Effect of Silver Nanoparticles (AgNPs) on Aquatic and Wetland Plants
Abstract
:1. Introduction
2. AgNP Absorption in Leaves
2.1. Foliar Absorption Routes
2.2. Factors Affecting Leaf Absorption
2.2.1. Effect of Size and Chemical Composition
2.2.2. Effect of Plant Species
3. Absorption of AgNPs in Roots
3.1. Root Uptake Pathways
3.2. Factors Affecting Root Uptake
3.2.1. Effect of Size, Chemical Composition
3.2.2. Effect of Shape and Charge
3.2.3. Effect of Plant Species
4. Translocation and Accumulation of AgNPs
5. Phytotoxicity
Species | Characteristics of the AgNPs | Dose of AgNPs Supplied | Growth, Phenotypic, and Nutrient Effects | Physiological and Biochemical Effects | Ag Concentration in Plant Tissue | References |
---|---|---|---|---|---|---|
Spirodela polyrhiza | 7.8 nm | 0, 0.5, 1, 5 and 10 mg L−1 | • Abscission and disintegration of S. polyrhiza colonies observed from 1 mg L−1, while reduction in dry and fresh weight and decrease in nitrate (N-NO3−) content were observed from 5 mg L−1 | • From 5 mg L−1, decrease in chl a content, chl a/b ratio, the maximum quantum yield of PSII, and soluble carbohydrate and increase in proline content were observed | At dose of 10 mg L−1, 2.81 mg Ag g−1 dry weight | [85] |
GA-AgNPs | ||||||
spherical | ||||||
Spirodela polyrhiza | 20 to 22.9 nm | 0 and 10 mg L−1 | • Increased SOD and POD activities • Chloroplasts accumulated starch and reduced intergranular thylakoids • Increased in ROS and GSH contents | [69] | ||
PVP-AgNPs | ||||||
spherical | ||||||
Lemna gibba | 20 to 50 nm (spherical) agglomerates (240 nm) | 0, 0.01, 0.1, 1 and 10 mg L−1 | • From 0.01 mg L−1, reduction in the number of fronds and decrease in growth rate | • From 0.01 mg L−1, reduction in cell viability • From 1 mg L−1, increase in ROS | At dose of 10 mg L−1, 17.5 μg Ag g−1 dry weight | [73] |
Z potential (−34.75 mV) | ||||||
Spirodela punctuta | 40–60 nm | 0, 0.01, 0.1, 1, 1000 mg L−1 | • Increased free radicals (ROS and RNS) from 0.1 to 1 mg L−1 after 4 days • No plants survived exposure to 1000 mg L−1 over 14 days • At the highest dose, a decrease in total antioxidant capacity | [74] | ||
spherical | ||||||
Wolffia globosa | 10 nm, hydrodynamic diameter (18.5 nm) | 0, 1, 2, 5, 8 and 10 mg L−1 Post- and pre-illuminated conditions | • At dose 10 mg L−1, decrease in photosynthetic pigments and photochemical efficiency in the post-illuminated condition • Increase in the accumulation of carbohydrates from 1 to 10 mg L−1 (23.1–86.8%) • Up 30% of reduction in the Hill reaction at dose 10 mg L−1 in post-illuminated conditions • Increase in MDA and the antioxidant enzyme SOD under pre-illuminated conditions at 10 mg L−1 • Maximal losses in protein content with exposition to 10 mg L−1 in the post- and pre-illuminated conditions | [78] | ||
Z potential (−21.1 mV) | ||||||
spherical | ||||||
Lemna minor | PVP-AgNPs (91.81 nm) Ct-AgNPs (80.78 nm) | PVP-AgNPs, Ct-AgNPs (0, 0.05, 0.13, 0.32, 0.80 and 2 mg L−1) | • Decrease in growth rate from 0.80 mg PVP-AgNPs L−1 and at 2 mg Ct-AgNPs L−1 • Reduction in the number of fronds per colony with 0.80 mg PVP-AgNPs L−1 after 14 days • Leaf chlorosis with 2 mg Ct-AgNPs L−1 | • Increase in GPX from 0.05 mg L−1 with both sources • Rise in GST with 0.80 mg Ct-AgNPs L−1 | [53] | |
quasi spherical and small-sized agglomerates | ||||||
Egeria densa and Juncus effusus | P- and C-Ag(0)NPs: 3.9 nm, pH (8.3), Z potential (−46.1 mV), polydispersity (0.344) C-Ag2S-NPs: 24.2 nm pH (6.9), Z potential (−51.88 mV), polydispersity (0.159) | Pulse treatment [P−Ag(0)–NPs]: 450 mg Ag in 609 L Chronic treatment [C−Ag (0)–NPs]: 450 mg Ag year−1 | • Increase in MDA and POD after 10 days in both species with P−Ag (0) –NPs • After 1 day increase in SOD with C−Ag2S−NPs in both species | E. densa From 2.38 to 19.50 μg g−1 in the C−Ag(0)−NPs treatment From 2.01 to 6.27 μg g−1 in the C−Ag2S−NPs treatment. From 1.20 to 17.75 μg g−1 in the P−Ag(0)−NPs treatment In J. effussus, all treatments were at or below 2 μg g−1 | [55] | |
sulfidized AgNPs 24.2 nm, pH (6.9), Z potential (−51.8 mV), polydispersity (0.159) | Weathered AgNP chronic treatment (sulfidized AgNPs) [C−Ag2S−NPs]: 450 mg Ag year−1 | |||||
Spirodela polyrhiza | 20 nm | 0, 0.5, 1, 5 and 10 mg L−1 | • Decrease in chlorophyll a, chlorophyll b, and carotenoids concentrations from 5 mg L−1 • Reduction in the maximum quantum yield of PSII from 5 mg L−1 • Inhibition of Rubisco activity from 0.5 mg L−1 | [87] | ||
PVP-AgNPs | ||||||
Elodea canadensis, Najas guadelupensis, Vallisneria spiralis, Riccia fluitans, Limnobium laevigatum, Pistia stratiotes and Salvinia natans | mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag+, Ag2O) (<100 nm) | Mn: 0.75 mg L−1; Cu: 0.37 mg L−1; Zn: 0.44 mg L−1; and Ag+ + Ag2O: 0.75 mg L−1 7 days | • Decrease in chlorophyll a and b and carotenoid concentration in submerged plants N. guadelupensis, E. canadensis, V. spiralis, and R. fluitans | [86] | ||
Lemna gibba | 50 nm and agglomerates | 0, 0.01, 0.1 and 1 mg L−1 | • Decrease in biomass accumulation from 0.1 mg L−1 after 4 days | • After 4 days, decreased chlorophyll content from 0.1 mg L−1 • After 7 days, reduction in the electron transport per reaction centers (ET/RC) from 0.01 mg L−1 and reduction in the maximum quantum yield of PSII with 1 mg L−1 | [71] | |
spherical | ||||||
Lemna minor | 29.2 (NP1) and 93.52 (NP2) nm | 0, 0.005, 0.01, 0.02, 0.04, 0.08 and 0.16 mg L−1 | • Reduction in the number of fronds after 7 days with 0.16 mg L−1 of both sizes. After 14 days, reduction in number of fronds with 0.02 (NP1) and 0.08 (NP2) mg L−1 • After 6 days, decrease in growth rate with 0.16 mg L−1 of both sizes | [95] | ||
Ct-AgNPs | ||||||
Lemna pausicostata | 50 nm | 0, 0.1, 1, 2, 10, 20, 40, 50, 100 and 200 mg L−1 | • Growth inhibition and decrease in growth rate from 0.1 mg L−1 | [96] | ||
Lemna minor | 5–20 nm | 0.008, 0.016, 0.032 and 0.128 mg L−1 | • Decrease in frond growth between 0.008 and 0.032 mg L−1 is greater than the decrease between 0.032 and 0.128 mg L−1 | Up to 18.73 mg Ag g−1 dry weight | [89] | |
spherical | ||||||
Azolla filiculoides | 26.74 nm | 0, 0.1, 1, 5, 10 and 100 mg L−1 | • Decrease in the growth rate and accumulation of dry biomass from 1 mg L−1 • Increase in the doubling rate from 1 mg L−1 • Darkening of the roots, mainly young and growing roots with all AgNP treatments | With 10 mg L−1, 13.43 mg Ag g −1 dry weight | [64] | |
quasi spherical | ||||||
Salvinia auriculata | 22.32 nm | 0, 1. 5 and 10 mg L−1 | • Decreased biomass from 1 mg L−1 • Interference with P uptake from 1 mg L−1 | After 64 days with 10 mg L−1, 16.03 µg Ag g−1 dry weight of leaves | [72] | |
spherical | ||||||
Pistia stratiotes | SB-AgNPs | 0, 0.02 and 2.0 mg L−1 | • After 48 h with 2 mg L−1, plants were unhealthy with all leaves completely wilting, along with root loss and darkening | At 2 mg L−1, 127 μg kg−1 root and 2.71 μg kg−1 leaves | [88] | |
Londoltia punctata | Ag0-NP 6.3 nm Z potential (−11.5 mV) spherical | 10 mg L−1 | Up to 389 µg Ag g−1 dry weight in Ag0-NPs and 372 µg Ag g−1 dry weight in Ag2S-NPs | [67] | ||
Ag2S-NP 7.8 nm Z potential (−10.2 mV) spherical |
6. Phytoremediation of Water Bodies Affected by AgNPs
Species | Characteristic of the AgNPs | Exposure Concentration/ Exposure Duration | Internalization | Remediation Process | Concentration/ Removal | Refe-rences |
---|---|---|---|---|---|---|
Spirodela polyrhiza | 7.8 nm | 10 mg L−1 72 h 10% Hoagland solution | Yes | Phytostabilization and phytoextraction | 2.81 mg g−1 dry biomass weight | [85] |
GA-AgNPS | ||||||
Lemna gibba | 20 to 50 nm | 0, 0.01, 0.1, 1 and 10 mg L−1 7 days Inorganic growth medium | Yes | Phytoextraction | Ag concentrations at 0.01, 0.1, 1.0, and 10 mg L−1: 7.72 × 10−3, 9.5 × 10−3, 11.3 × 10−3, and 17.5 × 10−3 mg mg−1 dry biomass weight, respectively | [73] |
Lemna minor | 5 to 20 nm | 0.128 mg L−1 | Yes | Phytoextraction | Up to 18.73 mg Ag g−1 dry biomass weight | [89] |
Pistia stratiotes | 15–20 nm | 0.02, 0.2, 2 mg L−1 48 h DDIW | Yes | Phytoextraction; accumulation within roots and leaves | At 0.02 mg L−1: 10.4 μg kg−1 in roots and 0.11 μg kg−1 in leaves. At 0.20 mg L−1: 45.2 μg kg−1 in roots and 1.08 μg kg−1 in leaves. At 2.00 mg L−1: 127 μg kg−1 in roots and 2.71 μg kg−1 in leaves. Plant reduced the contamination level below the WHO MCL by 2 h at 0.2 mg L−1 | [88] |
Elodea canadensis, Najas guadelupensis, Vallisneria spiralis, Riccia fluitans, Limnobium laevigatum, Pistia stratiotes and Salvinia natans | Mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag+ + Ag2O; <100 nm) | Mn: 0.75 mg L−1; Cu: 0.37 mg L−1; Zn: 0.44 mg L−1; and Ag + +Ag2O: −0.75 mg L−1 | - | Phytoextraction | Removal of 76% in P. stratiotes and S. natans; 71% in L. laevigatum and E. canadensis; 65% in R. fluitans; and 59% in V. spiralis | [86] |
Pistia stratiotes | AgNPs | 0.5, 1, 2 and 3 mg L−1 5 days Water | - | Phytoextraction | Removal of 69.88% and 55.61% at 0.5 and 3.0 mg L−1, respectively | [108] |
Pistia stratiotes and Eichhornia crassipes | AgNPs | 0.007–0.010 mg L−1 96 h Nutrient solution | Yes | Phytoextraction | Concentrations: 13.48 mg kg−1 total dry mass (roots and leaves) of P. stratiotes; 9.45 mg kg−1 total dry mass (roots and leaves) of E. crassipes. Removal of 61% in both species | [104] |
Phragmites australis | PVP-AgNPs (<100 nm) | 10 mg Ag L−1 (2 mg AgNPs) 7 days 50 g of rhizosediment mixed with 200 mL of estuarine water | Yes | Phytofiltration and phytostabilization; accumulation in roots and rhizome | Concentrations close to 500 μg g−1 in roots and <25 μg g−1 in rhizome | [105] |
Egeria densa and Juncus effusus | P-Ag(0)-NPs: (3.9 nm) C-Ag(0)-NPs: (3.9 nm); C-Ag2S-NPs: (24.2 nm) | 450 mg Ag year−1 Freshwater emergent wetland mesocosms | Yes | Phytoextraction | C-Ag(0)-NPs: 2.38 to 19.50 μg g−1 in the whole plant; C-Ag2S-NPs: 2.01 to 6.27 μg g−1 in the whole plant; P-Ag(0)-NPs: 1.20 to 17.75 μg g−1 in the whole plant | [55] |
Iris pseudacorus | AgNPs 10–50 nm, average hydrodynamic diameter 58.1 nm, polydispersity index 0.280 | 0.05 and 0.2 mg L−1 450 days Vertical flow constructed wetland | Yes | Phytoextraction | At 0.05 mg L−1: concentrations of 0.75 μg g−1 in stems and leaves; and 4.42 μg g−1 in roots At 2 mg L−1: concentrations of 1.31 μg g−1 in stems and leaves; and 4.91 μg g−1 in roots | [109] |
Salvinia auriculata | 22.32 nm | 1, 5 and 10 mg L−1 64 days Nutrient medium | - | Phytoextraction | Ag in dry plant [Ag in dry root (μg) + Ag in dry leaves (μg)/(dry root (g) + dry leaves(g)]: up to 15.85, 37.11 and 58.05 µg Ag g−1 for 1, 5 and 10 mg L−1, respectively | [72] |
Azolla filiculoides | 26.74 nm | 0.1, 1, 5 and 10 mg L−1 8 days Yoshida nutrient solution | - | Phytoextraction | Up to 0.43, 3.17, 5.52, and 13.43 mg Ag g −1 dry biomass weight for 0.1, 1, 5 and 10 mg L−1, respectively | [64] |
7. Conclusions and Future Trends
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahoor, M.; Nazir, N.; Iftikhar, M.; Naz, S.; Zekker, I.; Burlakovs, J.; Uddin, F.; Kamran, A.W.; Kallistova, A.; Pimenov, N.; et al. A review on silver nanoparticles: Classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment. Water 2021, 13, 2216. [Google Scholar] [CrossRef]
- Thomas, S.; Thomas, M.S.; Pothen, L.A. Nanotechnology for Environmental Remediation; Wiley-VCH: Weinheim, Germany, 2022; pp. 1–446. [Google Scholar]
- Geeta, A.; Nikita, S.; Mankamna, R.; Surendra, N. Antimicrobial silver nanoparticles: Future of nanomaterials. In Microbial Nanobionics, Nanotechnology in the Life Sciences; Prasad, R., Ed.; Springer: Cham, Switzerland, 2019; Volume 2, pp. 89–119. [Google Scholar]
- Saldivar, L. Regulación blanda, normas técnicas y armonización regulatoria internacional, para la nanotecnología. Mundo Nano 2019, 13, 1e–27e. [Google Scholar]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Harrison, D.M.; Briffa, S.M.; Mazzonello, A.; Valsami-Jones, E. A review of the aquatic environmental transformations of engineered nanomaterials. Nanomaterials 2023, 13, 2098. [Google Scholar] [CrossRef] [PubMed]
- Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lead, J.R. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int. 2011, 37, 517–531. [Google Scholar] [CrossRef]
- Turan, N.B.; Erkan, H.S.; Engin, G.O.; Bilgili, M.S. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Saf. Environ. Prot. 2019, 130, 238–249. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Salmiati, S.; Hadibarata, T.; Kueh, A.B.H.; Salim, M.R.; Zaini, M.A.A. Silver nanoparticles in the water environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective. Sci. Rep. 2018, 8, 986. [Google Scholar] [CrossRef] [PubMed]
- Botelho, M.T.; Passos, M.J.A.R.C.; Trevizani, T.H.; Figueira, R.C.L.; Umbuzeiro, G.A.; Gomes, V. Genotoxic effects of silver nanoparticles on a tropical marine amphipod via feeding exposure. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2022, 881, 503527. [Google Scholar] [CrossRef] [PubMed]
- Azadikhah, D.; Yalsuyi, A.M.; Saha, S.; Saha, N.C.; Faggio, C. Biochemical and pathophysiological responses in Capoeta capoeta under lethal and sub-lethal exposures of silver nanoparticles. Water 2023, 15, 585. [Google Scholar] [CrossRef]
- Glavaš Ljubimir, K.; Domijan, A.M.; Radić Brkanac, S. Phytotoxic Action of silver nanoparticles on Lemna minor: Multi-parameter analysis of different physiological processes. Plants 2023, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Rudi, L.; Cepoi, L.; Chiriac, T.; Djur, S.; Valuta, A.; Miscu, V. Effects of silver nanoparticles on the red microalga Porphyridium purpureum CNMN-AR-02, cultivated on two nutrient media. Mar. Drugs 2024, 22, 208. [Google Scholar] [CrossRef]
- Xiong, Z.; Cui, K.; Chen, C.; Guo, Z.; Chen, X.; Chen, Y. The effects of silver particle size on bacterioplankton community and potential function in aquatic environment. J. Environ. Chem. Eng. 2024, 12, 112012. [Google Scholar] [CrossRef]
- Cao, C.; Huang, J.; Guo, Y.; Yan, C.N.; Xiao, J.; Ma, Y.X.; Liu, J.L.; Guan, W.Z. Long-term effects of environmentally relevant concentration of Ag nanoparticles on the pollutant removal and spatial distribution of silver in constructed wetlands with Cyperus alternifolius and Arundo donax. Environ. Pollut. 2019, 252, 931–940. [Google Scholar] [CrossRef]
- Rivera-Intriago, L.M.; Rodríguez-Delgado, I.; Castillo-Herrera, S.E.; Romero-Bonilla, H.I.; Conde-Solano, J.L. Eficiencia fitorremediadora de Azolla spp. bajo diferentes concentraciones de plomo en agua. Rev. Cient. Agroecosistemas 2021, 9, 145–151. [Google Scholar]
- Doležal, J.; Kučerová, A.; Jandová, V.; Klimeš, A.; Říha, P.; Adamec, L.; Schweingruber, F.H. Anatomical adaptations in aquatic and wetland dicot plants: Disentangling the environmental, morphological and evolutionary signals. Environ. Exp. Bot. 2021, 187, 104495. [Google Scholar] [CrossRef]
- Björn, L.O.; Middleton, B.A.; Germ, M.; Gaberščik, A. Ventilation systems in wetland plant species. Diversity 2022, 14, 517. [Google Scholar] [CrossRef]
- Rawat, V.; Singh, A.K. Environmental and ecological importance of Indian aquatic macrophytes. In Aquatic Macrophytes: Ecology, Functions and Services; Kumar, S., Bauddh, K., Singh, R., Kumar, N., Kumar, R., Eds.; Springer: Singapore, 2023; pp. 71–83. [Google Scholar]
- Kumar, S.; Singh, R.; Kumar, D.; Bauddh, K.; Kumar, N.; Kumar, R. An introduction to the functions and ecosystem services associated with aquatic macrophytes. In Aquatic Macrophytes: Ecology, Functions and Services; Kumar, S., Bauddh, K., Singh, R., Kumar, N., Kumar, R., Eds.; Springer: Singapore, 2023; pp. 1–20. [Google Scholar]
- Bharti, S.K.; Kumar, N.; More, N.S. Translocations of heavy metals in aquatic macrophytes naturally grown in the riverine ecosystem. In Aquatic Macrophytes: Ecology, Functions and Services; Kumar, S., Bauddh, K., Singh, R., Kumar, N., Kumar, R., Eds.; Springer: Singapore, 2023; pp. 221–235. [Google Scholar]
- Corami, A. Nanotechnologies and phytoremediation: Pros and Cons. In Phytoremediation Management of Environmental Contaminants; Newman, L., Ansari, A.A., Gill, S.S., Naeem, M., Gill, R., Eds.; Springer: Cham, Switzerland, 2023; Volume 7, pp. 403–426. [Google Scholar]
- Corporación Autónoma Regional de Cundinamarca–CAR. Plan de Prevención, Control y Manejo de la Especie Azolla filiculoides L. (Helecho de agua) en la Jurisdicción de la Corporación Autónoma Regional; de Cundinamarca CAR: Bogotá, Colombia, 2022; 87p.
- Mustafa, H.M.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Jacob, D.L.; Borchardt, J.D.; Navaratnam, L.; Otte, M.L.; Bezbaruah, A.N. Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int. J. Phytoremediat. 2013, 15, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Biba, R.; Košpić, K.; Komazec, B.; Markulin, D.; Cvjetko, P.; Pavoković, D.; Štefanić, P.P.; Tkalec, M.; Balen, B. Surface coating-modulated phytotoxic responses of silver nanoparticles in plants and freshwater green algae. Nanomaterials 2022, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Y.; Wang, X.; Xia, X.; Shang, E.; Ali, J. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles. Environ. Pollut. 2021, 279, 116926. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, X.; Hoang, S.A.; Bolan, N.S.; Kirkham, M.B.; Liu, J.; Xia, X.; Li, Y. Silver nanoparticles in aquatic sediments: Occurrence, chemical transformations, toxicity, and analytical methods. J. Hazard. Mater. 2021, 418, 126368. [Google Scholar] [CrossRef]
- Kale, S.K.; Parishwad, G.V.; Husainy, A.S.N.; Patil, A.S. Emerging agriculture applications of silver nanoparticles. ES Food Agrofor. 2021, 3, 17–22. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Wang, P.; Yin, H. Nanoparticles in plants: Uptake, transport and physiological activity in leaf and root. Materials 2023, 16, 3097. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Van Le, Q.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2021, 403, 123658. [Google Scholar] [CrossRef] [PubMed]
- Philippe, G.; De Bellis, D.; Rose, J.K.C.; Nawrath, C. Trafficking processes and secretion pathways underlying the formation of plant cuticles. Front. Plant Sci. 2022, 12, 786874. [Google Scholar] [CrossRef]
- Tredenick, E.C.; Farquhar, G.D. Dynamics of moisture diffusion and adsorption in plant cuticles including the role of cellulose. Nat. Commun. 2021, 12, 5042. [Google Scholar] [CrossRef]
- Glenn, J.B.; White, S.A.; Klaine, S.J. Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ. Toxicol. Chem. 2012, 31, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Lin, D. The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: Adsorption and internalization. Environ. Sci. Process. Impacts 2013, 15, 145–160. [Google Scholar] [CrossRef]
- Milewska-Hendel, A.; Zubko, M.; Stróż, D.; Kurczyńska, E. Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. Int. J. Mol. Sci. 2019, 20, 1650. [Google Scholar] [CrossRef] [PubMed]
- Holland, C.; Ryden, P.; Edwards, C.H.; Grundy, M.M.L. Plant cell walls: Impact on nutrient bioaccessibility and digestibility. Foods 2020, 9, 201. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Tripathi, A.; Shweta; Singh, S.; Singh, Y.; Vishwakarma, K.; Yadav, G.; Sharma, S.; Singh, V.K.; Mishra, R.K.; et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017, 8, 7. [Google Scholar] [CrossRef]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef]
- Huang, D.; Dang, F.; Huang, Y.; Chen, N.; Zhou, D. Uptake, translocation, and transformation of silver nanoparticles in plants. Environ. Sci. Nano 2022, 9, 12–39. [Google Scholar] [CrossRef]
- Yan, N.; Wang, W.X. Novel imaging of silver nanoparticle uptake by a unicellular alga and trophic transfer to Daphnia magna. Environ. Sci. Technol. 2021, 55, 5143–5151. [Google Scholar] [CrossRef]
- Li, H.; Wang, M.; Li, Y.; Mo, F.; Zhu, L.; Li, Z.; Xu, J.; Kong, Y.; Deng, N.; Chai, R. Adsorption characteristics of silver atoms and silver ions on silica surface in silver nanoparticle hydrosol system. Appl. Surf. Sci. 2021, 562, 150168. [Google Scholar] [CrossRef]
- Ramzan, U.; Majeed, W.; Hussain, A.A.; Qurashi, F.; Qamar, S.U.R.; Naeem, M.; Uddin, J.; Khan, A.; Al-Harrasi, A.; Razak, S.I.A.; et al. New insights for exploring the risks of bioaccumulation, molecular mechanisms, and cellular toxicities of AgNPs in aquatic ecosystem. Water 2022, 14, 2192. [Google Scholar] [CrossRef]
- Terzioğlu, E.; Arslan, M.; Balaban, B.G.; Çakar, Z.P. Microbial silver resistance mechanisms: Recent developments. World J. Microbiol. Biotechnol. 2022, 38, 158. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fundamentals of Plant Physiology, 1st ed.; Sinauer Associates: Sunderland, MA, USA, 2018. [Google Scholar]
- Eichert, T.; Goldbach, H.E. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—Further evidence for a stomatal pathway. Physiol. Plant. 2008, 132, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.; Seo, E.; Kim, S.; Lee, S.J. Adsorption of nanoparticles suspended in a drop on a leaf surface of Perilla frutescens and their infiltration through stomatal pathway. Sci. Rep. 2021, 11, 11556. [Google Scholar] [CrossRef]
- Fernández, V.; Gil-Pelegrín, E.; Eichert, T. Foliar water and solute absorption: An update. Plant J. 2021, 105, 870–883. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Baastrup-Spohr, L.; Li, Z.; Li, W.; Pan, J.; Cao, Y. Allometric relationships between leaf and petiole traits across 31 floating-leaved plants reveal a different adaptation pattern from terrestrial plants. Ann. Bot. 2023, 131, 545–552. [Google Scholar] [CrossRef]
- Lalau, C.M.; Simioni, C.; Vicentini, D.S.; Ouriques, L.C.; Mohedano, R.A.; Puerari, R.C.; Matias, W.G. Toxicological effects of AgNPs on duckweed (Landoltia punctata). Sci. Total Environ. 2020, 710, 136318. [Google Scholar] [CrossRef]
- He, J.; Zhang, L.; He, S.Y.; Ryser, E.T.; Li, H.; Zhang, W. Stomata facilitate foliar sorption of silver nanoparticles by Arabidopsis thaliana. Environ. Pollut. 2022, 292, 118448. [Google Scholar] [CrossRef] [PubMed]
- Torrent, L.; Iglesias, M.; Marguí, E.; Hidalgo, M.; Verdaguer, D.; Llorens, L.; Kodre, A.; Kavčič, A.; Vogel-Mikuš, K. Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration. J. Hazard. Mater. 2020, 384, 121201. [Google Scholar] [CrossRef]
- Pereira, S.P.P.; Jesus, F.; Aguiar, S.; de Oliveira, R.; Fernandes, M.; Ranville, J.; Nogueira, A.J.A. Phytotoxicity of silver nanoparticles to Lemna minor: Surface coating and exposure period-related effects. Sci. Total Environ. 2018, 618, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ren, W.; Dai, Y.; Liu, L.; Wang, Z.; Yu, X.; Zhang, J.; Wang, X.; Xing, B. Uptake, Distribution, and transformation of CuO NPs in a floating plant Eichhornia crassipes and related stomatal responses. Environ. Sci. Technol. 2017, 51, 7686–7695. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Richardson, C.J.; Ho, M.; Willis, C.W.; Colman, B.P.; Wiesner, M.R. Stress responses of aquatic plants to silver nanoparticles. Environ. Sci. Technol. 2018, 52, 2558–2565. [Google Scholar] [CrossRef]
- Rascio, N. The underwater life of secondarily aquatic plants: Some problems and solutions. Crit. Rev. Plant Sci. 2002, 21, 401–427. [Google Scholar] [CrossRef]
- Looy, C.V.; van Konijnenburg-van Cittert, J.H.A.; Duijnstee, I.A.P. Proliferation of isoëtalean lycophytes during the permo-triassic biotic crises: A proxy for the state of the terrestrial biosphere. Front. Earth Sci. 2021, 9, 615370. [Google Scholar] [CrossRef]
- Chang, M.C.; Huang, C.T.; Tsai, C.C.; Kao, W.Y. Molecular identification and Morphological traits of the native and exotic Azolla species in Taiwan. Taiwania 2020, 65, 382–390. [Google Scholar]
- Kodit, N.I.A.; Razeim, Q.Q.A.M.; Noh, A.L. Taxonomic significance of morphological structure in Azolla. Rev. Sci. 2023, 1, 101–113. [Google Scholar]
- Sukul, U.; Das, K.; Chen, J.S.; Sharma, R.K.; Dey, G.; Banerjee, P.; Taharia, M.; Lee, C.I.; Maity, J.P.; Lin, P.Y.; et al. Insight interactions of engineered nanoparticles with aquatic higher plants for phytoaccumulation, phytotoxicity, and phytoremediation applications: A review. Aquat. Toxicol. 2023, 264, 106713. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimbabaie, P.; Smith, A.; Zahran, E.M.; Pichtel, J. Phytoremediation of engineered nanoparticles using Typha latifolia and Carex rostrata. Appl. Environ. Soil Sci. 2023, 2023, 3417525. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, B.; Fang, T. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity. Chemosphere 2018, 191, 324–334. [Google Scholar] [CrossRef]
- Banerjee, K.; Pramanik, P.; Maity, A.; Joshi, D.C.; Wani, S.H.; Krishnan, P. Methods of using nanomaterials to plant systems and their delivery to plants (Mode of entry, uptake, translocation, accumulation, biotransformation and barriers). In Advances in Phytonanotechnology: From synthesis to application; Ghorbanpour, M., Wani, S.H., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2019; pp. 123–152. [Google Scholar]
- López-Herrera, A.; Avalos-Borja, M.; García-Nava, J.R.; Trejo-Téllez, L.I.; Alarcón, A.; Patrón-Soberano, A.; Conde-Martinez, V.; Zavaleta-Mancera, H.A. Interaction of silver nanoparticles with the aquatic fern Azolla filiculoides: Root structure, particle distribution, and silver accumulation. J. Nanoparticle Res. 2021, 23, 13. [Google Scholar] [CrossRef]
- Lv, J.; Christie, P.; Zhang, S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environ. Sci. Nano 2019, 6, 41–59. [Google Scholar] [CrossRef]
- Panzarini, E.; Mariano, S.; Carata, E.; Mura, F.; Rossi, M.; Dini, L. Intracellular transport of silver and gold nanoparticles and biological responses: An update. Int. J. Mol. Sci. 2018, 19, 1305. [Google Scholar] [CrossRef]
- Stegemeier, J.P.; Colman, B.P.; Schwab, F.; Wiesner, M.R.; Lowry, G.V. Uptake and distribution of silver in the aquatic plant Landoltia punctata (Duckweed) exposed to silver and silver sulfide nanoparticles. Environ. Sci. Technol. 2017, 51, 4936–4943. [Google Scholar] [CrossRef]
- Auvinen, H.; Sepúlveda, V.V.; Rousseau, D.P.L.; Du Laing, G. Substrate- and plant-mediated removal of citrate-coated silver nanoparticles in constructed wetlands. Environ. Sci. Pollut. Res. 2016, 23, 21920–21926. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.S.; Qiu, X.N.; Li, G.B.; Li, W.; Yin, L.Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ. Toxicol. Chem. 2014, 33, 1398–1405. [Google Scholar] [CrossRef]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 2012, 7, e47674. [Google Scholar] [CrossRef]
- Dewez, D.; Goltsev, V.; Kalaji, H.M.; Oukarroum, A. Inhibitory effects of silver nanoparticles on photosystem II performance in Lemna gibba probed by chlorophyll fluorescence. Curr. Plant Biol. 2018, 16, 15–21. [Google Scholar] [CrossRef]
- Palácio, S.M.; Nogueira, D.A.; Espinoza-Quiñones, F.R.; de Campos, É.A.; Veit, M.T. Silver nanoparticles bioaccumulation by aquatic macrophyte Salvinia auriculata. Water Air Soil Pollut. 2020, 231, 62. [Google Scholar] [CrossRef]
- Oukarroum, A.; Barhoumi, L.; Pirastru, L.; Dewez, D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ. Toxicol. Chem. 2013, 32, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Thwala, M.; Musee, N.; Sikhwivhilu, L.; Wepener, V. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ. Sci. Process. Impacts 2013, 15, 1830–1843. [Google Scholar] [CrossRef]
- Allen, W.C.; Hook, P.B.; Biederman, J.A.; Stein, O.R. Temperature and wetland plant species effects on wastewater treatment and root zone oxidation. J. Environ. Qual. 2002, 31, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Carrapiço, F. Azolla as a superorganism. Its implication in symbiotic studies. In Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology; Seckbach, J., Grube, M., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 17, pp. 227–241. [Google Scholar]
- Ibáñez, F.; Wall, L.; Fabra, A. Starting points in plant-bacteria nitrogen-fixing symbioses: Intercellular invasion of the roots. J. Exp. Bot. 2017, 68, 1905–1918. [Google Scholar] [CrossRef]
- Zou, X.; Li, P.; Huang, Q.; Zhang, H. The different response mechanisms of Wolffia globosa: Light-induced silver nanoparticle toxicity. Aquat. Toxicol. 2016, 176, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Izazola-Rodríguez, P. Fascículo 222, familia Lemnaceae. In Flora del Bajío y de Regiones Adyacentes; Rzedowski, J., Hernández, L.P., Eds.; Instituto de Ecología, A.C.: Pátzcuaro, Mexico, 2021; pp. 1–20. [Google Scholar]
- Souza, L.R.R.; Corrêa, T.Z.; Bruni, A.T.; da Veiga, M.A.M.S. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor. Environ. Sci. Pollut. Res. 2021, 28, 16720–16733. [Google Scholar] [CrossRef] [PubMed]
- Mohan, B.S.; Hosetti, B.B. Aquatic plants for toxicity assessment. Environ. Res. 1999, 81, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Duan, D.; Xu, C.; Chen, Y.; Sun, L.; Zhang, H.; Yuan, X.; Zheng, L.; Yang, Y.; Yang, J.; et al. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ. Pollut. 2015, 197, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Geisler-Lee, J.; Wang, Q.; Yao, Y.; Zhang, W.; Geisler, M.; Li, K.; Huang, Y.; Chen, Y.; Kolmakov, A.; Ma, X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 2013, 7, 323–337. [Google Scholar] [CrossRef]
- Cocozza, C.; Perone, A.; Giordano, C.; Salvatici, M.C.; Pignattelli, S.; Raio, A.; Schaub, M.; Sever, K.; Innes, J.L.; Tognetti, R.; et al. Silver nanoparticles enter the tree stem faster through leaves than through roots. Tree Physiol. 2019, 39, 1251–1261. [Google Scholar] [CrossRef]
- Jiang, H.S.; Li, M.; Chang, F.Y.; Li, W.; Yin, L.Y. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 2012, 31, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Olkhovych, O.; Svietlova, N.; Konotop, Y.; Karaushu, O.; Hrechishkina, S. Removal of metal nanoparticles colloidal solutions by water plants. Nanoscale Res. Lett. 2016, 11, 518. [Google Scholar] [CrossRef]
- Jiang, H.S.; Yin, L.Y.; Ren, N.N.; Zhao, S.T.; Li, Z.; Zhi, Y.; Shao, H.; Li, W.; Gontero, B. Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 2017, 11, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Hanks, N.A.; Caruso, J.A.; Zhang, P. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. J. Environ. Manag. 2015, 164, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Üçüncü, E.; Özkan, A.D.; Kurşungöz, C.; Ülger, Z.E.; Ölmez, T.T.; Tekinay, T.; Ortaç, B.; Tunca, E. Effects of laser ablated silver nanoparticles on Lemna minor. Chemosphere 2014, 108, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Song, U.; Lee, S. Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites australis: Leaf-type-dependent responses. Environ. Sci. Pollut. Res. 2016, 23, 8539–8545. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, Y.; Espinasse, B.; Colman, B.P.; Auffan, M.; Wiesner, M.; Rose, J.; Liu, J.; Bernhardt, E.S. More than the Ions: The effects of silver nanoparticles on Lolium multiflorum. Environ. Sci. Technol. 2011, 45, 2360–2367. [Google Scholar] [CrossRef]
- Štefanić, P.P.; Cvjetko, P.; Biba, R.; Domijan, A.M.; Letofsky-Papst, I.; Tkalec, M.; Šikić, S.; Cindrić, M.; Balen, B. Physiological, ultrastructural and proteomic responses of tobacco seedlings exposed to silver nanoparticles and silver nitrate. Chemosphere 2018, 209, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Chang, J.; Wang, Z.; Zhang, H.; Wang, T. Advances in transport and toxicity of nanoparticles in plants. J. Nanobiotechnol. 2023, 21, 75. [Google Scholar] [CrossRef]
- Wang, P.; Lombi, E.; Sun, S.; Scheckel, K.G.; Malysheva, A.; McKenna, B.A.; Menzies, N.W.; Zhao, F.J.; Kopittke, P.M. Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environ. Sci. Nano 2017, 4, 448–460. [Google Scholar] [CrossRef]
- Gubbins, E.J.; Batty, L.C.; Lead, J.R. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ. Pollut. 2011, 159, 1551–1559. [Google Scholar] [CrossRef]
- Kim, E.; Kim, S.H.; Kim, H.C.; Lee, S.G.; Lee, S.J.; Jeong, S.W. Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicol. Environ. Health Sci. 2011, 3, 1–6. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.R.S.; Al-Baldawi, I.A.; Almansoory, A.F.; Purwanti, I.F.; Al-Sbani, N.H.; Sharuddin, S.S.N. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere 2020, 247, 125932. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, A.; Kumar, R. Phytoremediation and nanoremediation. In New Frontiers of Nanomaterials in Environmental Science; Kumar, R., Kumar, R., Kaur, G., Eds.; Springer: Singapore, 2021; pp. 281–297. [Google Scholar]
- Fadzil, F.N.M.; Mohamad, M.A.N.; Repin, R.; Harumain, Z.A.S. Metal uptake and tolerance in hyperaccumulator plants: Advancing phytomining strategies. Rhizosphere 2024, 29, 100836. [Google Scholar] [CrossRef]
- Ansari, A.A.; Naeem, M.; Gill, S.S.; AlZuaibr, F.M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egypt. J. Aquat. Res. 2020, 46, 371–376. [Google Scholar] [CrossRef]
- Sompura, Y.; Bhardwaj, S.; Selwal, G.; Soni, V.; Ashokkumar, K. Unrevealing the potential of aquatic macrophytes for phytoremediation in heavy metal-polluted wastewater. J. Curr. Opin. Crop Sci. 2024, 5, 48–61. [Google Scholar] [CrossRef]
- Odjegba, V.J.; Fasidi, I.O. Accumulation of trace elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology 2004, 13, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Lazim, Z.M.; Salmiati, S.; Samaluddin, A.R.; Salim, M.R.; Arman, N.Z. Toxicity of silver nanoparticles and their removal applying phytoremediation system to water environment: An overview. J. Environ. Treat. Tech. 2020, 8, 978–984. [Google Scholar]
- Fernandes, J.P.; Mucha, A.P.; Francisco, T.; Gomes, C.R.; Almeida, C.M.R. Silver nanoparticles uptake by salt marsh plants—Implications for phytoremediation processes and effects in microbial community dynamics. Mar. Pollut. Bull. 2017, 119, 176–183. [Google Scholar] [CrossRef]
- Buta, E.; Paulette, l.; Mihăiescu, T.; Buta, M.; Cantor, M. The Influence of Heavy Metals on Growth and Development of Eichhornia crassipes Species, Cultivated in Contaminated Water. Not. Bot. Horti Agrobot. 2011, 39, 135–141. [Google Scholar] [CrossRef]
- Wolff, G.; Pereira, G.; Castro, E.; Louzada, J.; Coelho, F. The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: Biomass and structure dependent on the cadmium concentration. Braz. J. Biol. 2012, 72, 71–77. [Google Scholar] [CrossRef]
- Mad Akahir, A.A.; Mat Lazim, Z.; Salmiati, S. Removal of silver nanoparticles using phytoremediation method. J. Environ. Manag. 2021, 1, 28–31. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, J.; Chen, M.; Cao, C.; Yan, C.; Ma, Y.; Huang, M.; Wang, M. Fate of silver nanoparticles in constructed wetlands and its influence on performance and microbiome in the ecosystems after a 450-day exposure. Bioresour. Technol. 2019, 281, 107–117. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Herrera, A.; Gómez-Merino, F.C.; Zavaleta-Mancera, H.A.; Avalos-Borja, M.; García-Nava, J.R.; Trejo-Téllez, L.I. Effect of Silver Nanoparticles (AgNPs) on Aquatic and Wetland Plants. Environments 2024, 11, 297. https://doi.org/10.3390/environments11120297
López-Herrera A, Gómez-Merino FC, Zavaleta-Mancera HA, Avalos-Borja M, García-Nava JR, Trejo-Téllez LI. Effect of Silver Nanoparticles (AgNPs) on Aquatic and Wetland Plants. Environments. 2024; 11(12):297. https://doi.org/10.3390/environments11120297
Chicago/Turabian StyleLópez-Herrera, Amelia, Fernando Carlos Gómez-Merino, Hilda Araceli Zavaleta-Mancera, Miguel Avalos-Borja, José Rodolfo García-Nava, and Libia Iris Trejo-Téllez. 2024. "Effect of Silver Nanoparticles (AgNPs) on Aquatic and Wetland Plants" Environments 11, no. 12: 297. https://doi.org/10.3390/environments11120297
APA StyleLópez-Herrera, A., Gómez-Merino, F. C., Zavaleta-Mancera, H. A., Avalos-Borja, M., García-Nava, J. R., & Trejo-Téllez, L. I. (2024). Effect of Silver Nanoparticles (AgNPs) on Aquatic and Wetland Plants. Environments, 11(12), 297. https://doi.org/10.3390/environments11120297