The Use of Tail as a Minimal-Invasive Method to Detect a Large Set of Biochemical Responses in the Italian Wall Lizard Podarcis siculus (Rafinesque, 1810)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Species
2.2. Biochemical Analyses
2.3. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hagger, J.A.; Jones, M.B.; Leonard, D.P.; Owen, R.; Galloway, T. Biomarkers and integrated environmental risk assessment: Are there more questions than answers? Integr. Environ. Assess. Manag. 2006, 2, 312–329. [Google Scholar] [CrossRef] [PubMed]
- Forbes, V.E.; Palmqvist, A.; Bach, L. The use and misuse of biomarkers in ecotoxicology. Environ. Toxicol. Chem. 2006, 25, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Fossi, M.C.; Leonzio, C. Nondestructive Biomarkers in Vertebrates; Lewis Publishers, CRC Press: Boca Raton, FL, USA, 1994; p. 368. [Google Scholar]
- Lajmanovich, R.C.; Attademo, A.M.; Peltzer, P.M.; Junges, C.M.; Cabagna, M.C. Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. Arch. Environ. Contam. Toxicol. 2011, 60, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.J. Lacertid Lizards as Bioindicators of Agricultural Contamination. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2012. [Google Scholar]
- Kori, R.K.; Jain, A.K.; Yadav, R.S. Biomarkers: An essential gizmo in pesticide toxicity. Biomark. J. 2016, 2, 1–5. [Google Scholar]
- Aldridge, R.D.; Greenhaw, J.J.; Plummer, M.W. The male reproductive cycle of the rough green snake (Opheodrys aestivus). Amphibi. Reptil. 1990, 11, 165–172. [Google Scholar] [CrossRef]
- Dodd, C.K. Reptile Ecology and Conservation: A Handbook of Techniques; Oxford University Press: Oxford, UK, 2016; p. 462. [Google Scholar]
- Fossi, M.C.; Marsili, L. The use of non-destructive biomarkers in the study of marine mammals. Biomarkers 1997, 2, 205–216. [Google Scholar] [CrossRef]
- Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1992L0043:20070101:EN:PDF (accessed on 21 June 2023).
- Directive 2010/63/EU of the European Parliament and of the Council of 22nd Sept. 2010 on the Protection of Animals Used for Scientific Purposes. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 21 June 2023).
- The IUCN Red List of Threatened Species. Available online: www.iucnredlist.org (accessed on 28 June 2023).
- Capriglione, T.; De Iorio, S.; Gay, F.; Capaldo, A.; Vaccaro, M.C.; Morescalchi, M.A. Genotoxic effects of the fungicide thiophanate-methyl on Podarcis sicula assessed by micronucleus test, comet assay and chromosome analysis. Ecotoxicology 2011, 20, 885–891. [Google Scholar] [CrossRef]
- Cardone, A. Imidacloprid induces morphological and molecular damages on testis of lizard (Podarcis sicula). Ecotoxicology 2015, 24, 94–105. [Google Scholar] [CrossRef]
- Mingo, V.; Lötters, S.; Wagner, N. The impact of land use intensity and associated pesticide applications on fitness and enzymatic activity in reptiles—A field study. Sci. Total Environ. 2017, 590–591, 114–124. [Google Scholar] [CrossRef]
- Simbula, G.; Moltedo, G.; Catalano, B.; Martuccio, G.; Sebbio, C.; Onorati, F.; Stellati, L.; Bissattini, A.M.; Vignoli, L. Biological responses at multiple levels in pesticide exposed lizards (Podarcis siculus). Ecotoxicology 2021, 30, 1017–1028. [Google Scholar] [CrossRef]
- Moltedo, G.; Catalano, B.; Martuccio, G.; Sesta, G.; Romanelli, G.; Lauria, A.; Berducci, M.T.; Parravano, R.; Maggi, C.; Simbula, G.; et al. Processes involved in biochemical response to pesticides by lizard Podarcis siculus (Rafinesque-Schmaltz, 1810)—A field study. Toxicol. Appl. Pharmacol. 2023, 467, 116491. [Google Scholar] [CrossRef] [PubMed]
- Schaumburg, L.; Poletta, G.; Mudry, M. Baseline values of Micronuclei and Comet Assay in the lizard Tupinambis merianae (Teiidae, Squamata). Ecotoxicol. Environ. Saf. 2012, 84, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Fossi, M.C.; Sànchez-Hernàndez, J.C.; Dìaz-Dìaz, R.; Lari, L.; Garcia-Hernàndez, J.E.; Gaggi, C. The lizard Gallotia galloti as a bioindicator of organophosphorus contamination in the Canary Islands. Environ. Pollut. 1995, 87, 289–294. [Google Scholar] [CrossRef]
- Sanchez, J.C.; Fossi, M.C.; Focardi, S. Serum “B” Esterases as a Nondestructive Biomarker for Monitoring the Exposure of Reptiles to Organophosphorus Insecticides. Ecotoxicol. Environ. Saf. 1997, 38, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Hernandez, J.C.; Moreno Sanchez, B. Lizard cholinesterases as biomarkers of pesticide exposure: Enzymological characterization. Ecotoxicol. Environ. Saf. 2002, 21, 2319–2325. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, J.C.; Carbonell, R.; Henrıquez Perez, A.; Montealegre, M.; Gomez, L. Inhibition of plasma butyrylcholinesterase activity in the lizard Gallotia galloti palmae by pesticides: A field study. Environ. Pollut. 2004, 132, 479–488. [Google Scholar] [CrossRef]
- Aguilera, C.; Del Pliego, P.G.; Alfaro, R.M.; Lazcano, D.; Cruz, J. Pollution biomarkers in the spiny lizard (Sceloporus spp.) from two suburban populations of Monterrey, Mexico. Ecotoxicology 2012, 21, 2103–2112. [Google Scholar] [CrossRef]
- Mingo, V.; Leeb, C.; Fahl, A.K.; Lötters, S.; Brühl, C.; Wagner, N. Validating Buccal Swabbing as a Minimal-Invasive Method to Detect Pesticide Exposure in Squamate Reptiles. Chemosphere 2019, 229, 529–537. [Google Scholar] [CrossRef]
- Fasola, E.; Biaggini, M.; Ortiz-Santaliestra, M.E.; Costa, S.; Santos, B.; Lopes, I.; Corti, C. Assessing Stress Response in Lizards from Agroecosystems with Different Management Practices. Bull. Environ. Contam. Toxicol. 2022, 108, 196–203. [Google Scholar] [CrossRef]
- Bateman, P.W.; Fleming, P.A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. 2009, 277, 1–14. [Google Scholar] [CrossRef]
- Sanggaard, K.W.; Danielsen, C.C.; Wogensen, L.; Vinding, M.S.; Rydtoft, L.M.; Mortensen, M.B.; Karring, H.; Nielsen, N.C.; Wang, T.; Thogersen, I.B.; et al. Unique structural features facilitate lizard tail autotomy. PLoS ONE 2012, 7, e51803. [Google Scholar] [CrossRef] [PubMed]
- Bellairs, A.; Bryant, S.V. Autotomy and regeneration in reptiles. In Biology of the Reptilia; Gans, C., Billett, F., Eds.; Wiley: New York, NY, USA, 1985; Volume 15, pp. 303–410. [Google Scholar]
- Eberle, P.; Haro, D.; Rekevics, K.; Liwanag, H.E.M. Physiological Effects of Tail Regeneration following Autotomy in Italian Wall Lizards, Podarcis siculus. J. Herpetol. 2022, 56, 434–443. [Google Scholar] [CrossRef]
- Gilbert, E.A.B.; Delorme, S.L.; Vickaryous, M.K. The regeneration blastema of lizards: An amniote model for the study of appendage replacement. Regeneration 2015, 2, 45–53. [Google Scholar] [CrossRef]
- Alibardi, L. Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards; Springer: Berlin/Heidelberg, Germany, 2010; p. 111. [Google Scholar] [CrossRef]
- Bryant, S.V.; Bellairs, A.D.A. Tail regeneration in the lizards Anguis fragiris and Lacerta dugesii. Zool. J. Linn. Soc. 1967, 46, 297–305. [Google Scholar] [CrossRef]
- Mingo, V.; Lötters, S.; Wagner, N. The use of buccal swabs as a minimal-invasive method for detecting effects of pesticide exposure on enzymatic activity in common wall lizards. Environ. Pollut. 2016, 220, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Marsili, L.; Casini, S.; Mori, G.; Ancora, S.; Bianchi, N.; D’Agostino, A.; Ferraro, M.; Fossi, M.C. The Italian wall lizard (Podarcis sicula) as a bioindicator of oil field activity. Sci. Total Environ. 2009, 407, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 89–95. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. In Methods in Enzymology; Packer, L., Ed.; Academic Press Inc.: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Regoli, F.; Bocchetti, R.; Filho, D.W. Spectrophotometric assay of antioxidants. In Oxidative Stress in Aquatic Ecosystems; Abele, D., Vasquez-Medina, J.P., Zenteno-Savin, T., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012; pp. 367–380. [Google Scholar]
- Regoli, F.; Winston, G.W. Quantification of Total Oxidant Scavenging Capacity of Antioxidants for Peroxynitrite, Peroxyl Radicals, and Hydroxyl Radicals. Toxicol. Appl. Pharmacol. 1999, 156, 96–105. [Google Scholar] [CrossRef]
- Akerboom, T.P.M.; Sies, H. Assay of Glutathione, Glutathione Disulfide, and Glutathione Mixed Disulfides in Biological Samples. Methods Enzymol. 1981, 77, 373–382. [Google Scholar] [CrossRef]
- Shaw, J.P.; Large, A.T.; Donkin, P.; Evans, S.V.; Staff, F.J.; Livingstone, D.R.; Chipmanb, J.K.; Peters, L.D. Seasonal variation in cytochrome P450 immunopositive protein levels, lipid peroxidation and genetic toxicity in digestive gland of the mussel Mytilus edulis. Aquat. Toxicol. 2004, 67, 325–336. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jacoby, W.B. Glutathione S-Transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Stagg, R.; McIntosh, A.; Gubbins, M.J. Determination of CYP1A-Dependent Mono-Oxygenase Activity in Dab by Fluorimetric Measurement of EROD Activity in S9 or Microsomal Liver Fractions; ICES Techniques in Marine Environmental Sciences n. 57 Series; International Council for the Exploration of the Sea (ICES): Copenhagen, Denmark, 2016; pp. 1–21. [Google Scholar] [CrossRef]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12. 2013. Available online: http://www.statsoft.com (accessed on 9 May 2023).
- Reguera, S.; Zamora-Camacho, F.J.; Melero, E.; García-Mesa, S.; Trenzado, C.E.; Cabrerizo, M.J.; Sanz, A.; Moreno-Rueda, G. Ultraviolet radiation does not increase oxidative stress in the lizard Psammodromus algirus along an elevational gradient. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2015, 183, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Catalán, V.; Frühbeck, G.; Gómez-Ambrosi, J. Inflammatory and Oxidative Stress Markers in Skeletal Muscle of Obese Subjects. In Obesity; Del Moral, A.M., Aguilera García, C.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 163–189. [Google Scholar] [CrossRef]
- Sharma, R.; Yang, Y.; Sharma, A.; Awasthi, S.; Awasthi, Y.C. Antioxidant role of glutathione S-transferases: Protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid. Redox Signal. 2004, 6, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Van der Oost, R.; Beyer, J.; Vermeulen, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149. [Google Scholar] [CrossRef]
- Mayer, F.L.; Versteeg, D.J.; McKee, M.J.; Folmar, L.C.; Graney, R.L.; McCume, D.C.; Rattner, B.A. Physiological and nonspecific biomarkers. In Biomarkers: Biochemical, Physiological, and Histological Markers of Anthropogenic Stress, Proceedings of the Eighth Pellston Workshop, Keystone, CO, USA, 23–28 July 1989; Lewis Publishers: Boca Raton, FL, USA, 1992; p. 347. [Google Scholar]
- Randell, E.W.; Mathews, M.S.; Zhang, H.; Seraj, J.S.; Sun, G. Relationship between serum butyrylcholinesterase and the metabolic syndrome. Clin. Biochem. 2005, 35, 799–805. [Google Scholar] [CrossRef]
- Blondet, B.; Carpentier, G.; Ferry, A.; Chatonnet, A.; Courty, J. Localization of Butyrylcholinesterase at the Neuromuscular Junction of Normal and Acetylcholinesterase Knockout Mice. J. Histochem. Cytochem. 2010, 58, 1075–1082. [Google Scholar] [CrossRef]
- Duysen, E.G.; Stribley, J.A.; Fry, D.L.; Hinrichs, S.H.; Lockridge, O. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Dev. Brain Res. 2002, 137, 43–54. [Google Scholar] [CrossRef]
- Pezzamenti, L.; Nachon, F.; Chatonnet, A. Evolution of Acetylcholinesterase and Butyrylcholinesterase in the Vertebrates: An Atypical Butyrylcholinesterase from the Medaka Oryzias latipes. PLoS ONE 2011, 6, e17396. [Google Scholar] [CrossRef]
- Li, B.; Stribley, J.A.; Ticu, A.; Xie, W.; Achopfer, L.M.; Hammond, P.; Brimijoin, S.; Hinrichs, S.H.; Lockridge, O. Abundant Tissue Butyrylcholinesterase and Its Possible Function in the Acetylcholinesterase Knockout Mouse. J. Neurochem. 2000, 75, 1320–1331. [Google Scholar] [CrossRef]
Analysis (u.m.) | Tis. | n | Mean | s.d. | Min | Max | Tis. | n | Mean | s.d. | Min | Max | p-Level |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AChE (nmol/min/mg prot) | B | 31 | 26.32 | 6.74 | 13.92 | 36.92 | T | 30 | 31.55 | 9.18 | 16.09 | 49.05 | 0.014 |
CAT (µmol/min/mg prot) | L | 21 | 76.67 | 19.87 | 35.75 | 104.22 | T | 21 | 11.98 | 3.23 | 7.97 | 18.44 | 0.000 |
tGSH (µmol/g) | L | 10 | 2.91 | 0.88 | 1.48 | 3.80 | T | 10 | 0.25 | 0.04 | 0.20 | 0.31 | 0.000 |
MDA (nmol/g) | L | 8 | 94.73 | 8.00 | 85.52 | 108.72 | T | n.d. | |||||
TOSCA HO (GSHeq/g tis.) | L | 12 | 1779.24 | 397.10 | 1226.61 | 2512.47 | T | 12 | 465.54 | 134.78 | 303.54 | 730.19 | 0.000 |
TOSCA ROO (GSHeq/g tis.) | L | 29 | 868.82 | 265.14 | 460.37 | 1504.58 | T | 30 | 212.66 | 61.04 | 115.73 | 407.52 | 0.000 |
GSTs (nmol/min/mg prot) | L | 31 | 635.56 | 250.05 | 236.46 | 1264.67 | T | 30 | 39.29 | 10.24 | 22.79 | 64.94 | 0.000 |
EROD (pmol/min/mg prot) | L | 24 | 14.20 | 7.98 | 6.70 | 35.73 | T | n.d. | |||||
BChE (nmol/min/mg prot) | S | 28 | 202.82 | 56.51 | 93.74 | 325.45 | T | 17 | 25.88 | 10.19 | 13.84 | 45.12 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moltedo, G.; Martuccio, G.; Catalano, B.; Simbula, G.; Vignoli, L. The Use of Tail as a Minimal-Invasive Method to Detect a Large Set of Biochemical Responses in the Italian Wall Lizard Podarcis siculus (Rafinesque, 1810). Environments 2023, 10, 148. https://doi.org/10.3390/environments10090148
Moltedo G, Martuccio G, Catalano B, Simbula G, Vignoli L. The Use of Tail as a Minimal-Invasive Method to Detect a Large Set of Biochemical Responses in the Italian Wall Lizard Podarcis siculus (Rafinesque, 1810). Environments. 2023; 10(9):148. https://doi.org/10.3390/environments10090148
Chicago/Turabian StyleMoltedo, Ginevra, Giacomo Martuccio, Barbara Catalano, Giulia Simbula, and Leonardo Vignoli. 2023. "The Use of Tail as a Minimal-Invasive Method to Detect a Large Set of Biochemical Responses in the Italian Wall Lizard Podarcis siculus (Rafinesque, 1810)" Environments 10, no. 9: 148. https://doi.org/10.3390/environments10090148
APA StyleMoltedo, G., Martuccio, G., Catalano, B., Simbula, G., & Vignoli, L. (2023). The Use of Tail as a Minimal-Invasive Method to Detect a Large Set of Biochemical Responses in the Italian Wall Lizard Podarcis siculus (Rafinesque, 1810). Environments, 10(9), 148. https://doi.org/10.3390/environments10090148