Seasonal Variations in Effective Radiation Dose in Residential Buildings of the Akmola Region: Assessing the Impact of Basement Presence and Proximity to Uranium Tailings
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurement of Environmental Gamma Radiation
2.3. Measurement of Indoor Radon Progeny Concentration
2.4. Seasonal Effective Dose
2.5. Statistical Analysis Plan
3. Results
3.1. Gamma Radiation
3.2. Seasonal Distribution of EEVA of Radon Progeny
3.3. Radiation Exposure from Radon Concentration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EEVA | Equivalent Equilibrium Volumetric Activity |
ICRP | International Commission on Radiological Protection |
mSv | Millisievert |
Bq | Becquerel |
F-factor | Equilibrium Factor |
References
- Cinelli, G.; De Cort, M.; Tollefsen, T.; Achatz, M.; Ajtic, J.; Ballabio, C.; Barnet, I.; Bochicchio, F.; Borelli, P.; Bossew, P.; et al. European Atlas of Natural Radiation; Cinelli, G., De Cort, M., Tollefsen, T., Eds.; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Grzywa-Celińska, A.; Krusiński, A.; Mazur, J.; Szewczyk, K.; Kozak, K. Radon—The Element of Risk. The Impact of Radon Exposure on Human Health. Toxics 2020, 8, 120. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer Agents Classified by the IARC Monographs, Volumes 1–138. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 28 May 2025).
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in Homes and Risk of Lung Cancer: Collaborative Analysis of Individual Data from 13 European Case-Control Studies. BMJ 2005, 330, 223. [Google Scholar] [CrossRef]
- Lorenzo-González, M.; Torres-Durán, M.; Barbosa-Lorenzo, R.; Provencio-Pulla, M.; Barros-Dios, J.M.; Ruano-Ravina, A. Radon Exposure: A Major Cause of Lung Cancer. Expert Rev. Respir. Med. 2019, 13, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Hofman, P.; Mani, S.A.; Calin, G.A.; Wistuba, I.I.; Bianchi, F.; Riudavets, M.; Garcia De Herreros, M.; Besse, B.; Mezquita, L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef] [PubMed]
- Lesbek, A.; Omori, Y.; Bakhtin, M.; Kazymbet, P.; Tokonami, S.; Altaeva, N.; Ibrayeva, D.; Kashkinbayev, Y. Systematic Review and Meta-Analysis of Inflammatory Biomarkers in Individuals Exposed to Radon. Biomedicines 2025, 13, 499. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency Risk Assessment Guidance|US EPA. Available online: https://www.epa.gov/risk/risk-assessment-guidance (accessed on 28 May 2025).
- Kunarbekova, M.; Yeszhan, Y.; Zharylkan, S.; Alipuly, M.; Zhantikeyev, U.; Beisebayeva, A.; Kudaibergenov, K.; Rysbekov, K.; Toktarbay, Z.; Azat, S. The State of the Art of the Mining and Metallurgical Industry in Kazakhstan and Future Perspectives: A Systematic Review. ES Mater. Manuf. 2024, 25, 1219. [Google Scholar] [CrossRef]
- Kim, A. Environmental Restoration Plans and Activities in Kazakhstan; International Atomic Energy Agency: Vienna, Austria, 1997; pp. 117–127. [Google Scholar]
- Ibrayeva, D.; Bakhtin, M.; Kashkinbayev, Y.; Kazymbet, P.; Zhumadilov, K.; Altaeva, N.; Aumalikova, M.; Shishkina, E. Radiation Situation in the Territories Affected by Mining Activities in Stepnogorsk Areas, Republic of Kazakhstan: Pilot Study. Radiat. Prot. Dosim. 2020, 189, 517–526. [Google Scholar] [CrossRef]
- Tokonami, S.; Kranrod, C.; Kazymbet, P.; Omori, Y.; Bakhtin, M.; Poltabtim, W.; Musikawan, S.; Pradana, R.; Kashkinbayev, Y.; Zhumadilov, K.; et al. Residential Radon Exposure in Astana and Aqsu, Kazakhstan. J. Radiol. Prot. 2023, 43, 023501. [Google Scholar] [CrossRef]
- Kashkinbayev, Y.; Ibrayeva, D.; Aumalikova, M.; Saifulina, E.; Bizhanova, D.; Mussayeva, E.; Shokabayeva, A.; Kairullova, M.; Lesbek, A.; Kazhiyakhmetova, B.; et al. Radon Concentration Survey in Settlements Located in Uranium Mining Territory in Northern Kazakhstan. Int. J. Environ. Res. Public Health 2025, 22, 723. [Google Scholar] [CrossRef] [PubMed]
- Kashkinbayev, Y.; Kazymbet, P.; Bakhtin, M.; Khazipova, A.; Hoshi, M.; Sakaguchi, A.; Ibrayeva, D. Indoor Radon Survey in Aksu School and Kindergarten Located near Radioactive Waste Storage Facilities and Gold Mines in Northern Kazakhstan (Akmola Region). Atmosphere 2023, 14, 1133. [Google Scholar] [CrossRef]
- Bersimbaev, R.I.; Bulgakova, O. The Health Effects of Radon and Uranium on the Population of Kazakhstan. Genes Environ. 2015, 37, 1–10. [Google Scholar] [CrossRef]
- Kashkinbayev, Y.; Kazhiyakhmetova, B.; Altaeva, N.; Bakhtin, M.; Tarlykov, P.; Saifulina, E.; Aumalikova, M.; Ibrayeva, D.; Bolatov, A. Radon Exposure and Cancer Risk: Assessing Genetic and Protein Markers in Affected Populations. Biology 2025, 14, 506. [Google Scholar] [CrossRef] [PubMed]
- Yushina, Y.; Yegemberdiyeva, K. Assessment of Tourism and Recreational Potential of Climatic Resources of the Akmola Region (Kazakhstan). Int. Multidiscip. Sci. GeoConference SGEM 2019, 19, 69–75. [Google Scholar] [CrossRef]
- Gaskin, J.; Li, Y.E.; Brascoupé, M.; Zhou, L.G. Field Study Measurements Evaluating Radon Concentrations Under Different Ventilation Scenarios. Available online: https://www.aivc.org/resource/field-study-measurements-evaluating-radon-concentrations-under-different-ventilation (accessed on 28 May 2025).
- Kazakh Scientific Research Institute of Oncology and Radiology. Cancer Care Service Statistics for 2023; Kazakh Scientific Research Institute of Oncology and Radiology: Almaty, Kazakhstan, 2024. [Google Scholar]
- Ilbekova, K.; Ibrayeva, D.; Kazymbet, P.; Bakhtin, M.; Dogalbayev, Y. Cancer Incidence in a Population Living Near Radioactive Waste Storage of Uranium Mining in Stepnogorsk Area, Northern Kazakhstan. Asian Pac. J. Cancer Prev. 2024, 25, 2685–2693. [Google Scholar] [CrossRef] [PubMed]
- Espenbetova, M.Z.; Bidakhmetova, A.M.; Krykpayeva, A.S.; Yespenbetova, B.A.; Toleutayeva, D.M.; Serikbayev, A.S.; Tukinova, A.R.; Uasheva, L.B. Epidemiology of Thyroid Cancer in Kazakhstan and in Areas Adjacent to the Former Semipalatinsk Nuclear Test Site in 2013-2023. Asian Pac. J. Cancer Prev. 2025, 26, 691–699. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; International Atomic Energy Agency: Vienna, Austria, 2003. [Google Scholar]
- World Health Organization. WHO Handbook on Indoor Radon. A Public Health Perspective; Zeeb, H., Shannoun, F., Eds.; Swiss Federal Office of Public Health: Liebefeld, Switzerland, 2009; ISBN 9789241547673. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation: Report to the General Assembly, with Scientific Annexes; United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR): New York, NY, USA, 2000; Volume 1. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation. UNSCEAR 2019 Report. R; United Nations Scientific Committee on the Effects of Atomic Radiation: New York, NY, USA, 2020. [Google Scholar]
- Stegnar, P.; Shishkov, I.; Burkitbayev, M.; Tolongutov, B.; Yunusov, M.; Radyuk, R.; Salbu, B. Assessment of the Radiological Impact of Gamma and Radon Dose Rates at Former U Mining Sites in Central Asia. J. Environ. Radioact. 2013, 123, 3–13. [Google Scholar] [CrossRef]
- Brown, S.H.; Chambers, D.B. Uranium Mining and NORM in North America—Some Perspectives on Occupational Radiation Exposure. Health Phys. 2017, 113, 13–22. [Google Scholar] [CrossRef]
- Portnov, V.S.; Yurov, V.M.; Maussymbayeva, A.D.; Kassymov, S.S.; Zholmagambetov, N.R. Assessment of Radiation Risk at the Population from Pits, Dumps and Tailing Dams of Uranium Mines. Int. J. Mining Reclam. Environ. 2017, 31, 205–211. [Google Scholar] [CrossRef]
- Shahrokhi, A.; Adelikhah, M.; Imani, M.; Kovács, T. A Brief Radiological Survey and Associated Occupational Exposure to Radiation in an Open Pit Slate Mine in Kashan, Iran. J. Radioanal. Nucl. Chem. 2021, 329, 141–148. [Google Scholar] [CrossRef]
- Darko, E.O.; Faanu, A.; Awudu, A.R.; Emi-Reynolds, G.; Yeboah, J.; Oppon, O.C.; Akaho, E.H.K. Public Exposure to Hazards Associated with Natural Radioactivity in Open-Pit Mining in Ghana. Radiat. Prot. Dosim. 2010, 138, 45–51. [Google Scholar] [CrossRef]
- Durašević, M.; Kandić, A.; Stefanović, P.; Vukanac, I.; Šešlak, B.; Milošević, Z.; Marković, T. Natural Radioactivity in Lignite Samples from Open Pit Mines “Kolubara”, Serbia—Risk Assessment. Appl. Radiat. Isot. 2014, 87, 73–76. [Google Scholar] [CrossRef]
- Kashkinbayev, Y.; Bakhtin, M.; Kazymbet, P.; Lesbek, A.; Kazhiyakhmetova, B.; Hoshi, M.; Altaeva, N.; Omori, Y.; Tokonami, S.; Sato, H.; et al. Influence of Meteorological Parameters on Indoor Radon Concentration Levels in the Aksu School. Atmosphere 2024, 15, 1067. [Google Scholar] [CrossRef]
- Wang, F.; Ward, I.C. Radon Entry, Migration and Reduction in Houses with Cellars. Build. Environ. 2002, 37, 1153–1165. [Google Scholar] [CrossRef]
- Xie, D.; Liao, M.; Kearfott, K.J. Influence of Environmental Factors on Indoor Radon Concentration Levels in the Basement and Ground Floor of a Building—A Case Study. Radiat. Meas. 2015, 82, 52–58. [Google Scholar] [CrossRef]
- Rey, J.F.; Goyette, S.; Gandolla, M.; Palacios, M.; Barazza, F.; Pernot, J.G. Long-Term Impacts of Weather Conditions on Indoor Radon Concentration Measurements in Switzerland. Atmosphere 2022, 13, 92. [Google Scholar] [CrossRef]
- Fujiyoshi, R.; Sakamoto, K.; Imanishi, T.; Sumiyoshi, T.; Sawamura, S.; Vaupotic, J.; Kobal, I. Meteorological Parameters Contributing to Variability in 222Rn Activity Concentrations in Soil Gas at a Site in Sapporo, Japan. Sci. Total Environ. 2006, 370, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Giagias, V.; Burghele, D.; Cosma, C. Seasonal Variation of Indoor Radon in Dwellings from Athens, Greece. Rom. J. Phys. 2015, 60, 1581–1588. [Google Scholar]
- Muntean, L.E.; Cosma, C.; Cucos, A.; Dicu, T.; Moldovan, D.V. Assessment of Annual and Seasonal Variation of Indoor Radon Levels in Dwelling Houses from Alba County, Romania. Rom. J. Phys. 2014, 59, 163–171. [Google Scholar]
- Ashok, G.V.; Nagaiah, N.; Shiva Prasad, N.G. Indoor Radon Concentration and Its Possible Dependence on Ventilation Rate and Flooring Type. Radiat. Prot. Dosim. 2012, 148, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Yarmoshenko, I.; Malinovsky, G.; Vasilyev, A.; Onishchenko, A. Seasonal Variation of Radon Concentrations in Russian Residential High-Rise Buildings. Atmosphere 2021, 12, 930. [Google Scholar] [CrossRef]
- Barros, N.G.; Steck, D.J.; Field, R.W. A Comparison of Winter Short-Term and Annual Average Radon Measurements in Basements of a Radon-Prone Region and Evaluation of Further Radon Testing Indicators. Health Phys. 2014, 106, 535–544. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization WHO Calls for Tighter Standards on Indoor Radon. Available online: https://www.who.int/news/item/21-09-2009-who-calls-for-tighter-standards-on-indoor-radon (accessed on 23 June 2025).
- Van Deventer, E. WHO’s Perspective on Radon: A Matter of Public Health. In Proceedings of the Technical Meeting on the Implications of the New Dose Conversion Factors for Radon; World Health Organization, Vienna, Austria, 1 October 2019. [Google Scholar]
- Tu, K.W.; Knutson, E.O.; George, A.C. Indoor Radon Progeny Aerosol Size Measurements in Urban, Suburban, and Rural Regions. Aerosol Sci. Technol. 1991, 15, 170–178. [Google Scholar] [CrossRef]
- Vaupotič, J. Radon and Its Short-Lived Products in Indoor Air: Present Status and Perspectives. Sustainability 2024, 16, 2424. [Google Scholar] [CrossRef]
- Janavayev, D.J.; Kashkinbayev, Y.T.; Ilbekova, K.B.; Saifulina, Y.A.; Bakhtin, M.M.; Sharipov, M.K.; Kazymbet, P.K. Health Status of the Population Living in the Zone of Influence of Radioactive Waste Repositories. Electron. J. Gen. Med. 2019, 16, em176. [Google Scholar] [CrossRef]
- Larsson, L.S. Risk-Reduction Strategies to Expand Radon Care Planning with Vulnerable Groups. Public Health Nurs. 2014, 31, 526–536. [Google Scholar] [CrossRef]
- Hu, J.; Yang, G.; Kranrod, C.; Iwaoka, K.; Hosoda, M.; Tokonami, S. An Improved Passive CR-39-Based Direct 222Rn/220Rn Progeny Detector. Int. J. Environ. Res. Public Health 2020, 17, 8569. [Google Scholar] [CrossRef] [PubMed]
Settlement | Distance from the Uranium Tailing Dump, km | Mean ± SD, µSv/h | Range (Min–Max), µSv/h |
---|---|---|---|
Aqsu | 3.5 | 0.16 ± 0.07 | 0.08–0.55 |
Zavodskoy | 3.2 | 0.14 ± 0.04 | 0.07–0.22 |
Radon Progeny Concentration Range | The Number of Dwellings (Fraction in %) | |||||||
---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | |||||
No cellar | ||||||||
Aqsu | Zavodskoy | Aqsu | Zavodskoy | Aqsu | Zavodskoy | Aqsu | Zavodskoy | |
below 120 Bq/m3 | 14 (47%) | 14 (82%) | 16 (53%) | 14 (82%) | 21 (70%) | 17 (100%) | 20 (67%) | 15 (88%) |
120 and above Bq/m3 | 16 (53%) | 3 (18%) | 14 (47%) | 3 (18%) | 9 (30%) | 0 (0%) | 10 (33%) | 2 (12%) |
With cellar | ||||||||
Aqsu | Aqsu | Aqsu | Aqsu | |||||
Below 120 Bq/m3 with cellar | 6 (40%) | 6 (40%) | 12 (80%) | 7 (47%) | ||||
120 and above Bq/m3 with cellar | 9 (60%) | 9 (60%) | 3 (20%) | 8 (53%) |
Seasons | Aqsu | Zavodskoy | ||
---|---|---|---|---|
Median IQR, Bq/m3 | Min–Max, Bq/m3 | Median IQR, Bq/m3 | Min–Max, Bq/m3 | |
No cellar | ||||
Winter | 130 (61.5–422) | 23–2397 | 222 (87–270) | 13–231 |
Spring | 96 (48–258) | 20–817 | 140 (40.5–349) | 5–255 |
Summer | 63.5 (29.5–184) | 11–526 | 22 (12–96) | 2–87 |
Autumn | 86.5 (48.2–196) | 19–763 | 155 (76.5–222) | 8–210 |
With Cellar | ||||
Winter | 107 (47.6–328) | 54–4837 | - | - |
Spring | 22 (6.75–32.25) | 13–5327 | - | - |
Summer | 7.5 (5–12.2) | 2–341 | - | - |
Autumn | 12.5 (10.75–27.75) | 3–1817 | - | - |
Cellar Type | Comparison | Autumn p-Values | Spring p-Values | Summer p-Values | |
---|---|---|---|---|---|
Aqsu | No cellar | Spring | 1 | - | - |
SUMMER | 0.037 | 0.0045 | - | ||
Winter | 0.0004 | 0.012 | 0.00006 | ||
With cellar | Spring | 1 | - | - | |
Summer | 0.002 | 0.01 | - | ||
Winter | 0.332 | 1 | 0.01 | ||
Zavodskoy | No cellar | Spring | 1 | - | - |
Summer | 0.187 | 0.349 | - | ||
Winter | 0.039 | 0.019 | 0.015 |
Seasons | |||
---|---|---|---|
Aqsu | Zavodskoy | ||
No Cellar | With Cellar | ||
winter | 5.03 | 7.81 | 1.07 |
spring | 3.48 | 8.82 | 0.89 |
summer | 1.80 | 1.22 | 0.32 |
autumn | 3.55 | 5.66 | 0.77 |
annual | 13.86 | 23.51 | 3.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesbek, A.; Omori, Y.; Bakhtin, M.; Ibrayeva, D.; Tokonami, S.; Kazhiyakhmetova, B.; Aumalikova, M.; Saifulina, E.; Mussaeva, E.; Altaeva, N.; et al. Seasonal Variations in Effective Radiation Dose in Residential Buildings of the Akmola Region: Assessing the Impact of Basement Presence and Proximity to Uranium Tailings. Environments 2025, 12, 357. https://doi.org/10.3390/environments12100357
Lesbek A, Omori Y, Bakhtin M, Ibrayeva D, Tokonami S, Kazhiyakhmetova B, Aumalikova M, Saifulina E, Mussaeva E, Altaeva N, et al. Seasonal Variations in Effective Radiation Dose in Residential Buildings of the Akmola Region: Assessing the Impact of Basement Presence and Proximity to Uranium Tailings. Environments. 2025; 12(10):357. https://doi.org/10.3390/environments12100357
Chicago/Turabian StyleLesbek, Anel, Yasutaka Omori, Meirat Bakhtin, Danara Ibrayeva, Shinji Tokonami, Baglan Kazhiyakhmetova, Moldir Aumalikova, Elena Saifulina, Elvira Mussaeva, Nursulu Altaeva, and et al. 2025. "Seasonal Variations in Effective Radiation Dose in Residential Buildings of the Akmola Region: Assessing the Impact of Basement Presence and Proximity to Uranium Tailings" Environments 12, no. 10: 357. https://doi.org/10.3390/environments12100357
APA StyleLesbek, A., Omori, Y., Bakhtin, M., Ibrayeva, D., Tokonami, S., Kazhiyakhmetova, B., Aumalikova, M., Saifulina, E., Mussaeva, E., Altaeva, N., Nygymanova, A., & Kashkinbayev, Y. (2025). Seasonal Variations in Effective Radiation Dose in Residential Buildings of the Akmola Region: Assessing the Impact of Basement Presence and Proximity to Uranium Tailings. Environments, 12(10), 357. https://doi.org/10.3390/environments12100357