Economic and Biological Impact of Eradication Measures for Xylella fastidiosa in Northern Portugal
Abstract
1. Introduction
2. Methodology
2.1. Calculation of Prospecting Costs
2.2. Eradication Phase
- ✓ Destruction of infected plants and others of the same species.
- ✓ Destruction of all plants listed in Annex I and II of the EU Implementing Regulation (EU) 2020/1201.
- ✓ Destruction of all host plants located within a 50 m radius of a confirmed infected plant, regardless of their testing status, in order to comply with eradication rules.
2.3. Price Collection Phase
2.4. Assessing the Effectiveness of Eradication Measures
2.5. Data Collection, Organization, and Treatment Phase
3. Results
3.1. Plant Prospection Costs
3.2. Description of the Uprooted Species
3.3. Uprooting Costs by Species
3.4. Replacement Costs by Species
3.5. Effectiveness of Eradication Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, K.; Mourits, M.; van der Werf, W.; Lansink, A.O. On consumer impact from Xylella fastidiosa subspecies pauca. Ecol. Econ. 2021, 185, 107024. [Google Scholar] [CrossRef]
- Schneider, K.; Van der Werf, W.; Cendoya, M.; Mourits, M.; Navas-Cortés, J.A.; Vicent, A.; Oude Lansink, A. Impact of Xylella fastidiosa subspecies pauca in European olives. Proc. Natl. Acad. Sci. USA 2020, 117, 9250–9259. [Google Scholar] [CrossRef]
- EPPO Bulletin. PM 7/24 (4) Xylella fastidiosa. EPPO Bull. 2019, 49, 175–227. [Google Scholar] [CrossRef]
- Schaad, N.W.; Postnikova, E.; Lacy, G.; Fatmi, M.; Chang, C.J. Xylella fastidiosa subspecies: X. fastidiosa subsp piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst. Appl. Microbiol. 2004, 27, 290–300. [Google Scholar] [CrossRef]
- Nunney, L.; Azad, H.; Stouthamer, R. An Experimental Test of the Host-Plant Range of Nonrecombinant Strains of North American Xylella fastidiosa subsp. multiplex. Phytopathology 2019, 109, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Schaad, N.W.; Postnikova, E.; Lacy, G.; Fatmi, M.; Chang, C.J. Xylella fastidiosa subspecies: X. fastidiosa subsp piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst. Appl. Microbiol. 2004, 27, 763. [Google Scholar] [CrossRef] [PubMed]
- Schuenzel, E.L.; Scally, M.; Stouthamer, R.; Nunney, L. A Multigene Phylogenetic Study of Clonal Diversity and Divergence in North American Strains of the Plant Pathogen Xylella fastidiosa. Appl. Environ. Microbiol. 2005, 71, 3832. [Google Scholar] [CrossRef]
- Nunney, L.; Schuenzel, E.L.; Scally, M.; Bromley, R.E.; Stouthamerc, R. Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Appl. Env. Microbiol. 2014, 80, 3025–3033. [Google Scholar] [CrossRef] [PubMed]
- Frem, M.; Fucilli, V.; Nigro, F.; El Moujabber, M.; Kubaa, R.A.; La Notte, P.; Bozzo, F.; Choueiri, E. The potential direct economic impact and private management costs of an invasive alien species: Xylella fastidiosa on Lebanese wine grapes. NeoBiota 2021, 70, 43–67. [Google Scholar] [CrossRef]
- De Souza, A.A.; Takita, M.A.; Amaral, A.M.D.; Coletta-Filho, D.H.; Machado, M.A. Tree and Forestry Science and Biotechnology Citrus Responses to Xylella Fastidiosa Infection, the Causal Agent of Citrus Variegated Chlorosis. Available online: www.fundecitrus.com (accessed on 25 March 2023).
- Cao, T.; Connell, J.H.; Wilhelm, M.; Kirkpatrick, B.C. Influence of Inoculation Date on the Colonization of Xylella fastidiosa and the Persistence of Almond Leaf Scorch Disease Among Almond Cultivars. Plant Dis. 2011, 95, 158–165. [Google Scholar] [CrossRef]
- Cook, D.C.; Fraser, R.W.; Paini, D.R.; Warden, A.C.; Lonsdale, W.M.; de Barro, P.J. Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against Food Insecurity. PLoS ONE 2011, 6, e26084. [Google Scholar] [CrossRef] [PubMed]
- Zenni, R.D.; Essl, F.; García-Berthou, E.; McDermott, S.M. The economic costs of biological invasions around the world. NeoBiota 2021, 67, 1–9. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; De La Fuente, L.; Koebnik, R.; Lopes, J.R.S.; Parnell, S.; Scherm, H. Addressing the New Global Threat of Xylella fastidiosa. Phytopathology 2019, 109, 172–174. [Google Scholar] [CrossRef]
- Loureiro, T.; Mesquita, M.M.; Dapkevicius, M.d.L.E.; Serra, L.; Martins, Â.; Cortez, I.; Poeta, P. Xylella fastidiosa: A Glimpse of the Portuguese Situation. Microbiol. Res. 2023, 14, 1568–1588. [Google Scholar] [CrossRef]
- Saponari, M.; Loconsole, G.; Cornara, D.; Yokomi, R.K.; De Stradis, A.; Boscia, D.; Bosco, D.; Martelli, G.P.; Krugner, R.; Porcelli, F. Infectivity and transmission of Xylellua fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 2014, 107, 1316–1319. [Google Scholar] [CrossRef]
- Avosani, S.; Tattoni, C.; Mazzoni, V.; Ciolli, M. Occupancy and detection of agricultural threats: The case of Philaenus spumarius, European vector of Xylella fastidiosa. Agric. Ecosyst. Environ. 2022, 324, 107707. [Google Scholar] [CrossRef]
- Pérez-Donoso, A.G.; Lenhof, J.J.; Pinney, K.; Labavitch, J.M. Vessel embolism and tyloses in early stages of Pierce’s disease. Aust. J. Grape Wine Res. 2016, 22, 81–86. [Google Scholar] [CrossRef]
- Ingel, B.; Reyes, C.; Massonnet, M.; Boudreau, B.; Sun, Y.; Sun, Q.; McElrone, A.J.; Cantu, D.; Roper, M.C. Xylella fastidiosa causes transcriptional shifts that precede tylose formation and starch depletion in xylem. Mol Plant Pathol 2021, 22, 175–188. [Google Scholar] [CrossRef]
- De Benedictis, M.; De Caroli, M.; Baccelli, I.; Marchi, G.; Bleve, G.; Gallo, A.; Ranaldi, F.; Falco, V.; Pasquali, V.; Piro, G.; et al. Vessel occlusion in three cultivars of Olea europaea naturally exposed to Xylella fastidiosa in open field. J. Phytopathol. 2017, 165, 589–594. [Google Scholar] [CrossRef]
- Montilon, V.; De Stradis, A.; Saponari, M.; Kubaa, R.A.; Giampetruzzi, A.; D’ATtoma, G.; Saldarelli, P. Xylella fastidiosa subsp. pauca ST53 exploits pit membranes of susceptible olive cultivars to spread systemically in the xylem. Plant Pathol. 2023, 72, 144–153. [Google Scholar] [CrossRef]
- Pereira, P.S. Xylella fastidiosa—A new menace for Portuguese agriculture and forestry. Rev. De Ciências Agrárias 2015, 38, 149–154. [Google Scholar]
- DGAV. Plano de Contingência Xylella Fastidiosa e Seus Vetores; DGAV: Lisboa, Portugal, 2022. [Google Scholar]
- Gibin, D.; Pasinato, L.; Delbianco, A. Update of the Xylella spp. host plant database—Systematic literature search up to 31 December 2022. EFSA J. 2023, 21, e08061. [Google Scholar] [CrossRef]
- Baccari, C.; Antonova, E.; Lindow, S. Biological control of Pierce’s disease of grape by an endophytic bacterium. Phytopathology 2019, 109, 248–256. [Google Scholar] [CrossRef]
- Loureiro, T.; Serra, L.; Martins, Â.; Cortez, I.; Poeta, P. Xylella fastidiosa Dispersion on Vegetal Hosts in Demarcated Zones in the North Region of Portugal. Microbiol. Res. 2024, 15, 1050–1072. [Google Scholar] [CrossRef]
- Cavalieri, V.; Fasanelli, E.; Furnari, G.; Gibin, D.; Linares, A.G.; La Notte, P.; Pasinato, L.; Stancanelli, G. Update of the Xylella spp. host plant database—Systematic literature search up to 31 December 2024. EFSA J. 2025, 23, e9563. [Google Scholar] [CrossRef]
- Paula, A.; De Carvalho, A.C.; De Carvalho Dn, A.C.; de Alimentação , G.; Veterinária, E.; De Almeida, P.; De Carvalho, C. PLANO DE AÇÃO PARA ERRADICAÇÃO DE Xylella Fastidiosa e Controlo dos seus Vetores ZONA DEMARCADA DA ÁREA METROPOLITANA DO PORTO Atualizado em Fevereiro de 2022 Aprovado. 2022. Available online: https://www.dgav.pt/wp-content/uploads/2022/02/Plano-acao-XylellaZDNorte2022-V14fev.pdf (accessed on 18 March 2025).
- Godefroid, M.; Cruaud, A.; Streito, J.-C.; Rasplus, J.-Y.; Rossi, J.-P. Climate change and the potential distribution of Xylella fastidiosa in Europe. BioRxiv 2018, 289876. [Google Scholar] [CrossRef]
- Chen, C.; Bock, C.H.; Brannen, P.M. Novel Primers and Sampling for PCR Detection of Xylella fastidiosa in Peach. Phytopathology 2019, 109, 307–317. [Google Scholar] [CrossRef]
- Román-Écija, M.; Navas-Cortés, J.A.; Velasco-Amo, M.d.P.; Arias-Giraldo, L.F.; Gomez, L.M.; De La Fuente, L.; Landa, B.B. Two Xylella fastidiosa subsp. multiplex strains isolated from almond in Spain differ in plasmid content and virulence traits. Phytopathology 2022, 113, 960–974. [Google Scholar] [CrossRef]
- Vincenzo, C.; Dongiovanni, C.; Tauro, D.; Altamura, G. TRANSMISSION OF THE CODIRO STRAIN OF XYLELLA FASTIDIOSA BY DIFFERENT INSECT SPECIES. In Proceedings of the XI European Congress of Entomology, Naples, FL, USA, 2–6 July 2018. [Google Scholar] [CrossRef]
- Portal do INE. Quadro—Azeite Produzido (hl) por Localização Geográfica (Região Agrária), Tipo de Lagar de Azeite, Grau de Acidez e Sistema de Extração Utilizado; Anua—INE, Inquérito Anual à Produção de Azeite. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0000709&contexto=bd&selTab=tab2&xlang=PT (accessed on 18 March 2024).
- GPP. Newsletter Azeite e Azeitona. 2022. Available online: https://www.gpp.pt/index.php/sima/sima-2018 (accessed on 18 March 2024).
- Scholten, R.; Sanchez, L.M.; Hornero, A.; Navas-Cortes, J.A.; Zarco-Tejada, P.J.; Beck, P.S.A. Monitoring the impact of Xylella on Apulia’s olive orchards using Sentinel-2 satellite data and aerial photographs. In Proceedings of the Second European conference on Xylella fastidiosa, Ajaccio, Corsica, 29–30 October 2019. [Google Scholar]
- Tumber, K.P.; Alston, J.M.; Fuller, K.B. Pierce’s disease costs California $104 million per year. Calif. Agric. 2014, 68, 20–29. [Google Scholar] [CrossRef]
- Sánchez, B.; Cerezo, O.E.M.-S.R.; Hurle, B.J.; Embodas, S.I. Estimating the Economic, Social and Environmental Impacts of EU Priority Pests: A Joint EFSA and JRC Project with a Focus on Xylella Fastidiosa; European Commission: Ispra, Italy, 2019. [Google Scholar]
- Cardone, G.; Michele, D.; Khaled, D.; Michel, F.; Vincenzo, F.; Gaetano, L.; Thaer, Y. Potential socio-economic impact of xylella fastidiosa in the near east and north africa (Nena): Risk of introduction and spread, risk perception and socio-economic effects. New Medit. 2021, 20, 27–51. [Google Scholar] [CrossRef]
- Luvisi, A.; Nicolì, F.; De Bellis, L. Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome. Sustainability 2017, 9, 659. [Google Scholar] [CrossRef]
- Árvores de Fruto, Portal do INE. Quadro—Preço Médio das Árvores de Fruto e Oliveiras Vendidas Diretamente a Agricultores (€) Pelos Viveiros Por Local de Origem (Região Agrária) e Espécie Frutícola; Anual—INE, Inquérito à Venda de Árvores de Fruto e Oliveiras. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0001466&contexto=bd&selTab=tab2&xlang=PT (accessed on 18 March 2025).
- Nielsen, M.; Everett, K.; Marroni, V.; Greer, G.; Bulman, S. Risks to New Zealand’s Primary Industries from Xylella. Available online: https://kvh.org.nz/assets/documents/18345-Simon-Bulman-Risks-to-New-Zealands-primary-industries-from-Xyl_2024-10-16-193022_lyni.pdf (accessed on 13 March 2024).
- IVV // Produção. Available online: https://www.ivv.gov.pt/np4/163.html (accessed on 18 March 2024).
- de Figueiredo, T.; Martins, A.; Hernández, Z.; Carlos, C.; Fonseca, F. Proteção do Solo em Viticultura de Montanha Manual Técnico para a Região do Douro; Associação para o Desenvolvimento da Viticultura Duriense: Vila Real, Portugal, 2015; p. 25. Available online: https://bibliotecadigital.ipb.pt/entities/publication/a7b6eef8-cb7b-4c4a-a152-f5bd3f446bb7 (accessed on 18 March 2024).
- Grebus, M.E.; Henry, J.M. Evaluation of Pruning as a Method to Reduce Damage by Oleander Leaf Scorch. Slosson Rep. 1999, 1-3, 98–99. [Google Scholar]
- Calvo, L.; Santalla, S.; Marcos, E.; Valbuena, L.; Tárrega, R.; Luis, E. Regeneration after wildfire in communities dominated by Pinus pinaster, an obligate seeder, and in others dominated by Quercus pyrenaica, a typical resprouter. For. Ecol. Manag. 2003, 184, 209–223. [Google Scholar] [CrossRef]
- Chalmin, A.; Smith, J.; Palma, J.H.N.; Burgess, P. Integrating Science and Policy to Promote Agroforestry in Practice. In Proceedings of the EURAF EUROPEAN AGROFORESTRY FEDERATION 2nd European Agroforestry Conference, Cottbus, Germany, 4 June 2014. [Google Scholar]
- Gould, A.B.; Lashomb, J.H. Bacterial Leaf Scorch of Shade Trees. APSnet Featur. Artic. 2005, 7, 18. [Google Scholar] [CrossRef]
- Ali, B.M.; van der Werf, W.; Lansink, A.O. Assessment of the environmental impacts of Xylella fastidiosa subsp. pauca in Puglia. Crop Prot. 2021, 142, 105519. [Google Scholar] [CrossRef]
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.; Miret, J.A.J.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S. Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA J. 2019, 17, e05665. [Google Scholar] [CrossRef]
- Semeraro, T.; Gatto, E.; Buccolieri, R.; Vergine, M.; Gao, Z.; De Bellis, L.; Luvisi, A. Changes in Olive Urban Forests Infected by Xylella fastidiosa: Impact on Microclimate and Social Health. Int. J. Environ. Res. Public Health 2019, 16, 2642. [Google Scholar] [CrossRef]
- Sanna, F.; Mori, N.; Santoiemma, G.; D’Ascenzo, D.; Scotillo, M.A.; Marini, L. Ground cover management in olive groves reduces populations of philaenus spumarius (Hemiptera: Aphrophoridae), Vector of Xylella fastidiosa. J. Econ. Entomol. 2021, 114, 1716–1721. [Google Scholar] [CrossRef]
- Berman, M.G.; Jonides, J.; Kaplan, S. The Cognitive Benefits of Interacting with Nature. Psychol. Sci. 2008, 19, 1207–1212. [Google Scholar] [CrossRef]
- White, M.P.; Alcock, I.; Wheeler, B.W.; Depledge, M.H. Would You Be Happier Living in a Greener Urban Area? A Fixed-Effects Analysis of Panel Data. Psychol. Sci. 2013, 24, 920–928. [Google Scholar] [CrossRef]
- Bratman, G.N.; Hamilton, J.P.; Hahn, K.S.; Daily, G.C.; Gross, J.J. Nature experience reduces rumination and subgenual prefrontal cortex activation. Proc. Natl Acad Sci. USA 2015, 112, 8567–8572. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, T.; Gonçalves, B.; Serra, L.; Martins, Â.; Cortez, I.; Poeta, P. Histological analysis of Xylella fastidiosa infection in Quercus pyrenaica in Northern Portugal. AIMS Agric. Food 2024, 9, 607–627. [Google Scholar] [CrossRef]
Xylella fastidiosa subs. multiplex st7 | |
Acacia longifolia | 2 |
Acacia melanoxylon | 1 |
Adenocarpus lainzii | 2 |
Artemisia arborescens | 2 |
Asparagus acutifolius | 1 |
Athyrium filix-femina | 1 |
Berberis thunbergii | 1 |
Calluna vulgaris | 1 |
Cistus inflatus | 3 |
Cistus monspeliensis | 2 |
Cistus salviifolius | 1 |
Cytisus scoparius | 3 |
Dodonaea viscosa | 2 |
Echium plantagineum | 1 |
Elaeagnus × submacrophylla | 1 |
Erica cinerea | 1 |
Erigeron canadensis | 1 |
Erodium moschatum | 1 |
Euryops chrysanthemoides | 2 |
Frangula alnus | 1 |
Gazania rigens | 2 |
Genista tridentata | 1 |
Hebe sp. | 3 |
Helichrysum italicum | 2 |
Hibiscus syriacus | 1 |
Hypericum androsaemum | 1 |
Hypericum perforatum | 1 |
Ilex aquifolium | 1 |
Laurus nobilis | 1 |
Lavandula angustifolia | 2 |
Lavandula dentata | 6 |
Lavandula stoechas | 1 |
Lonicera periclymenum | 1 |
Magnolia grandiflora | 3 |
Magnolia × soulangeana | 1 |
Medicago sativa | 5 |
Metrosideros excelsa | 2 |
Myrtus communis | 2 |
Nerium oleander | 3 |
Olea europaea | 5 |
Pelargonium graveolens | 1 |
Plantago lanceolata | 1 |
Prunus cerasifera | 1 |
Prunus laurocerasus | 1 |
Prunus persica | 1 |
Pteridium aquilinum | 1 |
Quercus robur | 2 |
Xylella fastidiosa subs fastidosa | |
Acacia dealbata | 1 |
Genista tridentata | 1 |
Lavandula stoechas | 1 |
Citrus × aurantium var. paradisi | 1 |
Citrus × limon | 1 |
Species | Price for Prospection (EUR) |
---|---|
Asparagus acutifolius | EUR 7151.1 |
Brassica L. | EUR 9621.5 |
Citrus | EUR 27,303.2 |
Citrus limon | EUR 10,011.2 |
Citrus sinensis | EUR 11,831.4 |
Dodonea viscosa | EUR 11,831.8 |
Eugenia myrtifolia Sims | EUR 6631.0 |
Euryops chrysanthemoides | EUR 12,741.9 |
Ficus carica L. | EUR 11,051.3 |
Hebe | EUR 9751,5 |
Hedera helix L. | EUR 20,933.2 |
Ilex Aquifolium L. | EUR 15,017.3 |
Laurus nobilis L. | EUR 25,028.8 |
Lavandula angustifólia L. | EUR 6891.0 |
Lavandula dentata L. | EUR 20,608.1 |
Lonicera japonica Thunb. | EUR 8451.3 |
Metrosideros excelsea | EUR 19,828.0 |
Nerium oleander L. | EUR 21,583.3 |
Olea europaea L. | EUR 54,736.3 |
Unknown | EUR 480,228.1 |
Pelargonium graveolens | EUR 27,889.2 |
Prunus domestica L. | EUR 9036 |
Prunus dulcis | EUR 10,726.2 |
Prunus laurocerasus | EUR 16,836.9 |
Prunus lusitanica | EUR 6695.8 |
Prunus persica | EUR 7215.8 |
Prunus sp. | EUR 11,246.3 |
Pteridium aquilinum | EUR 10,206.6 |
Quercus robur L. | EUR 10,011.2 |
Quercus sp. | EUR 16,316.9 |
Quercus suber L. | EUR 19,762.3 |
Rosa spp. | EUR 22,818.5 |
Rubus | EUR 10,921.7 |
Strelitzia reginae Aiton | EUR 7801.2 |
Veronica sp. | EUR 6956.1 |
Vitis vinifera | EUR 11,898.3 |
Total | EUR 997,570.2 |
Species | Number of Plants |
---|---|
Asparagus acutifolius | 175 |
Citrus limon | 21 |
Citrus sinensis | 14 |
Dodonea viscosa | 1943 |
Euryops chrysanthemoides | 245 |
Ficus carica | 17 |
Hebe sp. | 2178 |
Hedera helix | 840 |
Ilex aquifolium | 197 |
Laurus nobilis | 402 |
Lavandula angustifólia | 148 |
Lavandula dentata | 1152 |
Lonicera japonica | 496 |
Metrosideros excelsea | 447 |
Nerium oleander | 239 |
Olea europaea | 7024 |
Pelargonium graveolens | 3509 |
Pelargonium sp. | 37 |
Prunus domestica | 21 |
Prunus dulcis | 25 |
Prunus laurocerasus | 154 |
Prunus persica | 50 |
Pteridium aquilinum | 360,324 |
Quercus robur | 3511 |
Quercus suber | 236 |
Rosa spp. | 1106 |
Rubus sp. | 43 |
Spontaneous herbaceous plants | 27,636 |
Strelitzia reginae | 85 |
Veronica sp. | 242 |
Vitis vinifera | 7 |
Total | 412,524 |
Species | Price for Destruction (EUR) |
---|---|
Asparagus acutifolius | 700 |
Citrus limon | 525 |
Citrus sinensis | 350 |
Dodonea viscosa | 7772 |
Euryops chrysanthemoides | 735 |
Ficus carica | 425 |
Hebe sp. | 8712 |
Hedera helix | 1260 |
Ilex aquifolium | 6895 |
Laurus nobilis | 4422 |
Lavandula angustifolia | 592 |
Lavandula dentata | 4608 |
Lonicera japonica | 1984 |
Metrosideros excelsea | 6705 |
Nerium oleander | 2151 |
Olea europaea | 245,840 |
Pelargonium graveolens | 7018 |
Pelargonium sp. | 74 |
Prunus domestica | 588 |
Prunus dulcis | 725 |
Prunus laurocerasus | 1848 |
Prunus persica | 1250 |
Pteridium aquilinum | 540,486 |
Quercus robur | 140,440 |
Quercus suber | 9440 |
Rosa spp. | 4424 |
Rubus sp. | 258 |
Spontaneous herbaceous plants | 41,454 |
Strelitzia reginae | 1530 |
Veronica sp. | 363 |
Vitis vinifera | 77 |
Total | 1,043,651 |
Species | Price for Replacement |
---|---|
Asparagus acutifolius | 2625 |
Citrus limon | 840 |
Citrus sinensis | 560 |
Dodonea viscosa | 21,373 |
Euryops chrysanthemoides | 1715 |
Ficus carica | 680 |
Hebe | 17,424 |
Hedera helix | 2310 |
Ilex Aquifolium | 16,745 |
Laurus nobilis | 15,276 |
Lavandula angustifólia | 1332 |
Lavandula dentata | 10,368 |
Lonicera japonica | 5952 |
Metrosideros excelsea | 20,115 |
Nerium oleander | 6453 |
Olea europaea | 526,800 |
Pelargonium graveolens | 11,404.25 |
Pelargonium sp. | 129.5 |
Prunus domestica | 1260 |
Prunus dulcis | 1375 |
Prunus laurocerasus | 3850 |
Prunus persica | 2750 |
Pteridium aquilinum | 5,765,184 |
Quercus robur | 333,545 |
Quercus suber | 21,240 |
Rosa spp. | 9954 |
Rubus | 645 |
Spontaneous herbaceous plants | 0 |
Strelitzia reginae Aiton | 2720 |
Veronica sp. | 968 |
Vitis vinifera | 98 |
Total | 6,805,690.75 |
2019 | 2020 | 2021 | 2022 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P | S | P | S | P | S | P | S | P | S | |
Porto ZD | 124 | 4977 | 51 | 2914 | 31 | 3115 | 82 | 3287 | 5 | 951 |
Baião ZD | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 45 |
Bougado ZD | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 74 | 1 | 50 |
Alijó Zd | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 52 | 0 | 222 |
Sabrosa ZD | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 110 |
Mirandela ZD | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 149 | 0 | 338 |
MirandelaI II ZD | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 141 | 0 | 716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loureiro, T.; Serra, L.; Pereira, J.E.; Martins, Â.; Cortez, I.; Poeta, P. Economic and Biological Impact of Eradication Measures for Xylella fastidiosa in Northern Portugal. Environments 2025, 12, 372. https://doi.org/10.3390/environments12100372
Loureiro T, Serra L, Pereira JE, Martins Â, Cortez I, Poeta P. Economic and Biological Impact of Eradication Measures for Xylella fastidiosa in Northern Portugal. Environments. 2025; 12(10):372. https://doi.org/10.3390/environments12100372
Chicago/Turabian StyleLoureiro, Talita, Luís Serra, José Eduardo Pereira, Ângela Martins, Isabel Cortez, and Patrícia Poeta. 2025. "Economic and Biological Impact of Eradication Measures for Xylella fastidiosa in Northern Portugal" Environments 12, no. 10: 372. https://doi.org/10.3390/environments12100372
APA StyleLoureiro, T., Serra, L., Pereira, J. E., Martins, Â., Cortez, I., & Poeta, P. (2025). Economic and Biological Impact of Eradication Measures for Xylella fastidiosa in Northern Portugal. Environments, 12(10), 372. https://doi.org/10.3390/environments12100372