Adaptations of Potential Nitrogenase Activity and Microbiota with Long-Term Application of Manure Compost to Paddy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Culture and Sampling
2.2. Reagents Used
2.3. Analyses of Chemical Composition
2.4. Diazotroph Population Density
2.5. Measurement of Potential Nitrogenase Activity
2.6. Evaluation of Soil Bacterial Microbiota
3. Results
3.1. Effects of the Seasonal Change and the Different Material Applications on the Diazotroph Population Density and the Potential Nitrogenase Activity
3.2. Increases in Alpha Diversity of Soil Microbiota with the Long-Term MC Application
3.3. Soil Microbiota Beta Diversity with the Long-Term MC and CF Applications
3.4. Changes of the Relative Taxonomic Abundances in the Long-Term MC Application
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandemir, T.; Schuster, M.E.; Senyshyn, A.; Behrens, M.; Schlögl, R. The Haber–Bosch process revisited: On the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 2013, 52, 12723–12726. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, F.; Land, J.; Krumdieck, S. Decarbonization of Nitrogen Fertilizer: A Transition Engineering Desk Study for Agriculture in Germany. Sustainability 2022, 14, 8564. [Google Scholar] [CrossRef]
- Crews, T.E.; Peoples, M.B. Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Bordeleau, L.; Prévost, D. Nodulation and nitrogen fixation in extreme environments. Plant Soil 1994, 161, 115–125. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Mitsch, M.J.; diCenzo, G.C.; Cowie, A.; Finan, T.M. Succinate transport is not essential for symbiotic nitrogen fixation by Sinorhizobium meliloti or Rhizobium leguminosarum. Appl. Environ. Microbiol. 2018, 84, e01561-17. [Google Scholar] [CrossRef] [Green Version]
- Ljones, T.; Burris, R. ATP hydrolysis and electron transfer in the nitrogenase reaction with different combinations of the iron protein and the molybdenum-iron protein. Biochim. Biophys. Acta (BBA)-Bioenerg. 1972, 275, 93–101. [Google Scholar] [CrossRef]
- Yoneyama, T.; Terakado-Tonooka, J.; Bao, Z.; Minamisawa, K. Molecular analyses of the distribution and function of diazotrophic rhizobia and methanotrophs in the tissues and rhizosphere of non-leguminous plants. Plants 2019, 8, 408. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, T.; Terakado-Tonooka, J.; Minamisawa, K. Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: A review and synthesis. Soil Sci. Plant Nutr. 2017, 63, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Maeda, I. Potential of phototrophic purple nonsulfur bacteria to fix nitrogen in rice fields. Microorganisms 2021, 10, 28. [Google Scholar] [CrossRef]
- Ma, J.; Bei, Q.; Wang, X.; Lan, P.; Liu, G.; Lin, X.; Liu, Q.; Lin, Z.; Liu, B.; Zhang, Y. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Sci. Total Environ. 2019, 649, 686–694. [Google Scholar] [CrossRef]
- Liu, J.; Han, J.; Zhu, C.; Cao, W.; Luo, Y.; Zhang, M.; Zhang, S.; Jia, Z.; Yu, R.; Zhao, J. Elevated atmospheric CO2 and nitrogen fertilization affect the abundance and community structure of rice root-associated nitrogen-fixing bacteria. Front. Microbiol. 2021, 12, 628108. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Li, C.; Xiao, X.; Shi, L.; Cheng, K.; Wen, L.; Li, W. Effects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of southern China. Sci. Rep. 2020, 10, 13540. [Google Scholar] [CrossRef] [PubMed]
- Weisany, W.; Raei, Y.; Allahverdipoor, K.H. Role of some of mineral nutrients in biological nitrogen fixation. Bull. Environ. Pharmacol. Life Sci. 2013, 2, 77–84. [Google Scholar]
- Chen, G.; Zhu, H.; Zhang, Y. Soil microbial activities and carbon and nitrogen fixation. Res. Microbiol. 2003, 154, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Singh, K. Nutrient immobilization and release patterns during plant decomposition in a dry tropical bamboo savanna, India. Biol. Fertil. Soils 1992, 14, 191–199. [Google Scholar] [CrossRef]
- Jin, J.; Wang, M.; Cao, Y.; Wu, S.; Liang, P.; Li, Y.; Zhang, J.; Zhang, J.; Wong, M.H.; Shan, S. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals. Bioresour. Technol. 2017, 228, 218–226. [Google Scholar] [CrossRef]
- Tripetchkul, S.; Pundee, K.; Koonsrisuk, S.; Akeprathumchai, S. Co-composting of coir pith and cow manure: Initial C/N ratio vs physico-chemical changes. Int. J. Recycl. Org. Waste Agric. 2012, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J. Nitrogen availability indexes. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1965, 9, 1324–1345. [Google Scholar]
- Leo Daniel, A.; Venkateswarlu, B.; Suseelendra, D.; Praveen Kumar, G.; Mir Hassan Ahmed, S.; Meenakshi, T.; Uzma, S.; Sravani, P.; Lakshmi Narasu, M. Effect of polymeric additives, adjuvants, surfactants on survival, stability and plant growth promoting ability of liquid bioinoculants. J. Plant Physiol. Pathol. 2013, 1, 2. [Google Scholar]
- Brown, M.E.; Burlingham, S.K.; Jackson, R.M. Studies on Azotobacter species in soil. Plant Soil 1962, 17, 309–319. [Google Scholar] [CrossRef]
- O’toole, P.; Knowles, R. Efficiency of acetylene reduction (nitrogen fixation) in soil: Effect of type and concentration of available carbohydrate. Soil Biol. Biochem. 1973, 5, 789–797. [Google Scholar] [CrossRef]
- Yamane, K.; Kimura, Y.; Takahashi, K.; Maeda, I.; Iigo, M.; Ikeguchi, A.; Kim, H.-J. The growth of leaf lettuce and bacterial communities in a closed aquaponics system with catfish. Horticulturae 2021, 7, 222. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Chappidi, S.; Villa, E.C.; Cantarel, B.L. Using Mothur to determine bacterial community composition and structure in 16S ribosomal RNA datasets. Curr. Protoc. Bioinform. 2019, 67, e83. [Google Scholar] [CrossRef]
- Hengstmann, U.; Chin, K.-J.; Janssen, P.H.; Liesack, W. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol. 1999, 65, 5050–5058. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.; Huang, Q.; Zhang, R.; Li, R.; Shen, B.; Shen, Q. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Mano, H.; Morisaki, H. Endophytic bacteria in the rice plant. Microbes Environ. 2008, 23, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.-C.; Shamsi, I.H.; Xu, D.-T.; Wang, G.-H.; Lin, X.-Y.; Jilani, G.; Hussain, N.; Chaudhry, A.N. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl. Soil Ecol. 2012, 57, 1–8. [Google Scholar] [CrossRef]
- Zhen, Z.; Liu, H.; Wang, N.; Guo, L.; Meng, J.; Ding, N.; Wu, G.; Jiang, G. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS ONE 2014, 9, e108555. [Google Scholar] [CrossRef]
- Soman, C.; Li, D.; Wander, M.M.; Kent, A.D. Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant Soil 2017, 413, 145–159. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, X.-X.; Guo, X.; Wang, D.; Chu, H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Bennett, J.; Ladha, J.K. Introduction: Feasibility of nodulation and nitrogen fixation in rice. In Nodulation and Nitrogen Fixation in Rice: Potential and Prospects; Khush, G.S., Bennett, J., Eds.; International Rice Research Institute: Manila, Philippines, 1992; pp. 1–14. [Google Scholar]
- Li, C.; Shi, L.; Tang, H.; Cheng, K.; Wen, L.; Li, W.; Xiao, X.; Wang, K. Organic manure management increases soil microbial community structure and diversity in the double-cropping rice paddy field of southern China. Commun. Soil Sci. Plant Anal. 2021, 52, 1224–1235. [Google Scholar] [CrossRef]
- Han, S.; Luo, X.; Liao, H.; Nie, H.; Chen, W.; Huang, Q. Nitrospira are more sensitive than Nitrobacter to land management in acid, fertilized soils of a rapeseed-rice rotation field trial. Sci. Total Environ. 2017, 599, 135–144. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, P.; Zeng, Z. Dynamics of bacterial communities in a 30-year fertilized paddy field under different organic–inorganic fertilization strategies. Agronomy 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Khanom, A.; Biswas, S.K. Effect of pesticides and chemical fertilizers on the nitrogen cycle and functional microbial communities in paddy soils: Bangladesh perspective. Bull. Environ. Contam. Toxicol. 2021, 106, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, A.; Vattiringal Jayadradhan, R.K.; Pillai, D.; Prasannan Geetha, P.; Joseph, V.; Isaac Sarojini, B.S. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J. Basic Microbiol. 2021, 61, 88–109. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, F.; Yao, H. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J. Soils Sediments 2019, 19, 1948–1958. [Google Scholar] [CrossRef]
Applied Material | Content (% w/w) | Applied Quantity | Applied Month |
---|---|---|---|
|
|
| May July March May (2018) in MC plot December (2018) in CF plot March (2019) in MC plot December (2019) in CF plot March (2020) in MC plot |
Material Applied | Ammonia (mg/100 g) | Mineralizable N (mg NH3/100 g) | ||||
March (Before application) | May (After application) | July (Before additional application) | March (Before application) | May (After application) | July (Before additional application) | |
CF CF + BP MC MC + BP | 2.83 ± 0.43 2.94 ± 1.25 4.21 ± 1.07 2.91 ± 1.20 | 1.93 ± 2.37 1.64 ± 1.66 0.88 ± 0.25 0.93 ± 0.21 | 0.75 ± 0.38 0.70 ± 0.25 0.75 ± 0.33 0.70 ± 0.36 | 3.15 ± 2.61 2.89 ± 1.33 3.18 ± 3.42 2.44 ± 3.28 | 7.06 ± 5.01 6.03 ± 4.86 8.74 ± 1.69 10.27 ± 2.47 | 5.09 ± 1.09 5.35 ± 1.52 7.16 ± 0.61 7.84 ± 1.79 |
Material Applied | Shannon | Inverse Simpson |
---|---|---|
CF CF + BP MC MC + BP | 8.12 ± 0.05 8.17 ± 0.18 8.70 ± 0.07 8.48 ± 0.03 | 717 ± 63 757 ± 101 1170 ± 37 899 ± 154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ao, Z.; Xia, J.; Seino, H.; Inaba, K.; Takahashi, Y.; Hayakawa, C.; Hirai, H.; Maeda, I. Adaptations of Potential Nitrogenase Activity and Microbiota with Long-Term Application of Manure Compost to Paddy Soil. Environments 2023, 10, 103. https://doi.org/10.3390/environments10060103
Ao Z, Xia J, Seino H, Inaba K, Takahashi Y, Hayakawa C, Hirai H, Maeda I. Adaptations of Potential Nitrogenase Activity and Microbiota with Long-Term Application of Manure Compost to Paddy Soil. Environments. 2023; 10(6):103. https://doi.org/10.3390/environments10060103
Chicago/Turabian StyleAo, Zhalaga, Juan Xia, Honoka Seino, Katsuhiro Inaba, Yukitsugu Takahashi, Chie Hayakawa, Hideaki Hirai, and Isamu Maeda. 2023. "Adaptations of Potential Nitrogenase Activity and Microbiota with Long-Term Application of Manure Compost to Paddy Soil" Environments 10, no. 6: 103. https://doi.org/10.3390/environments10060103
APA StyleAo, Z., Xia, J., Seino, H., Inaba, K., Takahashi, Y., Hayakawa, C., Hirai, H., & Maeda, I. (2023). Adaptations of Potential Nitrogenase Activity and Microbiota with Long-Term Application of Manure Compost to Paddy Soil. Environments, 10(6), 103. https://doi.org/10.3390/environments10060103