A Social Survey to Capture the Public Awareness and Perception About Chemicals Under Ireland’s Human Biomonitoring Feasibility Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Demographic Profile of the Survey Participants
3.2. Scoring of Chemicals by Two Respondent Groups in Ireland
3.3. Final Aggregate Scoring of Chemicals Based on the Survey
4. Discussion
Study Limitations and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Acronym | Full Form |
| GerES | German Environmental Survey |
| HBM | Human Biomonitoring |
| HBM4EU | Human Biomonitoring for Europe |
| HBM4IRE | Human Biomonitoring for Ireland |
| NHANES | National Health and Nutrition Examination Survey |
| PAH | Polycyclic Aromatic Hydrocarbons |
| PARC | Partnership for the Assessment of Risks from Chemicals |
| PFASs | Per- and Polyfluoroalkyl Substances |
| POPs | Persistent Organic Compounds |
| WHO | World Health Organisation |
References
- UNEP (United Nations Environment Programme). Global Chemicals Outlook II: From Legacies to Innovative Solutions. United Nations Environment Programme. 2019. Available online: https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions (accessed on 16 July 2025).
- Li, D.; Suh, S. Health risks of chemicals in consumer products: A review. Environ. Int. 2019, 123, 580–587. [Google Scholar] [CrossRef]
- Huang, L.; Fantke, P.; Jolliet, O. Consumer Products as a Source of Human Exposure to Chemicals: Environmental Pollutant Exposures and Public Health; Harrison, R.M., Ed.; The Royal Society of Chemistry: London, UK, 2020; pp. 295–352. [Google Scholar] [CrossRef]
- Aurisano, N.; Weber, R.; Fantke, P. Enabling a circular economy for chemicals in plastics. Curr. Opin. Green Sustain. Chem. 2021, 31, 100513. [Google Scholar] [CrossRef]
- Geueke, B.; Parkinson, L.V.; Groh, K.J.; Kassotis, C.D.; Maffini, M.V.; Martin, O.V.; Zimmermann, L.; Scheringer, M.; Muncke, J. Evidence for widespread human exposure to food contact chemicals. J. Expo. Sci. Environ. Epidemiol. 2025, 35, 330–341. [Google Scholar] [CrossRef]
- Genuis, S.J. The chemical erosion of human health: Adverse environmental exposure and in-utero pollution–determinants of congenital disorders and chronic disease. J. Perinat. Med. 2006, 34, 185–195. [Google Scholar] [CrossRef]
- Maqbool, F.; Mostafalou, S.; Bahadar, H.; Abdollahi, M. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci. 2016, 145, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Viet, S.M.; Falman, J.C.; Merrill, L.S.; Faustman, E.M.; Savitz, D.A.; Mervish, N.; Barr, D.B.; Peterson, L.A.; Wright, R.; Balshaw, D.; et al. Human Health Exposure Analysis Resource (HHEAR): A model for incorporating the exposome into health studies. Int. J. Hyg. Environ. Health 2021, 235, 113768. [Google Scholar] [CrossRef] [PubMed]
- Naidu, R.; Biswas, B.; Willett, I.R.; Cribb, J.; Singh, B.K.; Nathanail, C.P.; Coulon, F.; Semple, K.T.; Jones, K.C.; Barclay, A.; et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Zhang, Y.; Cheng, S.; Xiao, T. Environmental estrogens shape disease susceptibility. Int. J. Hyg. Environ. Health 2023, 249, 114125. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Liu, Q.S.; Zhou, Q.; Jiang, G. Chemical contaminants in blood and their implications in chronic diseases. J. Hazard. Mater. 2024, 466, 133511. [Google Scholar] [CrossRef]
- Grob, K.; Biedermann, M.; Scherbaum, E.; Roth, M.; Rieger, K. Food contamination with organic materials in perspective: Packaging materials as the largest and least controlled source? A view focusing on the European situation. Crit. Rev. Food Sci. Nutr. 2006, 46, 529–535. [Google Scholar] [CrossRef]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Geueke, B.; Groh, K.J.; Maffini, M.V.; Martin, O.V.; Boucher, J.M.; Chiang, Y.T.; Gwosdz, F.; Jieh, P.; Kassotis, C.D.; Łańska, P.; et al. Systematic evidence on migrating and extractable food contact chemicals: Most chemicals detected in food contact materials are not listed for use. Crit. Rev. Food Sci. Nutr. 2023, 63, 9425–9435. [Google Scholar] [CrossRef] [PubMed]
- Bocato, M.Z.; Bianchi Ximenez, J.P.; Hoffmann, C.; Barbosa, F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. J. Toxicol. Environ. Health 2019, 22, 131–156. [Google Scholar] [CrossRef] [PubMed]
- Jeddi, M.Z.; Boon, P.E.; Cubadda, F.; Hoogenboom, R.; Mol, H.; Verhagen, H.; Sijm, D.T. A vision on the ‘foodture’role of dietary exposure sciences in the interplay between food safety and nutrition. Trends Food Sci. Technol. 2022, 120, 288–300. [Google Scholar] [CrossRef]
- Vorkamp, K.; Castaño, A.; Antignac, J.P.; Boada, L.D.; Cequier, E.; Covaci, A.; López, M.E.; Haug, L.S.; Kasper-Sonnenberg, M.; Koch, H.M.; et al. Biomarkers, matrices and analytical methods targeting human exposure to chemicals selected for a European human biomonitoring initiative. Environ. Int. 2021, 146, 106082. [Google Scholar] [CrossRef]
- Shilnikova, N.; Momoli, F.; Karyakina, N.; Krewski, D. Review of non–invasive biomarkers as a tool for exposure characterization in human health risk assessments. J. Toxicol. Environ. Health Part B 2025, 28, 122–150. [Google Scholar] [CrossRef]
- Jeddi, M.Z.; Galea, K.S.; Ashley-Martin, J.; Nassif, J.; Pollock, T.; Poddalgoda, D.; Kasiotis, K.M.; Machera, K.; Koch, H.M.; López, M.E.; et al. Guidance on minimum information requirements (MIR) from designing to reporting human biomonitoring (HBM). Environ. Int. 2025, 202, 109601. [Google Scholar] [CrossRef]
- HBM4EU. What We Do. 2022. Available online: https://www.hbm4eu.eu/what-we-do/ (accessed on 13 January 2025).
- Kolossa-Gehring, M.; Schoeters, G.; Castan, A.; Barouki, R.; Haines, D.; Polcher, A.; Weise, P. Key results of the european human biomonitoring initiative-HBM4EU. Int. J. Hyg. Environ. Health 2023, 253, 114197. [Google Scholar] [CrossRef]
- Partnership for the Assessment of Risks from Chemicals. European Partnership for the Assessment of Risks from Chemicals (PARC). 2025. Available online: https://www.eu-parc.eu/ (accessed on 13 January 2025).
- World Health Organization. New WHO Educational Course on Human Biomonitoring Helps Countries Assess Human Exposure to Chemicals. 2023. Available online: https://www.who.int/europe/news/item/29-11-2023-new-who-educational-course-on-human-biomonitoring-helps-countries-assess-human-exposure-to-chemicals (accessed on 13 July 2025).
- Pirkle, J.L.; Brody, D.J.; Gunter, E.W.; Kramer, R.A.; Paschal, D.C.; Flegal, K.M.; Matte, T.D. The decline in blood lead levels in the United States: The National Health and Nutrition Examination Surveys (NHANES). Jama 1994, 272, 284–291. [Google Scholar] [CrossRef]
- Pirkle, J.L.; Osterloh, J.; Needham, L.L.; Sampson, E.J. National exposure measurements for decisions to protect public health from environmental exposures. Int. J. Hyg. Environ. Health 2005, 208, 1–5. [Google Scholar] [CrossRef]
- Tsoi, M.F.; Lo, C.W.; Cheung, T.T.; Cheung, B.M. Blood lead level and risk of hypertension in the United States National Health and Nutrition Examination Survey 1999–2016. Sci. Rep. 2021, 11, 3010. [Google Scholar] [CrossRef]
- Kolossa-Gehring, M.; Becker, K.; Conrad, A.; Schröter-Kermani, C.; Schulz, C.; Seiwert, M. Environmental surveys, specimen bank and health related environmental monitoring in Germany. Int. J. Hyg. Environ. Health 2012, 215, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Berlin, M. Mercury in dental amalgam: A risk analysis. Neurotoxicology 2020, 81, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Schwedler, G.; Rucic, E.; Lange, R.; Conrad, A.; Koch, H.M.; Pälmke, C.; Brüning, T.; Schulz, C.; Schmied-Tobies, M.I.; Daniels, A.; et al. Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014–2017. Int. J. Hyg. Environ. Health 2020, 225, 113444. [Google Scholar] [CrossRef] [PubMed]
- Kasper-Sonnenberg, M.; Pälmke, C.; Wrobel, S.; Brüning, T.; Murawski, A.; Apel, P.; Weber, T.; Kolossa-Gehring, M.; Koch, H.M. Plasticizer exposure in Germany from 1988 to 2022: Human biomonitoring data of 20 plasticizers from the German Environmental Specimen Bank. Environ. Int. 2025, 195, 109190. [Google Scholar] [CrossRef]
- Hooper, K.; McDonald, T.A. The PBDEs: An emerging environmental challenge and another reason for breast-milk monitoring programs. Environ. Health Perspect. 2000, 108, 387–392. [Google Scholar] [CrossRef]
- Connolly, A.; Singh, R.; Koch, H.; Kolossa-Gehring, M.; Conrad, A. Human Biomonitoring for Ireland—The HBM4IRE Study (2022-HE-1122). Environmental Protection Agency, Ireland. 2025. Available online: https://www.epa.ie/publications/research/environment--health/research-491-human-biomonitoring-for-ireland--the-hbm4ire-study.php (accessed on 17 September 2025).
- Singh, R.; Koch, H.M.; Kolossa-Gehring, M.; Connolly, A. Chemical Prioritisation for Human Biomonitoring in Ireland: A Synergy of Global Frameworks and Local Perspectives. Toxics 2025, 13, 281. [Google Scholar] [CrossRef]
- Reynders, H.; Colles, A.; Morrens, B.; Mampaey, M.; Coertjens, D.; Koppen, G.; Schoeters, G.; Loots, I.; Chovanova, H.; Winderickx, W.; et al. The added value of a surveillance human biomonitoring program: The case of FLEHS in Flanders (Belgium). Int. J. Hyg. Environ. Health 2017, 220, 46–54. [Google Scholar] [CrossRef]
- Tratnik, J.S.; Falnoga, I.; Mazej, D.; Kocman, D.; Fajon, V.; Jagodic, M.; Stajnko, A.; Trdin, A.; Šlejkovec, Z.; Jeran, Z.; et al. Results of the first national human biomonitoring in Slovenia: Trace elements in men and lactating women, predictors of exposure and reference values. Int. J. Hyg. Environ. Health 2019, 222, 563–582. [Google Scholar] [CrossRef]
- Fillol, C.; Garnier, R.; Mullot, J.U.; Boudet, C.; Momas, I.; Salmi, L.R.; Vandentorren, S. Prioritization of the biomarkers to be analyzed in the French biomonitoring program. Biomonitoring 2014, 1, 95–104. [Google Scholar] [CrossRef]
- Ougier, E.; Ganzleben, C.; Lecoq, P.; Bessems, J.; David, M.; Schoeters, G.; Lange, R.; Meslin, M.; Uhl, M.; Kolossa-Gehring, M.; et al. Chemical prioritisation strategy in the European Human Biomonitoring Initiative (HBM4EU)–Development and results. Int. J. Hyg. Environ. Health 2021, 236, 113778. [Google Scholar] [CrossRef] [PubMed]
- Matisāne, L.; Akūlova, L.; Martinsone, Ž.; Pavlovska, I.; Komarovska, L.; Venžega, K.; Jakimova, D.; Sproģe, K.; Kadiķis, N.; Mārtiņsone, I.; et al. Identification, Evaluation and Prioritization of Chemicals for National Human Biomonitoring Program: Insights from Latvia. Toxics 2025, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Matus, K.J.; Bernal, M.N. Media attention and policy response: 21st century chemical regulation in the USA. Sci. Public Policy 2020, 47, 548–560. [Google Scholar] [CrossRef]
- Huang, L.; Ban, J.; Sun, K.; Han, Y.; Yuan, Z.; Bi, J. The influence of public perception on risk acceptance of the chemical industry and the assistance for risk communication. Saf. Sci. 2013, 51, 232–240. [Google Scholar] [CrossRef]
- HBM4EU. Report on the Outreach Activities to the European Public Under HBM4EU, D 4.1. WP 4 Prioritisation and Development of Scoping Papers. 2018. Available online: https://www.hbm4eu.eu/wp-content/uploads/2018/08/HBM4EU_Citizens-Survey_-07082018.pdf (accessed on 17 July 2025).
- HBM4EU. HBM4EU Substances. 2020. Available online: https://www.hbm4eu.eu/hbm4eu-substances/ (accessed on 17 July 2025).
- Apel, P.; Rousselle, C.; Lange, R.; Sissoko, F.; Kolossa-Gehring, M.; Ougier, E. Human biomonitoring initiative (HBM4EU)-strategy to derive human biomonitoring guidance values (HBM-GVs) for health risk assessment. Int. J. Hyg. Environ. Health 2020, 230, 113622. [Google Scholar] [CrossRef]
- Ganzleben, C.; Antignac, J.P.; Barouki, R.; Castaño, A.; Fiddicke, U.; Klánová, J.; Lebret, E.; Olea, N.; Sarigiannis, D.; Schoeters, G.R.; et al. Human biomonitoring as a tool to support chemicals regulation in the European Union. Int. J. Hyg. Environ. Health 2017, 220, 94–97. [Google Scholar] [CrossRef]
- Food Safety Authority of Ireland. FSAI Annual Report 2023. 2023. Available online: https://www.fsai.ie (accessed on 16 July 2025).
- Environmental Protection Agency. Catchments.ie. 2025. Available online: https://www.catchments.ie (accessed on 16 July 2025).
- Environmental Protection Agency. Beaches.ie. 2025. Available online: https://www.beaches.ie (accessed on 16 July 2025).
- Environmental Protection Agency. Research Communication Activities. 2025. Available online: https://www.epa.ie/our-services/research/communicating-epa-funded-research/research-communication-activities/ (accessed on 16 July 2025).
- Angerer, J.; Ewers, U.; Wilhelm, M. Human biomonitoring: State of the art. Int. J. Hyg. Environ. health. 2007, 210, 201–228. [Google Scholar] [CrossRef]
- Santonen, T.; Alvito, P.; Bessems, J.; Borges, T.; Brunet, D.; Buekers, J.; Cornelis, C.; van Engelen, J.; Gonzalez Caballero, M.C.; Humar-Juric, T.; et al. Improving Risk Assessment of Chemicals by the Use of Human Biomonitoring: HBM4EU Project Activities. Available online: http://hdl.handle.net/10400.21/8149 (accessed on 18 October 2025).
- Louro, H.; Heinälä, M.; Bessems, J.; Buekers, J.; Vermeire, T.; Woutersen, M.; van Engelen, J.; Borges, T.; Rousselle, C.; Ougier, E.; et al. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int. J. Hyg. Environ. Health 2019, 222, 727–737. [Google Scholar] [CrossRef]
- Jeddi, M.Z.; Hopf, N.B.; Louro, H.; Viegas, S.; Galea, K.S.; Pasanen-Kase, R.; Santonen, T.; Mustieles, V.; Fernandez, M.F.; Verhagen, H.; et al. Developing human biomonitoring as a 21st century toolbox within the European exposure science strategy 2020–2030. Environ. Int. 2022, 168, 107476. [Google Scholar] [CrossRef]
- Ramirez-Ortiz, D.; Almodóvar-Morales, G.L.; Hopwood, S.; Kumar, N. Efficacy of a school-based intervention to bring awareness about PCB contamination and exposure avoidance in Guánica, Puerto Rico. Environ. Sci. Pollut. Res. 2019, 26, 23337–23345. [Google Scholar] [CrossRef]
- George, C.M.; Factor-Litvak, P.; Khan, K.; Islam, T.; Singha, A.; Moon-Howard, J.; Van Geen, A.; Graziano, J.H. Approaches to increase arsenic awareness in Bangladesh: An evaluation of an arsenic education program. Health Educ. Behav. 2013, 40, 331–338. [Google Scholar] [CrossRef]
- Rohlman, D.; Donatuto, J.; Heidt, M.; Barton, M.; Campbell, L.; Anderson, K.A.; Kile, M.L. A case study describing a community-engaged approach for evaluating polycyclic aromatic hydrocarbon exposure in a Native American community. Int. J. Environ. Res. Public Health 2019, 16, 327. [Google Scholar] [CrossRef]
- Quach, T.; Varshavsky, J.; Von Behren, J.; Garcia, E.; Tong, M.; Nguyen, T.; Tran, A.; Gunier, R.; Reynolds, P. Reducing chemical exposures in nail salons through owner and worker trainings: An exploratory intervention study. Am. J. Ind. Med. 2013, 56, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Dignam, T.; Kaufmann, R.B.; LeStourgeon, L.; Brown, M.J. Control of lead sources in the United States, 1970-2017: Public health progress and current challenges to eliminating lead exposure. J. Public Health Manag. Pract. 2019, 25, S13–S22. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Brown, M.J. Effectiveness of environmental health policies: A new frontier for epidemiologists. Epidemiology 2003, 14, 257–258. [Google Scholar] [CrossRef]
- Sullivan, M.; Green, D. Toward eliminating children’s lead exposure: A comparison of policies and their outcomes in three lead producing and using countries. Environ. Res. Lett. 2020, 15, 103008. [Google Scholar] [CrossRef]
- Li, Z. Analysis of Worldwide Pesticide Regulatory Models and Standards for Controlling Human Health Risk. Case Western Reserve University. 2016. Available online: https://www.proquest.com/openview/4485b08eb8a51fe712dc21c1a91f669b/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 18 October 2025).
- Woodruff, T.J.; Kyle, A.D.; Bois, F.Y. Evaluating health risks from occupational exposure to pesticides and the regulatory response. Environ. Health Perspect. 1994, 102, 1088–1096. [Google Scholar] [CrossRef]
- Haby, M.M.; Soares, A.; Chapman, E.; Clark, R.; Korc, M.; Galvão, L.A. Interventions that facilitate sustainable development by preventing toxic exposure to chemicals: An overview of systematic reviews. Rev. Panam. De Salud Publica 2016, 39, 378–386. [Google Scholar]
- Papadopoli, R.; Nobile, C.G.; Trovato, A.; Pileggi, C.; Pavia, M. Chemical risk and safety awareness, perception, and practices among research laboratories workers in Italy. J. Occup. Med. Toxicol. 2020, 15, 17. [Google Scholar] [CrossRef]
- Walters, A.U.; Lawrence, W.; Jalsa, N.K. Chemical laboratory safety awareness, attitudes and practices of tertiary students. Saf. Sci. 2017, 96, 161–171. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per-and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Wickham, G.M.; Shriver, T.E. Emerging contaminants, coerced ignorance and environmental health concerns: The case of per-and polyfluoroalkyl substances (PFAS). Sociol. Health Illn. 2021, 43, 764–778. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.; Maffini, M.V.; Miller, M.F.; Pelch, K.E.; Reade, A.; et al. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef]
- Boberg, J.; Taxvig, C.; Christiansen, S.; Hass, U. Possible endocrine disrupting effects of parabens and their metabolites. Reprod. Toxicol. 2010, 30, 301–312. [Google Scholar] [CrossRef]
- Kalofiri, P.; Biskanaki, F.; Kefala, V.; Tertipi, N.; Sfyri, E.; Rallis, E. Endocrine disruptors in cosmetic products and the regulatory framework: Public health implications. Cosmetics 2023, 10, 160. [Google Scholar] [CrossRef]
- Petric, Z.; Ružić, J.; Žuntar, I. The controversies of parabens–an overview nowadays. Acta Pharm. 2021, 71, 17–32. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Govarts, E.; Gilles, L.; Martin, L.R.; Santonen, T.; Apel, P.; Alvito, P.; Anastasi, E.; Andersen, H.R.; Andersson, A.M.; Andryskova, L.; et al. Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021). Int. J. Hyg. Environ. Health 2023, 249, 114119. [Google Scholar] [CrossRef]







| Perception of Harmfulness | Seriously Harmful | Moderately Harmful | Slightly Harmful | Not Harmful at All | Don’t Know |
|---|---|---|---|---|---|
| Scale | 3 | 2 | 1 | 0 | 0 |
| Characteristics | Category | n | % |
|---|---|---|---|
| Age | Under 18 | 0 | 0 |
| 18–24 | 12 | 6.09 | |
| 25–34 | 24 | 12.18 | |
| 35–44 | 63 | 31.98 | |
| 45–54 | 62 | 31.47 | |
| 55–64 | 32 | 16.24 | |
| 65 and over | 4 | 2.03 | |
| Gender | Male | 86 | 43.65 |
| Female | 109 | 55.33 | |
| Other | 0 | 0 | |
| Prefer not to say | 2 | 1.02 | |
| Residence | Urban | 123 | 62.44 |
| Rural | 74 | 37.56 | |
| Education | Leaving Certificate | 5 | 2.54 |
| High school diploma/equivalent | 1 | 0.51 | |
| PLC courses | 5 | 2.54 | |
| Vocational training | 6 | 3.05 | |
| Apprenticeship | 2 | 1.02 | |
| Bachelor’s degree | 76 | 38.58 | |
| Master’s degree | 65 | 32.99 | |
| Doctoral degree | 33 | 16.75 | |
| Other | 4 | 2.03 | |
| Employment status | Self-employed | 10 | 5.08 |
| Private employee | 32 | 16.24 | |
| Government employee | 109 | 55.33 | |
| Semi-state bodies | 23 | 11.68 | |
| Apprenticeship | 1 | 0.51 | |
| Homemaker | 3 | 1.52 | |
| Retired | 3 | 1.52 | |
| Student | 9 | 4.57 | |
| Unemployed | 3 | 1.52 | |
| Other | 4 | 2.03 | |
| Occupation | Agriculture/forestry/fishing | 3 | 1.52 |
| Construction | 8 | 4.06 | |
| Wholesale/retail trade | 1 | 0.51 | |
| Transportation/storage | 3 | 1.52 | |
| Information/communication | 11 | 5.58 | |
| Professional, scientific and technical | 85 | 43.15 | |
| Administrative/support service | 12 | 6.09 | |
| Human health and social work | 39 | 19.8 | |
| Industry | 1 | 0.51 | |
| Financial/insurance/real estate | 4 | 2.03 | |
| Other | 30 | 15.23 | |
| Association with chemical management | Yes | 70 | 35.53 |
| No | 127 | 64.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.; Koch, H.M.; Kolossa-Gehring, M.; Conrad, A.; Connolly, A. A Social Survey to Capture the Public Awareness and Perception About Chemicals Under Ireland’s Human Biomonitoring Feasibility Study. Environments 2025, 12, 410. https://doi.org/10.3390/environments12110410
Singh R, Koch HM, Kolossa-Gehring M, Conrad A, Connolly A. A Social Survey to Capture the Public Awareness and Perception About Chemicals Under Ireland’s Human Biomonitoring Feasibility Study. Environments. 2025; 12(11):410. https://doi.org/10.3390/environments12110410
Chicago/Turabian StyleSingh, Richa, Holger Martin Koch, Marike Kolossa-Gehring, André Conrad, and Alison Connolly. 2025. "A Social Survey to Capture the Public Awareness and Perception About Chemicals Under Ireland’s Human Biomonitoring Feasibility Study" Environments 12, no. 11: 410. https://doi.org/10.3390/environments12110410
APA StyleSingh, R., Koch, H. M., Kolossa-Gehring, M., Conrad, A., & Connolly, A. (2025). A Social Survey to Capture the Public Awareness and Perception About Chemicals Under Ireland’s Human Biomonitoring Feasibility Study. Environments, 12(11), 410. https://doi.org/10.3390/environments12110410

