12, no. 8: 290. https://doi.org/10.3390/environments12080290
APA StyleSolís-Soto, M. T., Walber, J., Basagoitia, A., Ehrenstein, O. S. v., & Radon, K. (2025). Small-Scale Farming, Pesticide Exposure, and Respiratory Health: A Cross-Sectional Study in Bolivia. Environments, 12(8), 290. https://doi.org/10.3390/environments12080290