The Kind of Fertilization and Type of Soil Tillage Affect Soil Fertility and Foliar Nutrient Concentrations in an Experimental Vineyard of Kefalonia
Abstract
1. Introduction
2. Materials and Methods
2.1. Special Geomorphological, Climatic, and Soil Characteristics of the Island of Kefalonia
2.2. Selection of the Experimental Vineyard and Treatments
- (1)
- Conventional tillage (CT) and application of conventional (inorganic) fertilization (CF) (i.e., Control: CT-CF);
- (2)
- Conventional tillage (CT) and application of a N controlled-release fertilizer (CRF) (i.e., CT-CRF);
- (3)
- Conventional tillage (CT) and application of organic fertilization (OF) (i.e., CT-OF);
- (4)
- Reduced tillage (RT) and application of conventional fertilization (CF) (i.e., RT-CF);
- (5)
- Reduced tillage (RT) and application of a N controlled-release fertilizer (CRF) (i.e., RT-CRF);
- (6)
- Reduced tillage (RT) and application of organic fertilization (OF) (i.e., RT-OF).
2.3. Soil and Leaf Sampling and Lab Analysis
2.4. Statistical Analysis
3. Results
3.1. Effect of Type of Tillage and Kind of Fertilization on pH, Organic Matter, % CaCO3, and Electrical Conductivity During the First and Second Growing Season
3.2. Effect of Type of Soil Tillage and Kind of Fertilization on Νitrate N, Olsen Extractable P, Exchangeable Cations, and DTPA Extractable Micronutrients During the First and Second Growing Season
3.3. Effect of Type of Tillage and Kind of Fertilization on Foliar Nutrient Concentrations During the 1st and 2nd Growing Season
3.4. Pearson Correlation Coefficient Analysis and Scatterplot (SPLOM) Graphs Among the Different Evaluated Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | conventional tillage |
RT | reduced tillage |
CF | conventional fertilization |
CRF | controlled-release fertilization |
OF | organic fertilization |
ANOVA | Analysis of Variance |
PDO | protected designation of origin |
PGI | Protected Geographical Indication |
TGI | Traditional Specialty |
N | nitrogen |
P | Phosphorous |
K | potassium |
Ca | Calcium |
Mg | Magnesium |
Mn | Manganese |
Zn | Zinc |
Cu | Copper |
B | Boron |
Fe | Iron |
CaCO3 | Calcium carbonate |
OM | organic matter |
EC | electrical conductivity |
References
- International Organisation of Vine and Wine Intergovernmental Organisation (OIV). 2019 Statistical Report on World Vitiviniculture. 2019. Available online: http://oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 30 March 2025).
- United States Department of Agriculture, Foreign Agricultural Service (USDA). Fresh Apples, Grapes, and Pears: World Markets and Trade. 2024. Available online: https://apps.fas.usda.gov/psdonline/circulars/fruit.pdf (accessed on 30 March 2025).
- International Organisation of Vine and Wine Intergovernmental Organisation (OIV). Annual Assessment of the World Vine and Wine Sector in 2022; International Organisation of Vine and Wine: Dijon, France, 2023. Available online: https://www.oiv.int/sites/default/files/documents/OIV_Annual_Assessment-2023.pdf (accessed on 30 March 2025).
- 2019 Statistical Report on World Vitiviniculture. Available online: https://www.oiv.int/public/medias/6782/oiv-2019-statisticalreport-on-world-vitiviniculture.pdf (accessed on 6 January 2022).
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Theocharis, S.; Jones, G.V. Greek wine quality assessment and relationships with climate: Trends, future projections and uncertainties. Water 2022, 14, 573. [Google Scholar] [CrossRef]
- OIV Statistical Report on World Vitiviniculture. 2016. Available online: https://www.oiv.int/public/medias/5029/world-vitiviniculture-situation-2016.pdf (accessed on 6 January 2022).
- Karavasili, A.; Arfanis, D.; Roukos, K. An Analysis of Wine-making Sector. Master’s Thesis, Technological Educational Institute of Western Greece, Patras, Greece, 2017. [Google Scholar]
- Stevenson, T. The Sotheby’s Wine Encyclopedia, 5th ed.; DK Publishing: London, UK, 2011; Volume 1, pp. 1–736. [Google Scholar]
- Staff, P. Greek Wine: The Ultimate Guide to the Wines and Wine Regions of Greece; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2018. [Google Scholar]
- Banilas, G.; Korkas, E.; Kaldis, P.; Hatzopoulos, P. Olive and grapevine biodiversity in Greece and Cyprus. A review. In Sustainable Agriculture Reviews. Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Lichtfouse, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 401–428. [Google Scholar]
- Chatzinikolaou, D.; Vlados, C. Evolution of business physiology in the wine industry: Insights from the Stra.Tech.Man Scorecard in the Cephalonian Robola sector. J. Wine Res. 2023, 34, 210–231. [Google Scholar] [CrossRef]
- Communicating the Approval of a Standard Amendment ‘Ρομπόλα Κεφαλληνίας’. PDO-GR-A1240-AM01. Date of Communication: 18 January 2022. Published by the Official Journal of the European Union (2023/C 135/05) and Commission Delegated Regulation (EU) 2019/33. Available online: http://www.minagric.gr/images/stories/docs/agrotis/POP-PGE/2021/prodiagrafh_rompola_kef170122.pdf (accessed on 30 March 2025).
- Biniari, K.; Fragkos, A.; Chatzistathis, T.; Katsalirou, E.; Gerakis, A.; Stika, D.M.; Daskalakis, I.; Bouza, D.; Stavrakaki, M. Effect of soil management techniques and different vine nutrient methods on the physiology and grape quality of vines of cv. ‘Robola’ (Vitis vinifera L.) in Kefalonia. Not. Bot. Horti Agrobot. 2024, 52, 13954. [Google Scholar] [CrossRef]
- Hellenic Statistical Authority (ELSTAT) 2022. Agriculture-Livestock Census Results 2021. Hellenic Statistical Authority Commission Delegated Regulation (EU) 2019/33 (2023/C 135/05). Available online: https://www.statistics.gr/en/agricultural-2021 (accessed on 30 March 2025).
- Greek Gastronomy Guide 2022. Poμπόλα Kεφαλονιάς. Available online: https://www.greekgastronomyguide.gr/item/robola-kefalonia/ (accessed on 30 March 2025).
- Lazarakis, K. The Wines of Greece; Hachett: London, UK, 2005. [Google Scholar]
- Robinson, J. Jancis Robinson’s Guide to Wine Grapes, 1st ed.; Oxford University Press: New York, NY, USA, 1996; Volume 1, pp. 1–240. [Google Scholar]
- Kallithraka, S.; Arvanitoyannis, I.S.; Kefalas, P.; El-Zajouli, A.; Soufleros, E.; Psarra, E. Instrumental and sensory analysis of Greek wines; implementation of principal component analysis (PCA) for classification according to geographical origin. Food Chem. 2001, 73, 501–514. [Google Scholar] [CrossRef]
- Bogunović, I.; Pereira, P.; Kisić, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Triplett, G.B.; Dick, W.A. No-tillage crop production: A revolution in agriculture! Agron. J. 2008, 100, S153–S165. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Boil. Biochem. 2014, 68, a4–a9. [Google Scholar] [CrossRef]
- Littrell, J.; Xu, S.; Omondi, E.; Saha, D.; Lee, J.; Jagadamma, S. Long-term organic management combined with conservation tillage enhanced soil organic carbon accumulation and aggregation. Soil Sci. Soc. Am. J. 2021, 85, 1741–1754. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Baumhardt, R.L.; Evett, S.R. Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Till. Res. 2010, 110, 221–229. [Google Scholar] [CrossRef]
- Buesa, I.; Mirás-Avalos, J.M.; De Paz, J.M.; Visconti, F.; Sanz, F.; Yeves, A.; Guerra, D.; Intrigliolo, D.S. Soil management in semi-arid vineyards: Combined effects of organic mulching and no-tillage under different water regimes. Eur. J. Agron. 2021, 123, 126198. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B.; Cambardella, C.A. How does tillage intensity affect chemical soil health indicators? A United States meta-analysis. Agrosyst. Geosci. Environ. 2020, 3, e20083. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Veum, K.S.; Moorman, T.B.; Cambardella, C.A. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma 2020, 369, 114335. [Google Scholar] [CrossRef]
- Linares, R.; de la Fuente, M.; Junquera, P.; Lissarrague, J.R.; Baeza, P. Effects of soil management in vineyard on soil physical and chemical characteristics. BIO Web Conf. 2014, 3, 01008. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Palazzolo, E.; Catania, P.; Vallone, M.; Garcia, A.D. Soil quality indicators as affected by shallow tillage in a vineyard grown in a semiarid Mediterranean environment. Land Degrad. Dev. 2017, 28, 1038–1046. [Google Scholar] [CrossRef]
- Belmonte, S.A.; Celi, L.; Stahel, R.J.; Bonifacio, E.; Novello, V.; Zanini, E.; Steenwerth, K.L. Effect of long-term soil management on the mutual interaction among soil organic matter, microbial activity and aggregate stability in a vineyard. Pedosphere 2018, 28, 288–298. [Google Scholar] [CrossRef]
- Garcia, L.; Damour, G.; Gary, C.; Follain, S.; Le Bissonnais, Y.; Métay, A. Trait-based approach for agroecology: Contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant Soil 2019, 435, 1–14. [Google Scholar] [CrossRef]
- Bordoni, M.; Vercesi, A.; Maerker, M.; Ganimede, C.; Reguzzi, M.C.; Capelli, E.; Wei, X.; Mazzoni, E.; Simoni, S.; Gagnarli, E.; et al. Effects of vineyard soil management on the characteristics of soils and roots in the lower Oltrepo Apennines (Lombardy, Italy). Sci. Total Environ. 2019, 693, 133390. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Diaz, A.; Marqués, M.J.; Sastre, B.; Bienes, R. Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from central Spain. Sci. Total Environ. 2018, 621, 387–397. [Google Scholar] [CrossRef]
- Abad, J.; Hermozo de Mendoza, I.; Marin, D.; Orcaray, L. Cover crops in viticulture. A systematic review (1): Implications on soil characteristics and biodiversity in vineyard. Oeno One 2021, 55, 295–312. [Google Scholar] [CrossRef]
- Gristina, L.; Novara, A.; Minacapilli, M. Rethinking vineyard ground management to counter soil tillage erosion. Soil Till. Res. 2022, 217, 105275. [Google Scholar] [CrossRef]
- Abbott, L.; Murphy, D. Soil Biological Fertility: A Key to Sustainable Land Use in Agriculture, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2007; p. 264. [Google Scholar] [CrossRef]
- Brunetto, G.; de Melo, G.W.B.; Toselli, M.; Quartieri, M.; Tagliavini, M. The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Rev. Bras. Frutic. 2015, 37, 1089–1104. [Google Scholar] [CrossRef]
- Ball, K.R.; Baldock, J.A.; Penfold, C.; Power, S.A.; Woodin, S.J.; Smith, P.; Pendall, E. Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy. Geoderma 2020, 379, 114619. [Google Scholar] [CrossRef]
- Wilson, S.G.; Lambert, J.J.; Dahlgren, R. Compost application to degraded vineyard soils: Effect on soil chemistry, fertility, and vine performance. Am. J. Enol. Vitic. 2021, 72, 85–93. [Google Scholar] [CrossRef]
- Lazcano, C.; Gonzalez-Maldonado, N.; Yao, E.H.; Wong, C.T.F.; Merrilees, J.J.; Falcone, M.; Peterson, J.D.; Casassa, L.F.; Decock, C. Sheep grazing as a strategy to manage cover crops in Mediterranean vineyards: Short-term effects on soil C, N and greenhouse gas (N2O, CH4, CO2) emissions. Agric. Ecosyst. Environ. 2022, 327, 107825. [Google Scholar] [CrossRef]
- Mtanda, A.A.; Mwamahonje, A.; Massawe, C. Integrated use of organic and inorganic fertilizer in grape (Vitis vinifera) production: A review. Türk Bilimsel Derlemeler Dergisi 2024, 17, 1–17. Available online: https://www.tari.go.tz/assets/uploads/documents/8621a24519251302e93f3b44d470ca44.pdf (accessed on 30 March 2025).
- James, A.; Mahinda, A.; Mwamahonje, A.; Rweyemamu, E.W.; Mrema, E.; Aloys, K.; Swai, E.; Mpore, F.J.; Massawe, C. A review on the influence of fertilizers application on grape yield and quality in the tropics. J. Plant Nutr. 2022, 46, 2936–2957. [Google Scholar] [CrossRef]
- Ali-Mervet, A. Response of flame seedless grapevines to slow release nitrogen fertilizers. Minia J. Agric. Res. Develop. 2000, 20, 239–255. [Google Scholar]
- Ahmed, F.F.; Abada, M.A.M. Response of Thompson seedless grapevines to some slow release N, P and K fertilizers. Egypt. J. Agric. Res. 2012, 90, 1–16. [Google Scholar]
- Ahmed, F.F.; Abada, M.A.M.; Ali, H.A.; Allam, H.M. Trials for replacing Inorganic N partially in Superior vineyard by using slow release N fertilizers, humic acid and EM. Stem Cell 2014, 5, 16–28. Available online: https://www.sciencepub.net/stem/stem0502/003_24933stem050214_16_29.pdf (accessed on 30 March 2025).
- Ahmed, M.M.A.; Abdelaal, A.M.K.; Abada, M.A.M.; Hann, M.N.I. Effect of some slow release n fertilizers on growth and fruiting in early sweet grapevines. N. Y. Sci. J. 2019, 12, 40–47. [Google Scholar] [CrossRef]
- Gatti, M.; Schippa, M.; Garavani, A.; Squeri, C.; Frioni, T.; Dosso, P.; Poni, S. High potential of variable rate fertilization combined with a controlled released nitrogen form at affecting cv. Barbera vines behavior. Eur. J. Agron. 2020, 112, 125949. [Google Scholar] [CrossRef]
- El-Saman, A.Y.; Habasy, R.E.Y.; Saied, H.H.M. Impact of slow-release and organic fertilizers on growth, yield, and cluster quality of thompson seedless grapevines (H4 strain) growing in sandy soil. Int. J. Mod. Agric. Environ. 2024, 4, 1–22. Available online: https://journals.ekb.eg/article_360743_41575f8e1a8a4c04b0728d303e2772ad.pdf (accessed on 30 March 2025).
- Lucchetta, M.; Pii, Y.; Cagnin, A.; Lovat, L.; Romano, A.; Correddu, F.; Gaiotti, F. Controlled-release nitrogen technology as a sustainable nutrition management in lean-soil vineyards. Acta Hortic. 2024, 1387, 135–141. [Google Scholar] [CrossRef]
- Viers, J.H.; Williams, J.N.; Nicholas, K.A.; Barbosa, O.; Kotzé, I.; Spence, L.; Webb, L.B.; Merenlender, A.; Reynolds, M. Vinecology: Pairing wine with nature. Conserv. Lett. 2013, 6, 287–299. [Google Scholar] [CrossRef]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; Le Cadre, E.; d’Errico, G.; et al. Vineyard management and its impacts on soil biodiversity, functions, and ecosystem services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
- Visconti, F.; López, R.; Olego, M.Á. The health of vineyard soils: Towards a sustainable viticulture. Horticulturae 2024, 10, 154. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A review: Soil management, sustainable strategies and approaches to improve the quality of modern viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Yagmur, B.; Ozlu, E.; Ates, F.; Simsek, H. The response of soil health to different tillage practices in organic viticulture farming. J. Soil Sci. Plant Health 2017, 1, 2003–2005. Available online: https://www.scitechnol.com/peer-review/the-response-of-soil-health-to-different-tillage-practices-in-organic-viticulture-farming-i9Av.pdf (accessed on 30 March 2025).
- Kaya, O.; Delavar, H.; Ates, F.; Yilmaz, T.; Sahin, M.; Keskin, N. Fine-tuning grape phytochemistry: Examining the distinct influence of oak ash and potassium carbonate pretreatments on essential components. Horticulturae 2024, 10, 95. [Google Scholar] [CrossRef]
- Kaya, O.; Yilmaz, T.; Ates, F.; Kustutan, F.; Hatterman-Valenti, H.; Hajizadeh, H.S.; Turan, M. Improving organic grape production: The effects of soil management and organic fertilizers on biogenic amine levels in Vitis vinifera cv., ‘Royal’ grapes. Chem. Biol. Technol. Agric. 2024, 11, 38. [Google Scholar] [CrossRef]
- Kaya, O. Harmony in the vineyard: Exploring the ecochemical interplay of Bozcaada Çavuşu (Vitis vinifera L.) grape cultivar and pollinator varieties on some phytochemicals. Eur. Food Res. Technol. 2024, 250, 1327–1339. [Google Scholar] [CrossRef]
- Liebhard, G.; Winter, S.; Zaller, J.G.; Bauer, T.; Fantappiè, M.; Strauss, P. Effects of vineyard inter-row management on soil physical properties and organic carbon in Central European vineyards. Soil Use Manag. 2024, 40, e13101. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Shukla, A.K.; Behera, S.K.; Dubey, S.K.; Sharma, S.; Kaur Randhawa, M.; Kaur, G.; Singh Walia, S.; Singh Toor, A. Impact of fertilization and tillage practices on transformations of carbon, essential plant nutrients and microbial biota composition in soils: A review. Technol. Agron. 2024, 4, e003. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Institute of Soil, Fertilizerity & Climate: Soil Study of the Rombola Zone. Available online: https://www.minagric.gr/en/ (accessed on 4 May 2025). (In Greek).
- Ministry of Rural Development and Food, Product Specification “Technical File of “Robola Kefalonia”—Protocol Number: PDO-GRA1240. Available online: https://www.minagric.gr/en/farmer-menu-2/pdo-pgi-tsgproducts-menu/440-listpdoproducts-cat (accessed on 30 March 2025).
- Stavrakakis, M.N. Ampelography; Embryo Publications: Athens, Greece, 2021. [Google Scholar]
- McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 539–547. [Google Scholar] [CrossRef]
- Hood-Nowotny, R.; Umana, N.H.N.; Inselbacher, E.; Oswald-Lachouani, P.; Wanek, W. Alternative methods for measuring inorganic, organic, and total dissolved nitrogen. Soil Sci. Soc. Am. J. 2010, 74, 1018–1027. [Google Scholar] [CrossRef]
- Olsen, S.; Sommers, L. Phosphorus. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar] [CrossRef]
- Thomas, G.W. Exchangeable cations methods of soil analysis. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 159–166. [Google Scholar] [CrossRef]
- Wolf, B. The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Commun. Soil Sci. Plant Anal. 1971, 2, 363–374. [Google Scholar] [CrossRef]
- Hansen, T.H.; De Bang, T.C.; Laursen, K.H.; Pedas, P.; Husted, S.; Schjoerring, J.K. Multielement plant tissue analysis using ICP spectrometry. In Plant Mineral Nutrients. Methods in Molecular Biology (Methods and Protocols); Maathuis, F., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 953, pp. 121–141. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; University of California Division of Agricultural Sciences, Office of Agricultural Publications: Riverside, CA, USA, 1961; p. 309. [Google Scholar] [CrossRef]
- Dunjó, G.; Pardini, G.; Gispert, M. Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain. Catena 2003, 52, 23–37. [Google Scholar] [CrossRef]
- Damatto Júnior, E.R.; Villas Bôas, R.L.; Leonel, S.; Fernandes, D.M. Alterações em propriedades de solo adubado com doses de composto orgânico sob cultivo de bananeira. Rev. Bras. Frutic. 2006, 28, 546–549. [Google Scholar] [CrossRef]
- Neugschwandtner, R.; Liebhard, P.; Kaul, H.; Wagentristl, H. Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ. 2014, 60, 57–62. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Eldridge, D.J.; Marques, M.J. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena 2013, 104, 153–160. [Google Scholar] [CrossRef]
- Schreck, E.; Gontier, L.; Dumat, C.; Geret, F. Ecological and physiological effects of soil management practices on earthworm communities in French vineyards. Eur. J. Soil Biol. 2012, 52, 8–15. [Google Scholar] [CrossRef]
- Junior, C.C.; Corbeels, M.; Bernoux, M.; Piccolo, M.D.C.; Neto, M.S.; Feigl, B.J.; Cerri, C.E.P.; Cerri, C.C.; Scopel, E.; Lalet, R. Assessing soil carbon storage rates under no-tillage: Comparing the synchronic and diachronic approaches. Soil Till. Res. 2013, 134, 207–212. [Google Scholar] [CrossRef]
- Bonifacio, E.; Said-Pullicino, D.; Stanchi, S.; Potenza, M.; Belmonte, S.A.; Celi, L. Soil and management effects on aggregation and organic matter dynamics in vineyards. Soil Till. Res. 2024, 240, 106077. [Google Scholar] [CrossRef]
- Fageria, N.; Baligar, V.; Clark, R. Micronutrients in crop production. Adv. Agron. 2002, 77, 185–268. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.S.; Kamal, M.Z.U.; Rahman, G.M. Organic sources and tillage practices for soil management. In Resources Use Efficiency in Agriculture; Kumar, S., Meena, R.S., Jhariya, M.K., Eds.; Springer: Singapore, 2020; pp. 283–328. [Google Scholar] [CrossRef]
- Kavvadias, V.; Alifragis, D.; Tsiontsis, A.; Brofas, G.; Stamatellos, G. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. For. Ecol. Manag. 2001, 144, 113–127. [Google Scholar] [CrossRef]
- Masunga, R.; Uzokwe, V.N.E.; Mlay, D.P.; Odeh, I.O.A.; Singh, A.; Buchan, D.; De Neve, S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 2016, 101, 185–193. [Google Scholar] [CrossRef]
- Silva, D.J.; Bassoi, L.H.; Rocha, M.G.; Silva, A.O.; Deon, M.D. Organic and nitrogen fertilization of soil under ‘Syrah’ grapevine: Effects on soil chemical properties and nitrate concentration. Rev. Bras. Cienc. Solo. 2016, 40, e0150073. [Google Scholar] [CrossRef]
- Mugnai, S.; Mais, E.; Azzarello, E.; Mancuso, S. Influence of long-term application of green waste compost on soil characteristics and growth, yield and quality of grape (Vitis vinifera L.). Compost Sci. Utiliz. 2012, 20, 29–33. [Google Scholar] [CrossRef]
- Ibrahim, M.; Alhameid, A.; Kumar, S.; Chintala, R.; Sexton, P.; Malo, D.D.; Schumacher, T.E. Long-term tillage and crop rotation impacts on a Northern great Plainsmollisol. Adv. Crop Sci. Tech. 2015, 3, 178. [Google Scholar] [CrossRef]
- Wyngaard, N.; Echeverría, H.E.; Rozas, H.R.S.; Divito, G.A. Fertilization and tillage effects on soil properties and maize yield in a Southern Pampas Argiudoll. Soil Till. Res. 2012, 119, 22–30. [Google Scholar] [CrossRef]
- Jiménez Becker, S.; Ebrahimzadeh, A.; Plaza Herrada, B.M.; Lao, M.T. Characterization of compost based on crop residues: Changes in some chemical and physical properties of the soil after applying the compost as organic amendment. Commun. Soil Sci. Plant Anal. 2010, 41, 696–708. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Said-Pullicino, D.; Agulló, E.; Audreu, J.; Paredes, C. Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: Effects on the characteristics of a calcareous sandy-loam soil. Agric. Ecosyst. Environ. 2011, 140, 80–87. [Google Scholar] [CrossRef]
- Dorneles, E.P.; Lisboa, B.B.; Abichequer, A.D.; Bissani, C.A.; Meurer, E.J.; Vargaset, L.K. Tillage, fertilization systems and chemical attributes of a Paleudult. Sci. Agric. 2015, 72, 175–186. [Google Scholar] [CrossRef]
- Matowo, P.R.; Pierzynski, G.M.; Whitney, D.; Lamond, R.E. Soil chemical properties as influenced by tillage and nitrogen source, placement, and rates after 10 years of continuous sorghum. Soil Till. Res. 1999, 50, 11–19. [Google Scholar] [CrossRef]
- Gadermaier, F.; Berner, A.; Fließbach, A.; Friedel, J.K.; Mäder, P. Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming. Renew. Agric. Food Syst. 2012, 27, 68–80. [Google Scholar] [CrossRef]
- Lanyon, D.M.; Cass, A.; Hansen, D. The Effect of Soil Properties on Vine Performance. CSIRO Land and Water Technical Report No. 34/04. 2004, pp. 1–54. Available online: http://www.clw.csiro.au/publications/technical2004/tr34-04.pdf (accessed on 30 March 2025).
- Holzapfel, B.; Quirk, L.; Hutton, R.; Holland, J. Winegrape Nutrition and Use of Fertilisers and Other Nutritional Supplements to Sustain Production. Water & Vine—Managing the Challenge. Fact Sheet No. 15; The Grape and Wine Research and Development Corporation: Adelaide, Australia, 2009. [Google Scholar]
- Michopoulos, P.; Solomou, A. Effects of conventional and organic (manure) fertilization on soil, plant tissue nutrients and berry yields in vineyards. The use of the original native soil as a control. J. Plant Nutr. 2019, 42, 2287–2298. [Google Scholar] [CrossRef]
- Reeve, J.R.; Carpenter-Boggs, L.; Reganold, J.P.; York, A.L.; McGourthy, G.; McCloskey, L.P. Soil and winegrape quality in biodynamically and organically managed vineyards. Am. J. Enol. Vitic. 2005, 56, 367–376. [Google Scholar] [CrossRef]
- Feng, Y.; Balkcom, K.S. Nutrient cycling and soil biology in row crop systems under intensive tillage. In Soil Health and Intensification of Agroecosytems; Al-Kaisi, M.M., Lowery, B., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 231–255. [Google Scholar] [CrossRef]
- Ateş, F.; Yağmur, B.; Çakir, E.; Yalçin, H. Effects of different tillage methods on the nutrient contents of organically grown Sultani Çekirdeksiz grape. J. Agric. Mach. Sci. 2017, 13, 33–38. Available online: https://dergipark.org.tr/en/download/article-file/399373 (accessed on 4 May 2025).
Growing Period | Type of Soil Tillage | Kind of Fertilization | pH | EC (mS/cm) | OM (%) | CaCO3 (%) |
---|---|---|---|---|---|---|
1st (Winter 2022–Autumn 2023) | CT | CF | 7.89 ± 0.11A | 0.64 ± 0.07 A | 3.58 ± 0.18 A | 24.40 ± 8.10 A |
CRF | 7.92 ± 0.13 A | 0.57 ± 0.19 A | 4.09 ± 0.55 A | 20.30 ± 9.13 A | ||
OF | 7.92 ± 0.16 A | 0.52 ± 0.11 A | 4.34 ± 0.81 A | 23.60 ± 5.50 A | ||
RT | CF | 7.88 ± 0.08 A | 0.67 ± 0.10 A | 4.17 ± 0.77 A | 30.05 ± 2.25 A | |
CRF | 7.89 ± 0.14 A | 0.80 ± 0.44 A | 4.01 ± 1.31 A | 29.07 ± 11.11 A | ||
OF | 7.85 ± 0.23 A | 0.54 ± 0.11 A | 4.26 ± 0.58 A | 33.80 ± 12.91 A | ||
2nd (Winter 2023–Autumn 2024) | CT | CF | 7.51 ± 0.08 BC | 1.59 ± 0.84 A | 4.94 ± 0.14 B | 23.37 ± 9.95 A |
CRF | 7.58 ± 0.15 ABC | 1.13 ± 0.43 AB | 4.79 ± 0.82 B | 21.95 ± 8.55 A | ||
OF | 7.76 ±0.11 A | 0.61 ± 0.08 B | 4.96 ± 0.66 B | 25.37 ± 5.75 A | ||
RT | CF | 7.44 ± 0.09 C | 0.80 ± 0.16 B | 4.87 ± 0.70 B | 26.95 ± 3.05 A | |
CRF | 7.65 ± 0.08 AB | 0.92 ± 0.11 AB | 5.62 ± 0.21 AB | 25.63 ± 8.80 A | ||
OF | 7.72 ± 0.06 A | 0.67 ± 0.03 B | 6.98 ± 1.46 A | 16.50 ± 5.90 A | ||
General Linear Model—1st growing period (p-values) | ||||||
Type of soil tillage (A) | 0.613 ns | 0.343 ns | 0.706 ns | 0.074 ns | ||
Kind of fertilization (B) | 0.984 ns | 0.441 ns | 0.642 ns | 0.737 ns | ||
(A) × (B) | 0.940 ns | 0.633 ns | 0.691 ns | 0.903 ns | ||
General Linear Model—2nd growing period (p-values) | ||||||
Type of soil tillage (A) | 0.762 ns | 0.118 ns | 0.048 * | 0.881 ns | ||
Kind of fertilization (B) | 0.002 ** | 0.080 ns | 0.432 ns | 0.612 ns | ||
(A) × (B) | 0.477 ns | 0.204 ns | 0.071 ns | 0.276 ns |
Growing Period | Type of Soil Tillage | Kind of Fertilization | P (mg kg−1 DW) | K (mg kg−1 DW) | Exchangeable Mg (mg kg−1 DW) |
---|---|---|---|---|---|
1st (Winter 2022–Autumn 2023) | CT | CF | 20.04 ± 8.04 A | 649.67 ± 122.85 A | 122.67 ± 4.73 AB |
CRF | 18.02 ± 7.44 A | 667.00 ± 104.36 A | 118.67 ± 10.50 AB | ||
OF | 19.26 ± 1.25 A | 833.33 ± 109.43 A | 142.67 ± 16.50 A | ||
RT | CF | 18.78 ± 6.21 A | 574.33 ± 172.14 A | 108.67 ± 17.95 B | |
CRF | 23.33 ± 9.97 A | 566.00 ± 182.00 A | 112.00 ± 21.93 AB | ||
OF | 21.08 ± 3.68 A | 707.00 ± 109.66 A | 113.33 ± 16.80 AB | ||
2nd (Winter 2023–Autumn 2024) | CT | CF | 21.93 ± 1.51 A | 671.33 ± 110.02 A | 114.67 ± 14.64 A |
CRF | 23.09 ± 3.53 A | 706.33 ± 96.03 A | 126.33 ± 14.64 A | ||
OF | 29.01 ± 7.44 A | 901.00 ± 94.40 A | 138.00 ± 13.75 A | ||
RT | CF | 24.67 ± 5.28 A | 711.67 ± 110.15 A | 121.33 ± 18.90 A | |
CRF | 31.02 ± 4.83 A | 671.33 ± 171.61 A | 117.67 ± 14.36 A | ||
OF | 26.06 ± 3.16 A | 707.33 ± 231.45 A | 115.67 ± 25.77 A | ||
General Linear Model—1st growing period (p-values) | |||||
Type of soil tillage (A) | 0.550 ns | 0.144 ns | 0.045 * | ||
Kind of fertilization (B) | 0.948 ns | 0.116 ns | 0.319 ns | ||
(A) × (B) | 0.707 ns | 0.950 ns | 0.469 ns | ||
General Linear Model—2nd growing period (p-values) | |||||
Type of soil tillage (A) | 0.266 ns | 0.375 ns | 0.346 ns | ||
Kind of fertilization (B) | 0.267 ns | 0.323 ns | 0.691 ns | ||
(A) × (B) | 0.174 ns | 0.388 ns | 0.388 ns |
Treatment | Soil Micronutrient Concentration | ||||||
---|---|---|---|---|---|---|---|
Growing Period | Type of Soil Tillage | Kind of Fertilization | B (mg kg−1 DW) | Fe (mg kg−1 DW) | Zn (mg kg−1 DW) | Mn (mg kg−1 DW) | Cu (mg kg−1 DW) |
1st (Winter 2022–Autumn 2023) | CT | CF | 2.61 ± 1.01 AB | 3.11 ± 0.50 A | 1.20 ± 0.35 A | 10.97 ± 2.33 A | 2.42 ± 0.42 A |
CRF | 2.70 ± 1.56 AB | 2.90 ± 0.32 A | 1.04 ± 0.29 A | 10.57 ± 1.82 A | 2.37 ± 0.52 A | ||
OF | 0.95 ± 0.03 C | 3.14 ± 0.30 A | 1.28 ± 0.10 A | 12.52 ± 1.07 A | 2.63 ± 0.35 A | ||
RT | CF | 2.55 ± 0.82 AB | 2.94 ± 0.18 A | 1.07 ± 0.29 A | 8.97 ± 2.76 A | 2.24 ± 0.37 A | |
CRF | 3.67 ± 1.01 A | 3.20 ± 0.45 A | 1.20 ± 0.31 A | 9.10 ± 3.02 A | 2.45 ± 0.43 A | ||
OF | 0.78 ± 0.20 C | 3.01 ± 0.14 A | 1.14 ± 0.21 A | 13.16 ± 0.77 A | 2.24 ± 0.47 A | ||
2nd (Winter 2023–Autumn 2024) | CT | CF | 3.31 ± 0.54 AB | 6.00 ± 0.36 A | 0.76 ± 0.17 B | 12.37 ± 1.38 A | 2.29 ± 0.29 A |
CRF | 4.41 ± 2.81 AB | 6.31 ± 0.53 A | 1.16 ± 0.14 A | 14.25 ± 2.18 A | 2.36 ± 0.61 A | ||
OF | 3.63 ± 0.27 AB | 6.95 ± 0.61 A | 1.17 ± 0.11 A | 14.98 ± 2.31 A | 2.75 ± 0.16 A | ||
RT | CF | 2.81 ± 0.06 B | 6.04 ± 0.58 A | 0.91 ± 0.25 AB | 12.10 ± 2.79 A | 2.29 ± 0.61 A | |
CRF | 4.16 ± 1.47 AB | 7.05 ± 0.77 A | 1.27 ± 0.29 A | 11.85 ± 1.34 A | 2.69 ± 0.29 A | ||
OF | 5.73 ± 1.45 A | 6.26 ± 0.38 A | 1.18 ± 0.08 A | 11.78 ± 1.13 A | 2.56 ± 0.23 A | ||
General Linear Model—1st growing period | (p-values) | ||||||
Type of soil tillage (A) | 0.662 ns | 0.978 ns | 0.774 ns | 0.366 ns | 0.439 ns | ||
Kind of fertilization (B) | 0.013 * | 0.972 ns | 0.833 ns | 0.053 ns | 0.908 ns | ||
(A) × (B) | 0.662 ns | 0.445 ns | 0.589 ns | 0.544 ns | 0.640 ns | ||
General Linear Model—2nd growing period | (p-values) | ||||||
Type of soil tillage (A) | 0.520 ns | 0.914 ns | 0.317 ns | 0.055 ns | 0.784 ns | ||
Kind of fertilization (B) | 0.171 ns | 0.119 ns | 0.008 ** | 0.595 ns | 0.319 ns | ||
(A) × (B) | 0.266 ns | 0.122 ns | 0.795 ns | 0.432 ns | 0.547 ns |
Growing Period | Type of Soil Tillage | Kind of Fertilization | P (% DW) | K (% DW) | K/Mg |
---|---|---|---|---|---|
1st (Winter 2022– Autumn 2023) | CT | CF | 0.23 ± 0.01 A | 0.63 ± 0.07 A | 2.22 ± 0.23 CD |
CRF | 0.24 ± 0.04 A | 0.60 ± 0.03 A | 2.06 ± 0.21 D | ||
OF | 0.24 ± 0.01 A | 0.62 ± 0.03 A | 2.45 ± 0.15 BC | ||
RT | CF | 0.23 ± 0.01 A | 0.67 ± 0.03 A | 2.88 ± 0.12 A | |
CRF | 0.22 ± 0.01 A | 0.64 ± 0.01 A | 2.59 ± 0.07 AB | ||
OF | 0.23 ± 0.03 A | 0.65 ± 0.06 A | 2.59 ± 0.13 AB | ||
2nd (Winter 2023– Autumn 2024) | CT | CF | 0.16 ± 0.006 CD | 0.63 ± 0.08 A | 3.42 ± 0.43 A |
CRF | 0.17 ± 0.010 BC | 0.64 ± 0.10 A | 3.27 ± 0.70 A | ||
OF | 0.18 ± 0.012 B | 0.70 ± 0.03 A | 3.77 ± 0.32 A | ||
RT | CF | 0.15 ± 0.004 D | 0.66 ± 0.11 A | 4.02 ± 1.06 A | |
CRF | 0.15 ± 0.008 D | 0.63 ± 0.07 A | 4.24 ± 0.79 A | ||
OF | 0.20 ± 0.004 A | 0.64 ± 0.02 A | 4.01 ± 0.26 A | ||
General Linear Model—1st growing period (p-values) | |||||
Type of soil tillage (A) | 0.436 ns | 0.072 ns | 0.000 *** | ||
Kind of fertilization (B) | 0.885 ns | 0.418 ns | 0.070 ns | ||
(A) × (B) | 0.393 ns | 0.955 ns | 0.040 * | ||
General Linear Model—2nd growing period (p-values) | |||||
Type of soil tillage (A) | 0.482 ns | 0.710 ns | 0.340 ns | ||
Kind of fertilization (B) | 0.000 *** | 0.779 ns | 0.717 ns | ||
(A) × (B) | 0.013 * | 0.616 ns | 0.655 ns |
ANOVA/ General Linear Model | 1st Growing Period (Year 2023) | 2nd Growing Period (Year 2024) | ||||
---|---|---|---|---|---|---|
Total Ν (%) | Ca (%) | Mg (%) | Total Ν (%) | Ca (%) | Mg (%) | |
Type of soil tillage (A) | 0.858 ns | 0.001 ** | 0.009 ** | 0.135 ns | 0.060 ns | 0.002 ** |
Kind of fertilization (B) | 0.004 ** | 0.591 ns | 0.439 ns | 0.316 ns | 0.368 ns | 0.936 ns |
(A) × (B) | 0.306 ns | 0.725 ns | 0.125 ns | 0.200 ns | 0.058 ns | 0.267 ns |
Treatment | Leaf Micronutrient Concentration | ||||||
---|---|---|---|---|---|---|---|
Growing Period | Type of Soil Tillage | Kind of Fertilization | B (mg kg−1 DW) | Mn (mg kg−1 DW) | Zn (mg kg−1 DW) | Fe (mg kg−1 DW) | Cu (mg kg−1 DW) |
1st (Winter 2022–Autumn 2023) | CT | CF | 42.43 ± 5.83 AB | 37.25 ± 3.63 AB | 9.98 ± 3.05 A | 111.69 ± 27.25 A | 9.59 ± 0.51 A |
CRF | 46.04 ± 7.06 A | 46.00 ± 5.85 A | 9.27 ± 1.44 A | 102.90 ± 1.55 A | 8.69 ± 0.64 A | ||
OF | 46.22 ± 6.23 A | 35.40 ± 2.50 AB | 8.84 ± 1.22 A | 95.93 ± 4.35 A | 9.08 ± 0.54 A | ||
RT | CF | 38.79 ± 4.88 AB | 34.71 ± 10.17 AB | 8.67 ± 0.55 A | 93.15 ± 4.06 A | 8.70 ± 0.77 A | |
CRF | 34.76 ± 0.22 B | 33.33 ± 7.73 B | 9.92 ± 0.84 A | 101.44 ± 4.96 A | 9.24 ± 0.91 A | ||
OF | 47.98 ± 4.33 A | 30.97 ± 2.47 B | 10.67 ± 2.57 A | 104.91 ± 22.37 A | 9.08 ± 0.74 A | ||
2nd (Winter 2023–Autumn 2024) | CT | CF | 54.38 ± 4.26 AB | 62.63 ± 14.76 A | 6.69 ± 2.20 A | 95.33 ± 6.88 A | 7.35 ± 0.25 AB |
CRF | 56.00 ± 7.03 AB | 67.05 ± 22.30 A | 5.94 ± 1.60 AB | 94.27 ± 18.01 A | 7.97 ± 0.48 A | ||
OF | 52.92 ± 3.89 AB | 54.82 ± 9.02 A | 7.80 ± 0.50 A | 91.05 ± 4.99 A | 7.85 ± 0.34 A | ||
RT | CF | 46.29 ± 3.76 B | 58.28 ± 14.24 A | 3.42 ± 0.07 C | 84.34 ± 8.27A | 6.65 ± 0.55 B | |
CRF | 50.61 ± 6.40 AB | 51.37 ± 1.93 A | 4.14 ± 0.58 C | 87.32 ± 2.53 A | 7.13 ± 0.37 B | ||
OF | 58.18 ± 4.62 A | 52.89 ± 0.75 A | 6.75 ± 0.68 A | 84.15 ± 5.69 A | 7.02 ± 0.11 B | ||
General Linear Model—1st growing period | |||||||
Type of soil tillage (A) | 0.101 ns | 0.042 * | 0.666 ns | 0.606 ns | 0.333 ns | ||
Kind of fertilization (B) | 0.079 ns | 0.223 ns | 0.921 ns | 0.968 ns | 0.904 ns | ||
(A) × (B) | 0.138 ns | 0.342 ns | 0.362 ns | 0.301 ns | 0.242 ns | ||
General Linear Model—2nd growing period | |||||||
Type of soil tillage (A) | 0.282 ns | 0.253 ns | 0.003 ** | 0.079 ns | 0.001 ** | ||
Kind of fertilization (B) | 0.252 ns | 0.654 ns | 0.009 ** | 0.828 ns | 0.060 ns | ||
(A) × (B) | 0.099 ns | 0.628 ns | 0.296 ns | 0.907 ns | 0.945 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzistathis, T.; Sarropoulou, V.; Fragkos, A.; Katsalirou, E.; Daskalakis, I.; Biniari, K.; Danalatos, G.; Bountla, A. The Kind of Fertilization and Type of Soil Tillage Affect Soil Fertility and Foliar Nutrient Concentrations in an Experimental Vineyard of Kefalonia. Environments 2025, 12, 160. https://doi.org/10.3390/environments12050160
Chatzistathis T, Sarropoulou V, Fragkos A, Katsalirou E, Daskalakis I, Biniari K, Danalatos G, Bountla A. The Kind of Fertilization and Type of Soil Tillage Affect Soil Fertility and Foliar Nutrient Concentrations in an Experimental Vineyard of Kefalonia. Environments. 2025; 12(5):160. https://doi.org/10.3390/environments12050160
Chicago/Turabian StyleChatzistathis, Theocharis, Virginia Sarropoulou, Athanasios Fragkos, Eirini Katsalirou, Ioannis Daskalakis, Katerina Biniari, Gerasimos Danalatos, and Areti Bountla. 2025. "The Kind of Fertilization and Type of Soil Tillage Affect Soil Fertility and Foliar Nutrient Concentrations in an Experimental Vineyard of Kefalonia" Environments 12, no. 5: 160. https://doi.org/10.3390/environments12050160
APA StyleChatzistathis, T., Sarropoulou, V., Fragkos, A., Katsalirou, E., Daskalakis, I., Biniari, K., Danalatos, G., & Bountla, A. (2025). The Kind of Fertilization and Type of Soil Tillage Affect Soil Fertility and Foliar Nutrient Concentrations in an Experimental Vineyard of Kefalonia. Environments, 12(5), 160. https://doi.org/10.3390/environments12050160