Attenuation of Odours in the Urban Outdoor Environment: A Rapid Review and Implications for the Conduct and Interpretation of Smell Walks
Abstract
:1. Introduction
2. Methodology
- Search (A) [odour or odor or smell or olfactory] + [environment or urban] + [attenuate/-ion or dissipate/-ion or dispersal]
- Search (B) [odour or odor or smell or olfactory] + [environment or urban] + [assessment or measurement]
3. Results and Discussion
3.1. Dispersal in Urban Environments
3.2. Additional Factors of Attenuation
3.3. Implications for the Perceptability of Odours in Urban Settings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spence, C. Senses of place: Architectural design for the multisensory mind. Cogn. Res. Princ. Implic. 2020, 5, 46. [Google Scholar] [CrossRef] [PubMed]
- Buzova, D.; Sanz-Blas, S.; Cervera-Taulet, A. “Sensing” the destination: Development of the destination sensescape index. Tour. Manag. 2021, 87, 104362. [Google Scholar] [CrossRef]
- Drozdzewski, D.; De Nardi, S.; Waterton, E. The significance of memory in the present. In Memory, Place and Identity: Commemoration and Remembrance of War and Conflict; Routledge: London, UK, 2016; pp. 1–16. [Google Scholar]
- Bembibre, C.; Strlic, M. Smell of heritage: A framework for the identification, analysis and archival of historic odours. Herit. Sci. 2017, 5, 2. [Google Scholar] [CrossRef]
- Ergin, N. The Fragrance of the Divine: Ottoman Incense Burners and Their Context. Art Bull. 2014, 96, 70–97. [Google Scholar] [CrossRef]
- Skrede, J.; Andersen, B. Remembering and reconfiguring industrial heritage: The case of the digester in Moss, Norway. Landsc. Res. 2021, 46, 403–416. [Google Scholar] [CrossRef]
- McLean, K. Nose-First: Practices of Smellwalking and Smellscape Mapping. Ph.D. Thesis, Royal College of Art, London, UK, 2019. [Google Scholar]
- Ling, X.; Guan, H.; Peng, J.; Xiong, Z. Critical Zone Recognition of Smellscape of a Chinese Traditional Market Based on the Sensitivity-Coordination Matrix. J. Urban Plan. Dev. 2022, 148, 05022021. [Google Scholar] [CrossRef]
- Lindborg, P.; Liew, K. Real and Imagined Smellscapes. Front. Psychol. 2021, 12, 718172. [Google Scholar] [CrossRef]
- Alqadrie, A.M.; Martokusumo, W. The Other Sensory Approach on Exploring Urban Heritage Landscape. Case Study: Chinese Quarter of Semarang. J. Infrastruct. Facil. Asset Manag. 2021, 3, 14130. [Google Scholar] [CrossRef]
- Henshaw, V. Urban Smellscapes: Understanding and Designing City Smell Environments; Routledge: London, UK, 2013. [Google Scholar]
- Parker, M.; Spennemann, D.H.R.; Bond, J. Methodologies for smellwalks and scentwalks–A review. Chem. Senses 2023, submitted.
- Bruce, N.; Condie, J.; Henshaw, V.; Payne, S.R. Analysing olfactory and auditory sensescapes in English cities: Sensory expectation and urban environmental perception. Ambiances Environ. Sensib. Archit. Espace Urbain 2015, 1. [Google Scholar] [CrossRef]
- Low, K.E. The sensuous city: Sensory methodologies in urban ethnographic research. Ethnography 2015, 16, 295–312. [Google Scholar] [CrossRef]
- Pennycook, A.; Otsuji, E. Making scents of the landscape. Linguist. Landsc. 2015, 1, 191–212. [Google Scholar] [CrossRef]
- Davis, L.; Thys-Şenocak, L. Heritage and scent: Research and exhibition of Istanbul’s changing smellscapes. Int. J. Her. Stud. 2017, 23, 723–741. [Google Scholar] [CrossRef]
- Kartal, A.N. Sensory Urban Mapping: A Case Study of Istiklal Street, Istanbul with the Method of ‘Sensewalking’. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2021. [Google Scholar]
- Xiao, J. A study to Explore Smellscape: From Understanding and Interpretation to Evaluation and Design in Urban Intermodal Transit Spaces in UK and China. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2016. [Google Scholar]
- He, J.; Hao, Z.; Li, L.; Ye, T.; Sun, B.; Wu, R.; Pei, N. Sniff the urban park: Unveiling odor features and landscape effect on smellscape in Guangzhou, China. Urban For. Urban Green. 2022, 78, 127764. [Google Scholar] [CrossRef]
- Bass, E. Tracing Incense: The Affective Power of Objects. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 2019. [Google Scholar]
- Parker, M.; Spennemann, D.H.R. Stille Nacht: COVID and the ghost of Christmas 2020. Heritage 2021, 4, 3081–3097. [Google Scholar] [CrossRef]
- Garritty, C.; Gartlehner, G.; Nussbaumer-Streit, B.; King, V.J.; Hamel, C.; Kamel, C.; Affengruber, L.; Stevens, A. Cochrane Rapid Reviews Methods Group offers evidence-informed guidance to conduct rapid reviews. J. Clin. Epidemiol. 2021, 130, 13–22. [Google Scholar] [CrossRef]
- Hamel, C.; Michaud, A.; Thuku, M.; Skidmore, B.; Stevens, A.; Nussbaumer-Streit, B.; Garritty, C. Defining Rapid Reviews: A systematic scoping review and thematic analysis of definitions and defining characteristics of rapid reviews. J. Clin. Epidemiol. 2021, 129, 74–85. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; ACM: New York, NY, USA, 2014; pp. 38–42. [Google Scholar]
- Hertwig, D.; Soulhac, L.; Fuka, V.; Auerswald, T.; Carpentieri, M.; Hayden, P.; Robins, A.; Xie, Z.-T.; Coceal, O. Evaluation of fast atmospheric dispersion models in a regular street network. Environ. Fluid Mech. 2018, 18, 1007–1044. [Google Scholar] [CrossRef]
- Arya, S.P. Air Pollution Meteorology and Dispersion; Oxford University Press: New York, NY, USA, 1999; Volume 310. [Google Scholar]
- Trini Castelli, S.; Armand, P.; Tinarelli, G.; Duchenne, C.; Nibart, M. Validation of a Lagrangian particle dispersion model with wind tunnel and field experiments in urban environment. Atmos. Environ. 2018, 193, 273–289. [Google Scholar] [CrossRef]
- Ferrero, E.; Oettl, D. An evaluation of a Lagrangian stochastic model for the assessment of odours. Atmos. Environ. 2019, 206, 237–246. [Google Scholar] [CrossRef]
- Lipták, Ľ.; Fojcíková, E.; Čarný, P. Comparison of the ESTE CBRN Model with the Joint Urban 2003 Experiment. Bound. Layer Meteorol. 2019, 171, 439–464. [Google Scholar] [CrossRef]
- Allwine, K.J.; Flaherty, J.E. Joint Urban 2003: Study Overview and Instrument Locations. Prepared for the U.S. Department of Homeland Security under a Related Services Agreement with the U.S. Department of Energy under Contract DE-AC05-76RL01830; Pacific Northwest National Laboratory: Richland, WA, USA, 2006. [Google Scholar]
- Bartzis, J.G.; Efthimiou, G.C.; Andronopoulos, S. Modelling short term individual exposure from airborne hazardous releases in urban environments. J. Hazard. Mater. 2015, 300, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Belcher, S.E. Mixing and transport in urban areas. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2005, 363, 2947–2968. [Google Scholar]
- Hanna, S.R.; Brown, M.J.; Camelli, F.E.; Chan, S.T.; Coirier, W.J.; Hansen, O.R.; Huber, A.H.; Kim, S.; Reynolds, R.M. Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An application of five computational fluid dynamics models. Bull. Am. Meteorol. Soc. 2006, 87, 1713–1726. [Google Scholar] [CrossRef]
- Wood, C.R.; Arnold, S.J.; Balogun, A.A.; Barlow, J.F.; Belcher, S.E.; Britter, R.E.; Cheng, H.; Dobre, A.; Lingard, J.J.; Martin, D. Dispersion experiments in central London: The 2007 DAPPLE project. Bull. Am. Meteorol. Soc. 2009, 90, 955–970. [Google Scholar] [CrossRef]
- Berkowicz, R.; Palmgren, F.; Hertel, O.; Vignati, E. Using measurements of air pollution in streets for evaluation of urban air quality—Meterological analysis and model calculations. Sci. Total Environ. 1996, 189, 259–265. [Google Scholar] [CrossRef]
- DePaul, F.; Sheih, C. Measurements of wind velocities in a street canyon. Atmos. Environ. 1986, 20, 455–459. [Google Scholar] [CrossRef]
- Vachon, G.; Louka, P.; Rosant, J.; Mestayer, P.; Sini, J. Measurements of traffic-induced turbulence within a street canyon during the Nantes’ 99 experiment. Water Air Soil Pollut. Focus 2002, 2, 127–140. [Google Scholar] [CrossRef]
- Qin, Y.; Kot, S.C. Dispersion of vehicular emission in street canyons, Guangzhou City, South China (PRC). Atmos. Environ. Part B Urban Atmos. 1993, 27, 283–291. [Google Scholar] [CrossRef]
- Soulhac, L.; Salizzoni, P.; Mejean, P.; Didier, D.; Rios, I. The model SIRANE for atmospheric urban pollutant dispersion; PART II, validation of the model on a real case study. Atmos. Environ. 2012, 49, 320–337. [Google Scholar] [CrossRef]
- Cichowicz, R.; Dobrzanski, M. Spatial Analysis (Measurements at Heights of 10 m and 20 m above Ground Level) of the Concentrations of Particulate Matter (PM10, PM2.5, and PM1.0) and Gaseous Pollutants (H2S) on the University Campus: A Case Study. Atmosphere 2021, 12, 62. [Google Scholar] [CrossRef]
- Lim, H.D.; Hertwig, D.; Grylls, T.; Gough, H.; Reeuwijk, M.v.; Grimmond, S.; Vanderwel, C. Pollutant dispersion by tall buildings: Laboratory experiments and Large-Eddy Simulation. Exp. Fluids 2022, 63, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yang, H.; Li, C.; Obadi, I.; Wang, F.; Lei, W.; Xu, T.; Weng, M. Numerical investigation on fire-induced indoor and outdoor air pollutant dispersion in an idealized urban street canyon. Build. Simul. 2022, 15, 597–614. [Google Scholar] [CrossRef]
- Jon, K.S.; Huang, Y.-d.; Sin, C.H.; Cui, P.-y.; Luo, Y. Influence of wind direction on the ventilation and pollutant dispersion in different 3D street canyon configurations: Numerical simulation and wind-tunnel experiment. Environ. Sci. Pollut. Res. 2023, 30, 31647–31675. [Google Scholar] [CrossRef]
- Kastner-Klein, P.; Berkowicz, R.; Plate, E. Modelling of vehicle-induced turbulence in air pollution studies for streets. Int. J. Environ. Pollut. 2000, 14, 496–507. [Google Scholar] [CrossRef]
- Kastner-Klein, P.; Fedorovich, E.; Rotach, M. A wind tunnel study of organised and turbulent air motions in urban street canyons. J. Wind. Eng. Ind. Aerodyn. 2001, 89, 849–861. [Google Scholar] [CrossRef]
- Kovar-Panskus, A.; Abdelqari, A.; Louka, P.; Mestayer, P.; Savory, E.; Sini, J.-F. The influence of solar-induced wall-heating on the wind flow regime within urban street canyons: Wind-tunnel and numerical simulations. In Proceedings of the 3rd Urban Air Quality Conference, Loutraki, Greece, 13–29 March 2001; CD Canopus Publish Ltd.: London, UK, 2001. [Google Scholar]
- Gailis, R.M.; Hill, A. A Wind-Tunnel Simulation of Plume Dispersion within a Large Array of Obstacles. Bound. Layer Meteorol. 2006, 119, 289–338. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD modeling of pollution dispersion in building array: Evaluation of turbulent scalar flux modeling in RANS model using LES results. J. Wind Eng. Ind. Aerodyn. 2012, 104, 484–491. [Google Scholar] [CrossRef]
- Carpentieri, M.; Salizzoni, P.; Robins, A.; Soulhac, L. Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data. Environ. Model. Softw. 2012, 37, 110–124. [Google Scholar] [CrossRef]
- Melo, A.L.V.; Santos, J.M.; Reis, N.C.; Castro, I.P.; Goulart, E.V.; Xie, Z.T. Influence of wind direction and source location on peak-to-mean concentration ratios in urban environments. J. Wind Eng. Ind. Aerodyn. 2023, 232, 105264. [Google Scholar] [CrossRef]
- Santos, J.M.; Reis, N.C.; Castro, I.P.; Goulart, E.V.; Xie, Z.T. Using Large-Eddy Simulation and Wind-Tunnel Data to Investigate Peak-to-Mean Concentration Ratios in an Urban Environment. Bound. Layer Meteorol. 2019, 172, 333–350. [Google Scholar] [CrossRef]
- DePaul, F.; Sheih, C. A tracer study of dispersion in an urban street canyon. Atmos. Environ. 1985, 19, 555–559. [Google Scholar] [CrossRef]
- Leach, M.J.; Chan, S.T.; Lundquist, J.K. High-Resolution CFD Simulation of Airflow and Tracer Dispersion in New York City; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2005. [Google Scholar]
- Zhang, Y.; Gu, Z.; Yu, C.W. Impact Factors on Airflow and Pollutant Dispersion in Urban Street Canyons and Comprehensive Simulations: A Review. Curr. Pollut. Rep. 2020, 6, 425–439. [Google Scholar] [CrossRef]
- Hang, J.; Buccolieri, R.; Yang, X.; Yang, H.; Quarta, F.; Wang, B. Impact of indoor-outdoor temperature differences on dispersion of gaseous pollutant and particles in idealized street canyons with and without viaduct settings. Build. Simul. 2019, 12, 285–297. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Fisher, B.E.; Pericleous, K.; Gonzalez-Flesca, N. Modelling air quality in street canyons: A review. Atmos. Environ. 2003, 37, 155–182. [Google Scholar] [CrossRef]
- Tan, Z.; Tan, M.; Sui, X.; Jiang, C.; Song, H. Impact of source shape on pollutant dispersion in a street canyon in different thermal stabilities. Atmos. Pollut. Res. 2019, 10, 1985–1993. [Google Scholar] [CrossRef]
- Calhoun, R.; Gouveia, F.; Shinn, J.; Chan, S.; Stevens, D.; Lee, R.; Leone, J. Flow around a Complex Building: Comparisons between Experiments and a Reynolds-Averaged Navier–Stokes Approach. J. Appl. Meteorol. 2004, 43, 696–710. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, T.; Liu, Q.; He, P.; Tao, C.; Shi, Q. Numerical study of critical re-entrainment velocity of fire smoke within the street canyons with different building height ratios. Environ. Sci. Pollut. Res. 2019, 26, 23319–23327. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, J.E.; Stock, D.; Lamb, B. Computational Fluid Dynamic Simulations of Plume Dispersion in Urban Oklahoma City. J. Appl. Meteorol. Climatol. 2007, 46, 2110–2126. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Su, G.; Tao, H.; Xu, W.; Hu, L. Buoyant wind-driven pollutant dispersion and recirculation behaviour in wedge-shaped roof urban street canyons. Environ. Sci. Pollut. Res. 2019, 26, 8289–8302. [Google Scholar] [CrossRef]
- Huang, Y.-d.; Ren, S.-q.; Xu, N.; Luo, Y.; Sin, C.H.; Cui, P.-Y. Impacts of specific street geometry on airflow and traffic pollutant dispersion inside a street canyon. Air Qual. Atmos. Health 2022, 15, 1133–1152. [Google Scholar] [CrossRef]
- Nam, J.; Lee, C. Real-time prediction of urban flow and dispersion. J. Mech. Sci. Technol. 2021, 35, 4565–4574. [Google Scholar] [CrossRef]
- Burman, J.; Jonsson, L.; Rutgersson, A. On possibilities to estimate local concentration variations with CFD-LES in real urban environments. Environ. Fluid Mech. 2019, 19, 719–750. [Google Scholar] [CrossRef]
- Efthimiou, G.C.; Bartzis, J.G.; Berbekar, E.; Hertwig, D.; Harms, F.; Leitl, B. Modelling Short-Term Maximum Individual Exposure from Airborne Hazardous Releases in Urban Environments. Part ΙI: Validation of a Deterministic Model with Wind Tunnel Experimental Data. Toxics 2015, 3, 259–267. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Liu, C.; Peng, Z.-R. Assessing neighborhood air pollution exposure and its relationship with the urban form. Build. Environ. 2019, 155, 15–24. [Google Scholar] [CrossRef]
- Da Silva, F.T.; Reis, N.C., Jr.; Santos, J.M.; Goulart, E.V.; de Alvarez, C.E. The impact of urban block typology on pollutant dispersion. J. Wind Eng. Ind. Aerodyn. 2021, 210, 104524. [Google Scholar] [CrossRef]
- Coceal, O.; Goulart, E.V.; Branford, S.; Glyn Thomas, T.; Belcher, S.E. Flow structure and near-field dispersion in arrays of building-like obstacles. J. Wind Eng. Ind. Aerodyn. 2014, 125, 52–68. [Google Scholar] [CrossRef]
- Tiwary, A.; Robins, A.; Namdeo, A.; Bell, M. Air flow and concentration fields at urban road intersections for improved understanding of personal exposure. Environ. Int. 2011, 37, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Heist, D.K.; Brixey, L.A.; Richmond-Bryant, J.; Bowker, G.E.; Perry, S.G.; Wiener, R.W. The effect of a tall tower on flow and dispersion through a model urban neighborhood Part 1. Flow characteristics. J. Environ. Monit. 2009, 11, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Brixey, L.A.; Heist, D.K.; Richmond-Bryant, J.; Bowker, G.E.; Perry, S.G.; Wiener, R.W. The effect of a tall tower on flow and dispersion through a model urban neighborhood Part 2. Pollutant dispersion. J. Environ. Monit. 2009, 11, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Lee, M.I.; Lee, S.; Choi, S.D.; Kim, S.J.; Song, C.K. Numerical Modeling for the Accidental Dispersion of Hazardous Air Pollutants in the Urban Metropolitan Area. Atmosphere 2020, 11, 477. [Google Scholar] [CrossRef]
- McNaughton, M.W.; Gillis, J.M.; Ruedig, E.; Whicker, J.J.; Fuehne, D.P. Accuracy of Cloudshine Gamma Dose Calculations in the CAP-88 Dispersion Model. Health Phys. 2017, 112, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Gromke, C.; Ruck, B. Pollutant concentrations in street canyons of different aspect ratio with avenues of trees for various wind directions. Bound. Layer Meteorol. 2012, 144, 41–64. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Buccolieri, R.; Salizzoni, P. Recent advancements in numerical modelling of flow and dispersion in urban areas: A short review. Int. J. Environ. Pollut. 2013, 52, 172–191. [Google Scholar] [CrossRef]
- Sin, C.H.; Cui, P.-Y.; Jon, K.S.; Luo, Y.; Shen, J.-W.; Huang, Y.-d. Evaluation on ventilation and traffic pollutant dispersion in asymmetric street canyons with void decks. Air Qual. Atmos. Health 2023, 16, 817–839. [Google Scholar] [CrossRef]
- Abhijith, K.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments–A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Li, X.-B.; Lu, Q.-C.; Lu, S.-J.; He, H.-D.; Peng, Z.-R.; Gao, Y.; Wang, Z.-Y. The impacts of roadside vegetation barriers on the dispersion of gaseous traffic pollution in urban street canyons. Urban For. Urban Green. 2016, 17, 80–91. [Google Scholar] [CrossRef]
- Efthimiou, G.C. Prediction of four concentration moments of an airborne material released from a point source in an urban environment. J. Wind Eng. Ind. Aerodyn. 2019, 184, 247–255. [Google Scholar] [CrossRef]
- O’Neill, J.; Seaton, M.; Johnson, K.; Stocker, J.; Patel, R.; Van Poppel, M.; Carruthers, D. Modelling the influence of road elevation on pollutant dispersion. Air Qual. Atmos. Health 2022. [Google Scholar] [CrossRef]
- Hinds, W.T. Peak-to-mean concentration ratios from ground-level sources in building wakes. Atmos. Environ. 1969, 3, 145–156. [Google Scholar] [CrossRef]
- Dincer, F.; Odabasi, M.; Muezzinoglu, A. Chemical characterization of odorous gases at a landfill site by gas chromatography–mass spectrometry. J. Chromatogr. A 2006, 1122, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.; Hobbs, P.J.; Dobrovin-Pennington, A.; Misselbrook, T.H.; Mead, A. Olfactory Response to Mushroom Composting Emissions as a Function of Chemical Concentration. J. Environ. Qual. 2001, 30, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Pannunzi, M.; Nowotny, T. Odor Stimuli: Not Just Chemical Identity. Front. Physiol. 2019, 10, 1428. [Google Scholar] [CrossRef]
- Feng, Y.; Eun, J.; Moon, S.; Nam, Y. Assessment of gas dispersion near an operating landfill treated by different intermediate covers with soil alone, low-density polyethylene (LLDPE), or ethylene vinyl alcohol (EVOH) geomembrane. Environ. Sci. Pollut. Res. 2022, 30, 9672–9687. [Google Scholar] [CrossRef] [PubMed]
- Bydder, C.; Demetriou, J. Establishing the extent of odour plumes and buffers for waste handling facilities. Waste Manag. 2019, 95, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yuan, J.Y.; Li, X.; Zhao, S.L.; Lu, W.J.; Wang, H.T.; Zhao, Y. Health risk assessment of volatile organic compounds (VOCs) emitted from landfill working surface via dispersion simulation enhanced by probability analysis. Environ. Pollut. 2023, 316, 120535. [Google Scholar] [CrossRef]
- Majumdar, D.; Srivastava, A. Volatile organic compound emissions from municipal solid waste disposal sites: A case study of Mumbai, India. J. Air Waste Manag. Assoc. 2012, 62, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Sureda, X.; Bilal, U.; Fernandez, E.; Valiente, R.; Escobar, F.J.; Navas-Acien, A.; Franco, M. Second-hand smoke exposure in outdoor hospitality venues: Smoking visibility and assessment of airborne markers. Environ. Res. 2018, 165, 220–227. [Google Scholar] [CrossRef]
- González, C.R.-N.; Björklund, E.; Forteza, R.; Cerdà, V. Volatile organic compounds in landfill odorant emissions on the island of Mallorca. Int. J. Environ. Anal. Chem. 2013, 93, 434–449. [Google Scholar] [CrossRef]
- Katragadda, H.R.; Fullana, A.; Sidhu, S.; Carbonell-Barrachina, Á.A. Emissions of volatile aldehydes from heated cooking oils. Food Chem. 2010, 120, 59–65. [Google Scholar] [CrossRef]
- Guillén, M.D.; Errecalde, M.C. Volatile components of raw and smoked black bream (Brama raii) and rainbow trout (Oncorhynchus mykiss) studied by means of solid phase microextraction and gas chromatography/mass spectrometry. J. Sci. Food Agric. 2002, 82, 945–952. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Szulejko, J.E.; Kim, K.-H.; Kim, Y.-H.; Kim, B.-W. Odor and VOC emissions from pan frying of mackerel at three stages: Raw, well-done, and charred. Int. J. Env. Res. Publ. Health 2014, 11, 11753–11771. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, J.; Zhang, X.; Cai, K.; Chen, C.; Xu, B. Emission characteristics and quantitative assessment of the health risks of cooking fumes during outdoor barbecuing. Environ. Pollut. 2023, 323, 121319. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Park, H.; Seo, Y.; Yun, J.; Kwon, J.; Park, K.-W.; Han, S.-B.; Oh, K.C.; Jeon, J.-M.; Cho, K.-S. Emission characteristics of particulate matter, odors, and volatile organic compounds from the grilling of pork. Environ. Res. 2020, 183, 109162. [Google Scholar] [CrossRef] [PubMed]
- Vicente, A.M.; Rocha, S.; Duarte, M.; Moreira, R.; Nunes, T.; Alves, C.A. Fingerprinting and emission rates of particulate organic compounds from typical restaurants in Portugal. Sci. Total Environ. 2021, 778, 146090. [Google Scholar] [CrossRef] [PubMed]
- Torkmahalleh, M.A.; Gorjinezhad, S.; Keles, M.; Unluevcek, H.S.; Azgin, C.; Cihan, E.; Tanis, B.; Soy, N.; Ozaslan, N.; Ozturk, F. A controlled study for the characterization of PM2. 5 emitted during grilling ground beef meat. J. Aerosol Sci. 2017, 103, 132–140. [Google Scholar] [CrossRef]
- Li, Y.-C.; Shu, M.; Ho, S.S.H.; Wang, C.; Cao, J.-J.; Wang, G.-H.; Wang, X.-X.; Wang, K.; Zhao, X.-Q. Characteristics of PM2. 5 emitted from different cooking activities in China. Atmos. Res. 2015, 166, 83–91. [Google Scholar] [CrossRef]
- McDonald, J.D.; Zielinska, B.; Fujita, E.M.; Sagebiel, J.C.; Chow, J.C.; Watson, J.G. Emissions from charbroiling and grilling of chicken and beef. J. Air Waste Manag. Assoc. 2003, 53, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-C.; Liu, J.-J.; Jia, L.-Z.; Wang, P.; Han, X. Speciation of VOCs in the cooking fumes from five edible oils and their corresponding health risk assessments. Atmos. Environ. 2019, 211, 6–17. [Google Scholar] [CrossRef]
- He, L.-Y.; Hu, M.; Huang, X.-F.; Yu, B.-D.; Zhang, Y.-H.; Liu, D.-Q. Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos. Environ. 2004, 38, 6557–6564. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Yu, J.Z. Minimizing Contamination from Plastic Labware in the Quantification of C16 and C18 Fatty Acids in Filter Samples of Atmospheric Particulate Matter and Their Utility in Apportioning Cooking Source Contribution to Urban PM2.5. Atmosphere 2020, 11, 1120. [Google Scholar] [CrossRef]
- Morini, G.; Maga, J.A. Volatile compounds in roasted and boiled Chinese chestnuts (Castanea molissima). LWT–Food Sci. Technol. 1995, 28, 638–640. [Google Scholar] [CrossRef]
- Arata, C.; Misztal, P.K.; Tian, Y.; Lunderberg, D.M.; Kristensen, K.; Novoselac, A.; Vance, M.E.; Farmer, D.K.; Nazaroff, W.W.; Goldstein, A.H. Volatile organic compound emissions during HOMEChem. Indoor Air 2021, 31, 2099–2117. [Google Scholar] [CrossRef]
- Wright, D.W.; Koziel, J.A.; Parker, D.B.; Iwasinska, A.; Hartman, T.G.; Kolvig, P.; Wahe, L. Qualitative Exploration of the ‘Rolling Unmasking Effect’ for Downwind Odor Dispersion from a Model Animal Source. Int. J. Env. Res. Publ. Health 2021, 18, 13085. [Google Scholar] [CrossRef] [PubMed]
- Riffell, J.A.; Abrell, L.; Hildebrand, J.G. Physical processes and real-time chemical measurement of the insect olfactory environment. J. Chem. Ecol. 2008, 34, 837–853. [Google Scholar] [CrossRef]
- Tansel, B.; Inanloo, B. Odor impact zones around landfills: Delineation based on atmospheric conditions and land use characteristics. Waste Manag. 2019, 88, 39–47. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spennemann, D.H.R.; Parker, M.; Bond, J. Attenuation of Odours in the Urban Outdoor Environment: A Rapid Review and Implications for the Conduct and Interpretation of Smell Walks. Environments 2023, 10, 163. https://doi.org/10.3390/environments10090163
Spennemann DHR, Parker M, Bond J. Attenuation of Odours in the Urban Outdoor Environment: A Rapid Review and Implications for the Conduct and Interpretation of Smell Walks. Environments. 2023; 10(9):163. https://doi.org/10.3390/environments10090163
Chicago/Turabian StyleSpennemann, Dirk H. R., Murray Parker, and Jennifer Bond. 2023. "Attenuation of Odours in the Urban Outdoor Environment: A Rapid Review and Implications for the Conduct and Interpretation of Smell Walks" Environments 10, no. 9: 163. https://doi.org/10.3390/environments10090163
APA StyleSpennemann, D. H. R., Parker, M., & Bond, J. (2023). Attenuation of Odours in the Urban Outdoor Environment: A Rapid Review and Implications for the Conduct and Interpretation of Smell Walks. Environments, 10(9), 163. https://doi.org/10.3390/environments10090163