Bioindication of Environmental Conditions Using Solar Park Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Territory
2.2. Methodology of Vegetation Assessment
3. Results
4. Discussion
5. Conclusions
- Vegetation in solar parks provides valuable information regarding the impact of PV panels on the environment;
- Different living conditions, bioindicated by plants, suggest increasing extreme soil conditions due to PV panels;
- PV panels change the distribution of water precipitation, affecting the soil water regime, availability of nitrogen and phosphorus, soil pH, and salinity;
- Vegetation responds to these changes by withdrawing sensitive plant species and increasing tolerant species;
- It remains unclear to what extent these changes will be permanent and whether they could affect the subsequent use of the land;
- Heterogeneous conditions in solar parks may lead to increased biodiversity of vegetation, subsequently reflected in the increased biodiversity of animals;
- Changes in the environment also open up opportunities for invasive plant species, therefore monitoring, bioindication, and subsequent management of vegetation in solar parks is crucial;
- Solar parks represent a new living space for plant species, some of which find conditions favorable for growth and reproduction, whereas others have to adapt to new conditions;
- Solar parks can be considered the next stage in the co-evolution of vegetation and human civilization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Kumar, C.M.S.; Singh, S.; Gupta, M.K.; Nimdeo, Y.M.; Raushan, R.; Deorankar, A.V.; Kumar, T.A.; Rout, P.K.; Chanotiya, C.S.; Pakhale, V.D.; et al. Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain. Energy Technol. Assess. 2023, 55, 102905. [Google Scholar] [CrossRef]
- Assadi, M.R.; Ataebi, M.; sadat Ataebi, E.; Hasani, A. Prioritization of renewable energy resources based on sustainable management approach using simultaneous evaluation of criteria and alternatives: A case study on Iran’s electricity industry. Renew. Energy 2022, 181, 820–832. [Google Scholar] [CrossRef]
- Le, T.H. Quantile time-frequency connectedness between cryptocurrency volatility and renewable energy volatility during the COVID-19 pandemic and Ukraine-Russia conflicts. Renew. Energy 2023, 202, 613–625. [Google Scholar] [CrossRef]
- Nerlinger, M.; Utz, S. The impact of the Russia-Ukraine conflict on energy firms: A capital market perspective. Financ. Res. Lett. 2022, 50, 103243. [Google Scholar] [CrossRef]
- Sarker, A.K.; Azad, A.K.; Rasul, M.G.; Doppalapudi, A.T. Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review. Energies 2023, 16, 1556. [Google Scholar] [CrossRef]
- Bahar, H.; Abdelilah, Y.; Bianco, E. Renewables 2017; International Energy Agency: Paris, France, 2017; p. 185. Available online: https://iea.blob.core.windows.net/assets/952fe0c1-8d57-4dcc-adbd-85c854674478/MRSrenew2017.pdf (accessed on 10 January 2023).
- IEA. Renewables 2019 Analysis and Forecast to 2024 Executive Summary; International Energy Agency: Paris, France, 2019; Available online: https://www.iea.org/reports/renewables-2019/power (accessed on 10 January 2023).
- IRENA. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation Paper); International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019; p. 72. Available online: www.irena.org/publications (accessed on 10 January 2023).
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Scholmer, S.; von Stechow, C. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011; p. 1075. [Google Scholar]
- Mahmudul, H.M.; Akbar, D.; Rasul, M.G.; Narayanan, R.; Mofijur, M. Estimation of the sustainable production of gaseous biofuels, generation of lektricity, and reduction of greenhouse gas emissions using food waste in anaerobic digesters. Fuel 2022, 310, 122346. [Google Scholar] [CrossRef]
- Islam, A.; Teo, S.H.; Ng, C.H.; Taufiq-Yap, Y.H.; Choong, S.Y.T.; Awual, M.R. Progress in recent sustainable materials for greenhouse gas (NOx and SOx) emission mitigation. Prog. Mater. Sci. 2022, 132, 101033. [Google Scholar] [CrossRef]
- SolarPower Europe. Global Market Outlook for Solar Power 2019–2023; SolarPower Europe: Etterbeek, Belgium, 2019; Available online: https://www.solarpowereurope.org/insights/webinars/global-market-outlook-solar-2019-2023 (accessed on 10 January 2023).
- Scurlock, J. Agricultural Good Practice for Solar Farms; BRE National Solar Centre: St Blaise, UK, 2014; p. 5. Available online: https://files.bregroup.com/solar/NSC_-Guid_Agricultural-good-practice-for-SFs_0914.pdf (accessed on 10 January 2023).
- Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 2011, 15, 3261–3270. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Allen, M.F. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef]
- Thomas, S.J.; Thomas, S.; Sahoo, S.S.; Gobinath, R.; Awad, M.M. Allotment of Waste and Degraded Land Parcels for PV Based Solar Parks in India: Effects on Power Generation Cost and Influence on Investment Decision-Making. Sustainability 2022, 14, 1786. [Google Scholar] [CrossRef]
- Oudes, D.; van den Brink, A.; Stremke, S. Towards a typology of solar energy landscapes: Mixed-production, nature based and landscape inclusive solar power transitions. Energy Res. Soc. Sci. 2022, 91, 102742. [Google Scholar] [CrossRef]
- Sinha, P.; Hoffman, B.; Sakers, J.; Althouse, L. Best Practices in Responsible Land Use for Improving Biodiversity at a Utility-Scale Solar Facility. Case Stud. Environ. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Allison, T.D.; Root, T.L.; Frumhoff, P.C. Thinking globally and siting locally–renewable energy and biodiversity in a rapidly warming world. Clim. Change 2014, 126, 1–6. [Google Scholar] [CrossRef]
- Peschel, T. Solar parks—Opportunities for biodiversity: A report on biodiversity in and around ground-mounted photovoltaic plants. Renews Spec. 2010, 45, 3–34. [Google Scholar]
- Montag, H.; Parker, G.; Clarkson, T. The Effects of Solar Farms on Local Biodiversity; A Comparative Study. Clarkson and Woods and Wychwood Biodiversity. 2016. Available online: http://www.solar-trade.org.uk/solar-farms-biodiversity-study/ (accessed on 10 January 2023).
- Parker, G.E.; Greene, L. National Solar Centre Biodiversity Guidance for Solar Developments; BRE National Solar Centre: St Blaise, UK, 2014; p. 9. Available online: https://www.bre.co.uk/filelibrary/nsc/Documents%20Library/NSC%20Publications/National-Solar-Centre---Biodiversity-Guidance-for-Solar-Developments--2014-.pdf (accessed on 10 January 2023).
- Walston, L.J.; Mishra, S.K.; Hartmann, H.M.; Hlohowskyj, I.; McCall, J.; Macknick, J. Examining the potential for agricultural benefits from pollinator habitat at solar facilities in the United States. Environ. Sci. Technol. 2018, 52, 7566–7576. [Google Scholar] [CrossRef]
- Semeraro, T.; Pomes, A.; Del Giudice, C.; Negro, D.; Aretano, R. Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services. Energy Pol. 2018, 117, 218–227. [Google Scholar] [CrossRef]
- IPBES. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016; Available online: https://ipbes.net/assessment-reports/pollinators (accessed on 10 January 2023).
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Armstrong, A.; Ostle, N.J.; Whitaker, J. Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett. 2016, 11, 074016. [Google Scholar] [CrossRef]
- Armstrong, A.; Waldron, S.; Whitaker, J.; Ostle, N.J. Wind farm and solar park effects on plant–soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Global Change Biol. 2014, 20, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, H.; Yu, Y.; Zhao, W.; Liu, J.; Yu, H.; Yetemen, O. Ecohydrological effects of photovoltaic solar farms on soil microclimates and moisture regimes in arid Northwest China: A modeling study. Sci. Total Environ. 2022, 802, 149946. [Google Scholar] [CrossRef] [PubMed]
- Uldrijan, D.; Chovancová, S.; Winkler, J. Species spectrum of plants on selected land of photovoltaic power plant. In Proceedings of the International PhD Students Conference MendelNet; Polák, O., Cerkal, R., Belcredi, N.B., Horky, P., Vacek, P., Eds.; Mendel University in Brno: Brno, Czech Republic, 2016; pp. 163–167. [Google Scholar]
- Ferrara, G.; Boselli, M.; Palasciano, M.; Mazzeo, A. Effect of shading determined by photovoltaic panels installed above the vines on the performance of cv. Corvina (Vitis vinifera L.). Sci. Hortic. 2023, 308, 111595. [Google Scholar] [CrossRef]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W.; Paulißen, D. Pointer values of plants in Central Europe. Scr. Geobot. 1991, 18, 1–248. [Google Scholar] [CrossRef]
- Diekmann, M. Use and improvement of Ellenberg’s indicator values in deciduous forests of the Boreo-nemoral zone in Sweden. Ecography 1995, 18, 178–189. Available online: https://www.jstor.org/stable/3682767 (accessed on 10 January 2023). [CrossRef]
- Mičieta, K. Phytoindication of environmental mutagenesis in the in-situ conditions using the pollen of selected species of native flora. Thaiszia J. Bot. 2021, 31, 69–78. [Google Scholar] [CrossRef]
- Nykytiuk, P. Phytoindication: Basic diagnostic characteristics and approaches. Dan. Sci. J. 2020, 35, 5–9. [Google Scholar]
- Zverev, A.A. Direct and mediate assessment of acidity in hydromorphic habitats in West Siberian Plain. Int. J. Environ. Stud. 2014, 71, 629–636. [Google Scholar] [CrossRef]
- Holyk, H.M.; Goncharenko, I.V. Syntaxonomy, synphytoindication analysis and anthropogenic transformation of forest vegetation in Kyiv city. Ecol. Noospherol. 2017, 28, 49–63. [Google Scholar] [CrossRef]
- Zhukov, O.V.; Potapenko, O.V. Environmental impact assessment of distribution substations: The case of phytoindication. Ukr. J. Ecol. 2017, 7, 5–21. [Google Scholar] [CrossRef]
- Glibovytska, N.; Mykhailiuk, Y. Phytoindication research in the system of environmental monitoring. Ecol. Sci. 2020, 28, 111–114. [Google Scholar] [CrossRef]
- Janssens, F.; Peeters, A.; Tallowin, J.R.B.; Bakker, J.P.; Bekker, R.M.; Fillat, F.; Oomes, M.J.M. Relationship between soil chemical factors and grassland diversity. Plant Soil 1998, 202, 69–78. [Google Scholar] [CrossRef]
- Bobbink, R.; Hornung, M.; Roelofs, J.G.M. The effects of air-borne nitrogen pollutants on species diversity in natura and semi-natural European vegetation. J. Ecol. 1998, 86, 717–738. [Google Scholar] [CrossRef]
- Löfgren, O.; Hall, K.; Schmid, B.C.; Prentice, H.C. Grasslands ancient and modern: Soil nutrients, habitat age and their relation to Ellenberg N. J. Veg. Sci. 2020, 31, 367–379. [Google Scholar] [CrossRef]
- Wassen, M.J.; Venterink, H.O.; Lapshina, E.D.; Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 2005, 437, 547–550. [Google Scholar] [CrossRef]
- CGS. Map of Soil Types of the Czech Republic, 1:50,000. Czech Geological Society. 2017. Available online: https://mapy.geology.cz/pudy/ (accessed on 8 November 2022).
- CGS. Geological Map of the Czech Republic, 1:50,000. Czech Geological Society. 2018. Available online: https://mapy.geology.cz/geocr50/ (accessed on 8 November 2022).
- Westhoff, V.; van der Maarel, E. The Braun-Blanquet Approach. In Classification of Plant Communities; Whittaker, R.H., Ed.; W. Junk: Hague, The Netherlands, 1978; pp. 289–399. [Google Scholar]
- Kaplan, Z.; Danihelka, J.; Chrtek, J.; Kirschner, J.; Kubát, K.; Štech, M.; Štěpánek, J. (Eds.) Key to the Flora of the Czech Republic; Academia: Praha, Czech Republic, 2019; p. 1168. ISBN 978-80-200-2660-6. (In Czech) [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (Version 5.0); Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Tyler, T.; Herbertsson, L.; Olofsson, J.; Olsson, P.A. Ecological indicator and traits values for swedish vascular plants. Ecol. Indic. 2021, 120, 106923. [Google Scholar] [CrossRef]
- Uldrijan, D.; Kováčiková, M.; Jakimiuk, A.; Vaverková, M.D.; Winkler, J. Ecological effects of preferential vegetation composition developed on sites with photovoltaic power plants. Ecol. Eng. 2021, 168, 106274. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Winkler, J.; Uldrijan, D.; Ogrodnik, P.; Vespalcová, T.; Aleksiejuk-Gawron, J.; Adamcová, D.; Koda, E. Fire hazard associated with different types of photovoltaic power plants: Effect of vegetation management. Renew. Sustain. Energy Rev. 2022, 162, 112491. [Google Scholar] [CrossRef]
- Schindler, B.Y.; Blaustein, L.; Lotan, R.; Shalom, H.; Kadas, G.J.; Seifan, M. Green roof and photovoltaic panel integration: Effects on plant and arthropod diversity and electricity production. J. Environ. Manag. 2018, 225, 288–299. [Google Scholar] [CrossRef]
- Köhler, M.; Shmidt, M.; Laar, M.; Wachsmann, U.; Krauter, S. Photovoltaic panels on greened roofs: Positive interaction between two elements of sustainable architecture. In Proceedings of the RIO 02-World Climate & Energy Event, Rio de Janeiro, Brazil, 6–11 January 2002; pp. 6–11. [Google Scholar]
- Köhler, M.; Wiartalla, W.; Feige, R. Interaction between PV-systems and extensive green roofs. In Proceedings of the Fifth Annual Greening Rooftops for Sustainable Communities Conference, Awards and Trade Show, Minneapolis, MN, USA, 29 April–1 May 2007; pp. 1–16. [Google Scholar]
- Bousselot, J.; Slabe, T.; Klett, J.; Koski, R. Photovoltaic array influences the growth of green roof plants. J. Living Arch. 2017, 4, 9–18. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Change Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Blaydes, H.; Potts, S.G.; Whyatt, J.D.; Armstrong, A. Opportunities to enhance pollinator biodiversity in solar parks. Renew. Sustain. Energy Rev. 2021, 145, 111065. [Google Scholar] [CrossRef]
- Lovich, J.E.; Ennen, J.R. Wildlife conservation and solar energy development in the Desert Southwest, United States. BioScience 2011, 61, 982–992. [Google Scholar] [CrossRef]
- Moore-O’Leary, K.; Hernandez, R.R.; Johnston, D.S.; Abella, S.R.; Tanner, K.E.; Swanson, A.C.; Kreitler, J.; Lovich, J.E. Sustainability of utility-scale solar energy—Critical ecological concepts. Front. Ecol. Environ. 2017, 15, 385–394. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends. Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Hristov, J.; Clough, Y.; Sahlin, U.; Smith, H.G.; Stjernman, M.; Olsson, O.; Sahrbacher, A.; Brady, M.V. Impacts of the EU’s Common Agricultural Policy “Greening” reform on agricultural development, biodiversity, and ecosystem services. Appl. Econ. Perspect. Policy 2020, 42, 716–738. [Google Scholar] [CrossRef]
- Donald, R.F.; Green, R.E.; Heath, M.F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. B. 2001, 268, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef]
- Raven, P.H.; Wagner, D.L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 2021, 118, 2002548117. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Hines, J.; Ebeling, A.; Barnes, A.D.; Brose, U.; Scherber, C.; Scheu, S.; Tscharntke, T.; Weisser, W.W.; Giling, D.P.; Klein, A.M.; et al. Mapping change in biodiversity and ecosystem function research: Food webs foster integration of experiments and science policy. Adv. Ecol. Res. 2019, 61, 297–322. [Google Scholar] [CrossRef]
- Singhal, R.K.; Chauhan, J.; Jatav, H.S.; Rajput, V.D.; Singh, G.S.; Bose, B. Artificial night light alters ecosystem services provided by biotic components. Biol. Futur. 2021, 72, 169–185. [Google Scholar] [CrossRef]
- Fuller, R.J.; Trevelyan, R.J.; Hudson, R.W. Landscape composition models for breeding bird populations in lowland English farmland over a 20 year period. Ecography 1997, 20, 295–307. [Google Scholar] [CrossRef]
- Dover, J.W.; Sparks, T.; Clarke, S.; Gobbett, K.; Glossop, S. Linear features and butterflies: The importance of green lanes. Agric. Ecosyst. Environ. 2000, 80, 227–242. [Google Scholar] [CrossRef]
- Wilson, J.D.; Whittingham, M.J.; Bradbury, R.B. The management of crop structure: A general approach to reversing the impacts of agricultural intensification on birds? Ibis 2005, 147, 453–463. [Google Scholar] [CrossRef]
- Jannoyer, M.L.; Le Bellec, F.; Lavigne, C.; Achard, R.; Malézieux, E. Choosing cover crops to enhance ecological services in orchards: A multiple criteria and systemic approach applied to tropical areas. Procedia Environ. Sci. 2011, 9, 104–112. [Google Scholar] [CrossRef]
- Ayoubi, S.; Mohammadi, A.; Abdi, M.R.; Abbaszadeh Afshar, F.; Wang, L.; Zeraatpisheh, M. Assessment of soil redistribution following land rehabilitation with an apple orchard in hilly regions of central Iran. Agronomy 2022, 12, 451. [Google Scholar] [CrossRef]
- Ramos, M.F.; da Silva Almeida, W.R.; do Amaral, R.D.L.; Suzuki, L.E.A.S. Degree of compactness and soil quality of peach orchards with different production ages. Soil Tillage Res. 2022, 219, 105324. [Google Scholar] [CrossRef]
- Beniaich, A.; Guimarães, D.V.; Avanzi, J.C.; Silva, B.M.; Acuña-Guzman, S.F.; dos Santos, W.P.; Silva, M.L.N. Spontaneous vegetation as an alternative to cover crops in olive orchards reduces water erosion and improves soil physical properties under tropical conditions. Agric. Water Manag. 2023, 279, 108186. [Google Scholar] [CrossRef]
- Fagerholm, N.; Torralba, M.; Burgess, P.J.; Plieninger, T. A systematic map of ecosystem services assessments around European agroforestry. Ecol. Indic. 2016, 62, 47–65. [Google Scholar] [CrossRef]
- Ioannidou, S.C.; Litskas, V.D.; Stavrinides, M.C.; Vogiatzakis, I.N. Linking management practices and soil properties to Ecosystem Services in Mediterranean mixed orchards. Ecosyst. Serv. 2022, 53, 101378. [Google Scholar] [CrossRef]
- Picuno, P.; Cillis, G.; Statuto, D. Investigating the time evolution of a rural landscape: How historical maps may provide environmental information when processed using a GIS. Ecol. Eng. 2019, 139, 105580. [Google Scholar] [CrossRef]
- Van Den Berge, S.; Tessens, S.; Baeten, L.; Vanderschaeve, C.; Verheyen, K. Contrasting vegetation change (1974–2015) in hedgerows and forests in an intensively used agricultural landscape. Appl. Veg. Sci. 2019, 22, 269–281. [Google Scholar] [CrossRef]
- Sánchez, A.C.; Jones, S.K.; Purvis, A.; Estrada-Carmona, N.; De Palma, A. Landscape and functional groups moderate the effect of diversified farming on biodiversity: A global meta-analysis. Agric. Ecosyst. Environ. 2022, 332, 107933. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I. Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conserv. Biol. 2003, 17, 1036–1044. [Google Scholar] [CrossRef]
- Paesel, H.K.; Schmitz, A.; Isselstein, J. Heterogeneity and diversity of orchard grassland vegetation in Central Germany: Role of tree stock, soil parameters and site management. Agrofor. Syst. 2019, 93, 825–836. [Google Scholar] [CrossRef]
- Fattorini, S. Biotope prioritisation in the Central Apennines (Italy): Species rarity and cross-taxon congruence. Biodivers. Conserv. 2021, 19, 3413–3429. [Google Scholar] [CrossRef]
- Schaeckermann, J.; Pufal, G.; Mandelik, Y.; Klein, A.M. Agro-ecosystem services and dis-services in almond orchards are differentially influenced by the surrounding landscape. Ecol. Entomol. 2015, 40, 12–21. [Google Scholar] [CrossRef]
- Gkisakis, V.; Volakakis, N.; Kollaros, D.; Bàrberi, P.; Kabourakis, E.M. Soil arthropod community in the olive agroecosystem: Determined by environment and farming practices in different management systems and agroecological zones. Agric. Ecosyst. Environ. 2016, 218, 178–189. [Google Scholar] [CrossRef]
- Winkler, J.; Ježová, M.; Punčochář, R.; Hurajová, E.; Martínez Barroso, P.; Kopta, T.; Semerádová, D.; Vaverková, M.D. Fire Hazard: Undesirable Ecosystem Function of Orchard Vegetation. Fire 2023, 6, 25. [Google Scholar] [CrossRef]
- Vignozzi, N.; Agnelli, A.E.; Brandi, G.; Gagnarli, E.; Goggioli, D.; Lagomarsino, A.; Pellegrini, S.; Simoncini, S.; Simoni, S.; Valboa, G.; et al. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Appl. Soil Ecol. 2019, 134, 64–76. [Google Scholar] [CrossRef]
- Simoni, S.; Caruso, G.; Vignozzi, N.; Gucci, R.; Valboa, G.; Pellegrini, S.; Palai, G.; Goggioli, D.; Gagnarli, E. Effect of long-term soil management practices on tree growth, yield and soil biodiversity in a high-density olive agro-ecosystem. Agronomy 2021, 11, 1036. [Google Scholar] [CrossRef]
- González-Gómez, L.; Intrigliolo, D.S.; Rubio-Asensio, J.S.; Buesa, I.; Ramírez-Cuesta, J.M. Assessing almond response to irrigation and soil management practices using vegetation indexes time-series and plant water status measurements. Agric. Ecosyst. Environ. 2022, 339, 108124. [Google Scholar] [CrossRef]
- Merwin, I.A.; Stiles, W.C.; van Es, H.M. Orchard groundcover management impacts on soil physical properties. J. Am. Soc. Hortic. Sci. 1994, 119, 216–222. [Google Scholar] [CrossRef]
- Demestihas, C.; Plénet, D.; Génard, M.; Raynal, C.; Lescourret, F. Ecosystem services in orchards. A review. Agron. Sustain. Dev. 2017, 37, 12. [Google Scholar] [CrossRef]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Klaus, V.H.; Hölzel, N.; Fischer, M. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 2012, 100, 1391–1399. [Google Scholar] [CrossRef]
- Chollet, S.; Brabant, C.; Tessier, S.; Jung, V. From urban lawns to urban meadows: Reduction of mowing frequency increases plant taxonomic, functional and phylogenetic diversity. Landsc. Urban Plan. 2018, 180, 121–124. [Google Scholar] [CrossRef]
- Watson, C.J.; Carignan-Guillemette, L.; Turcotte, C.; Maire, V.; Proulx, R. Ecological and economic benefits of low-intensity urban lawn management. J. Appl. Ecol. 2020, 57, 436–446. [Google Scholar] [CrossRef]
- Uldrijan, D.; Černý, M.; Winkler, J. Solar Park: Opportunity or Threat for Vegetation and Ecosystem. J. Ecol. Eng. 2022, 23, 1–10. [Google Scholar] [CrossRef]
- Winkler, J.; Vaverková, M.D.; Havel, L. Anthropogenic life strategy of plants. Anthr. Rev. 2023. in print. [Google Scholar] [CrossRef]
Groups of Taxa | Taxon |
---|---|
Group 1 prefers sites Under PV and on dries sites | Acer campestre (AceCamp), Agrostis stolonifera (AgrStol), Artemisia vulgaris (ArtVulg), Digitaria sanguinalis (DigSang), Potentilla anserina (PotAnse), Rubus sp. (RubSp.), Sambucus nigra (SamNigr), Sedum acre (SedAcre), S. album (SedAlbu), S. sexangulare (SedSexa), Tussilago farfara (TusFarf). |
Group 2 prefers sites Under PV | Anthriscus sylvestris (AntSylv), Apera spica-venti (ApeSpic), Arctium tomentosum (ArcTome), Bromus hordeaceus (BroHord), B. sterilis (BroSter), B. tectorum (BroTect), Calamagrostis epigejos (CalEpig), Capsella bursa-pastoris (CapBurs), Cirsium arvense (CirArve), Epilobium adenocaulon (EpiAden), Galium aparine (GalApar), Geranium pusillum (GerPusi), Chelidonium majus (CheMaju), Impatiens parviflora (ImpParv), Lamium purpureum (LamPurp), Plantago major (PlaMajo), Polygonum aviculare (PolAvic), Prunus domestica (PruDome), Rosa canina (RosCani), Salix alba (SalAlba), Senecio vulgaris (SenVulg), Setaria pumila (SetPumi), Setaria viridis (SetViri), Solanum nigrum (SolNigr), Sonchus oleraceus (SonOler), Tripleurospermum inodorum (TriInod), Urtica dioica (UrtDioi), Urtica urens (UrtUren). |
Group 3 with no preferences | Achillea millefolium (AchMill), Convolvulus arvensis (ConArve), Crepis biennis (CreBien), Erigeron annuus (EriAnnu), Geranium dissectum (GerDiss), Chenopodium album (CheAlbu), Malva neglecta (MalNegl), Plantago media (PlaMedi), Tanacetum vulgare (TanVulg), Taraxacum sect. Taraxacum (TarSect), Vicia cracca (VicCrac), Viola arvensis (VioArve). |
Group 4 prefers sites Between | Alopecurus pratensis (AloPrat), Anthemis arvensis (AntArve), Anthoxanthum odoratum (AntOdor), Armoracia rusticana (ArmRust), Bellis perennis (BelPere), Dactylis glomerata (DacGlom), Equisetum arvense (EquArve), Fallopia convolvulus (FalConv), Festuca rubra (FesRubr), Fragaria vesca (FraVesc), Galium album (GalAlbu), Lamium album (LamAlbu), Lathyrus pratensis (LatPrat), Leucanthemum vulgare (LeuVulg), Lolium perenne (LolPere), Medicago lupulina (MedLupu), Phleum pratense (PhlPrat), Ranunculus acris (RanAcri), Rumex crispus (RumCrisp), Salix cinerea (SalCine), Silene latifolia (SilLati), Trifolium hybridum (TriHybr), Trifolium pratense (TriPrat), Trifolium repens (TriRepe), Veronica chamaedrys (VerCham), Vicia sepium (VicSepi). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uldrijan, D.; Winkler, J.; Vaverková, M.D. Bioindication of Environmental Conditions Using Solar Park Vegetation. Environments 2023, 10, 86. https://doi.org/10.3390/environments10050086
Uldrijan D, Winkler J, Vaverková MD. Bioindication of Environmental Conditions Using Solar Park Vegetation. Environments. 2023; 10(5):86. https://doi.org/10.3390/environments10050086
Chicago/Turabian StyleUldrijan, Dan, Jan Winkler, and Magdalena Daria Vaverková. 2023. "Bioindication of Environmental Conditions Using Solar Park Vegetation" Environments 10, no. 5: 86. https://doi.org/10.3390/environments10050086
APA StyleUldrijan, D., Winkler, J., & Vaverková, M. D. (2023). Bioindication of Environmental Conditions Using Solar Park Vegetation. Environments, 10(5), 86. https://doi.org/10.3390/environments10050086