Soil Remediation and Improvement Through the Application of By-Product Amendments
Conflicts of Interest
List of Contributions
- Sinclair, C.L.; Irga, P.J.; Duani, G.; Torpy, F.R. Spent Coffee Grounds (SCGs) as a Soil Amendment: The Effects of Composting Time on Early Sunflower Development. Environments 2024, 11, 272. https://doi.org/10.3390/environments11120272.
- Huslina, F.; Khudur, L.S.; Besedin, J.A.; Nahar, K.; Shah, K.; Surapaneni, A.; Netherway, P.; Ball, A.S. The Phytoremediation of Arsenic-Contaminated Waste by Poa labillardieri, Juncus pauciflorus, and Rytidosperma caespitosum. Environments 2025, 12, 60. https://doi.org/10.3390/environments12020060.
- Licitra, E.; Giustra, M.G.; Di Bella, G.; Messineo, A. Combination between Composting and Vermicomposting of OFMSW: A Sicilian Case Study. Environments 2024, 11, 183. https://doi.org/10.3390/environments11080183.
- De Carolis, C.; Iori, V.; Narciso, A.; Gentile, D.; Casentini, B.; Pietrini, F.; Grenni, P.; Barra Caracciolo, A.; Iannelli, M.A. The Effects of Different Combinations of Cattle Organic Soil Amendments and Copper on Lettuce (cv. Rufus) Plant Growth. Environments 2024, 11, 134. https://doi.org/10.3390/environments11070134.
- Deinert, L.; Schmalenberger, A. Reuse of Soils Fertilized with Ash as Recycling Derived Fertilizer Revealed Strong Stimulation of Microbial Communities Involved in P Mobilization in Lolium perenne Rhizospheres. Environments 2024, 11, 49. https://doi.org/10.3390/environments11030049.
- Doni, S.; Masciandaro, G.; Macci, C.; Manzi, D.; Mattii, G.B.; Cataldo, E.; Gispert, M.; Vannucchi, F.; Peruzzi, E. Zeolite and Winery Waste as Innovative By-Product for Vineyard Soil Management. Environments 2024, 11, 29. https://doi.org/10.3390/environments11020029.
- Chanda, S.; Dattamudi, S.; Jayachandran, K.; Scinto, L.J.; Bhat, M. The Application of Cyanobacteria as a Biofertilizer for Okra (Abelmoschus esculentus) Production with a Focus on Environmental and Ecological Sustainability. Environments 2024, 11, 45. https://doi.org/10.3390/environments11030045.
- Carril, P.; Bianchi, E.; Cicchi, C.; Coppi, A.; Dainelli, M.; Gonnelli, C.; Loppi, S.; Pazzagli, L.; Colzi, I. Effects of Wood Distillate (Pyroligneous Acid) on the Yield Parameters and Mineral Composition of Three Leguminous Crops. Environments 2023, 10, 126. https://doi.org/10.3390/environments10070126.
- Sabia, E.; Braghieri, A.; Vignozzi, L.; Paolino, R.; Cosentino, C.; Di Trana, A.; Pacelli, C. Carbon Footprint of By-Product Concentrate Feed: A Case Study. Environments 2025, 12, 42. https://doi.org/10.3390/environments12020042.
References
- Forján, R.; Rodríguez-Vila, A.; Covelo, E.F. Using compost and technosol combined with biochar and Brassica juncea L. to decrease the bioavailable metal concentration in soil from a copper mine settling pond. Environ. Sci. Pollut. Res. 2018, 25, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; An, B.; Pan, Q.; Liu, W.; Sun, J.; Wang, J.; Qi, Z.; Li, C.H.; Dou, S.; Han, X. Nutrient amendment promotes vegetation restoration and improves ecosystem carbon uptake capacity in a degraded grassland. Agric. Ecosyst. Environ. 2025, 388, 109666. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Rakshit, A.; Singh, S.K.; Abhilash, P.C.; Biswas, A. (Eds.) Soil Science: Fundamentals to Recent Advances; Springer Nature Singapore Pte Ltd.: Singapore, 2021. [Google Scholar]
- Peña-Álvarez, V.; Asensio, V.; Baragaño, D.; Forján, R.; Peláez, A.I.; Gallego, J.L.R. Integrated landfarming strategy for remediation of HCH-contaminated soil: Synergistic effects of bioaugmentation, organic amendments, and nanoscale zero-valent iron. J. Hazard. Mater. 2025, 489, 137637. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, P.; Li, X.; Li, L. Remediation of antimony-arsenic co-contaminated soils in mining areas: Synergistic interaction of amendments and plants affects soil Sb and As bioavailability, nutrient and enzyme activity. Environ. Technol. Innov. 2025, 38, 104185. [Google Scholar] [CrossRef]
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.G.; Hu, Q.; Zhao, F.J.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef]
- Hong, L.; Feng, S.; Li, P.; Wang, A. Ecological Restoration and Regeneration Strategies for the Gumi Mountain Mining Area in Wuhan Guided by Nature-Based Solution (NbS) Concepts. Sustainability 2025, 17, 1913. [Google Scholar] [CrossRef]
- Sahlaoui, T.; Raklami, A.; Heinza, S.; Marschner, B.; Bargaz, A.; Oufdou, K. Nature-based remediation of mine tailings: Synergistic effects of narrow-leafed lupine and organo-mineral amendments on soil nutrient-acquiring enzymes and microbial activity. J. Environ. Manag. 2024, 371, 123035. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Dissanayake, P.D.; Igalavithana, A.D.; Tang, R.; Cai, Y.; Chang, S.X. Converting food waste into soil amendments for improving soil sustainability and crop productivity: A review. Sci. Total Environ. 2023, 881, 163311. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Mironiuk, M.; Witek-Krowiak, A.; Mikula, K.; Pstrowska, K.; Łużny, R.; Mościcki, K.; Pawlak-Kruczek, H.; Siarkowska, A.; Moustakas, K.; et al. Innovative fertilizers and soil amendments based on hydrochar from brewery waste. Clean Technol. Environ. Policy 2024, 26, 1571–1586. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Loska, K.; Wiechula, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Schiemenz, K.; Eichler-Löbermann, B. Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr. Cycl. Agroecosyst. 2010, 87, 471–482. [Google Scholar] [CrossRef]
- Zaman, M.; Kleineidam, K.; Bekken, L.; Berendt, J.; Bracken, C.; Butterbach-Bahl, K.; Cai, Z.; Chang, S.X.; Clough, T.; Dawar, K.; et al. Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques; Zaman, M., Heng, L., Müller, C., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Xiong, X.; Liu, J.; Xiao, T.; Lin, K.; Huang, Y.; Deng, P.; Hu, H.; Wang, J. Remediation of uranium-contaminated water and soil by biochar-based materials: A review. Biochar 2025, 7, 41. [Google Scholar] [CrossRef]
- Protogene, M.; Murindangabo, Y.T.; Frouz, J.; Brom, J. Characterization, fractionation and untapped potential of phosphate-amended sewage sludge biochar in soil-plant systems. Chemosphere 2024, 367, 143565. [Google Scholar] [CrossRef]
- Salgado, L.; Aparicio, L.; Afif, E.; Fernández-López, E.; Gallego, J.R.; Forján, R. A second life for mining waste as an amendment for soil remediation. J. Mater. Cycles Waste Manag. 2024, 26, 2971–2979. [Google Scholar] [CrossRef]
- Saikia, S.; Dansena, S.K.; Kalamdhad, A.S. Application of unsegregated municipal solid waste char produced at low temperature and vermicompost for remediation of coal mine tailing soil. Environ. Geochem. Health 2025, 47, 143. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.Z.; Islam, M.A.; Kibria, K.Q.; Islam, M.A. Effect of organic amendments on the alleviation of cadmium in red amaranth (Amaranthus gangeticus) grown in Cd-contaminated saline soils. Environ. Monit. Assess. 2025, 197, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, X.L.; Zhou, J.; Zhou, W.; Zhou, S.Q. Construction of Phosphate-Solubilizing Microbial Consortium and Its Effect on the Remediation of Saline-Alkali Soil. Microb. Ecol. 2025, 88, 11. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afif, E.; Forján, R. Soil Remediation and Improvement Through the Application of By-Product Amendments. Environments 2025, 12, 170. https://doi.org/10.3390/environments12050170
Afif E, Forján R. Soil Remediation and Improvement Through the Application of By-Product Amendments. Environments. 2025; 12(5):170. https://doi.org/10.3390/environments12050170
Chicago/Turabian StyleAfif, Elias, and Rubén Forján. 2025. "Soil Remediation and Improvement Through the Application of By-Product Amendments" Environments 12, no. 5: 170. https://doi.org/10.3390/environments12050170
APA StyleAfif, E., & Forján, R. (2025). Soil Remediation and Improvement Through the Application of By-Product Amendments. Environments, 12(5), 170. https://doi.org/10.3390/environments12050170