Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals
Abstract
:1. Introduction
2. Physical and Chemical Properties of Human and Livestock Urine and Feces
3. Thermochemical Conversion of Human and Animal Waste
3.1. Pyrolysis
3.2. Gasification
Type of Gasification and Key Products | Key Findings | References |
---|---|---|
Gasification type: Conventional fluidized bed gasification Feedstock: Poultry litter Study focus: Parametric studies and process optimization To investigate the effect of adding limestone (CaCO3), different gasifying agents and temperatures on product gas yield, and cold gas efficiency during gasification |
| Pandey et al. [64] |
Gasification type: Conventional gasification Feedstock: Chicken manure Study focus: Co-gasification and catalytic studies. Study the synergistic effect of gasifying petroleum coke and chicken manure, while the chicken manure is a catalyst |
| Liu et al. [61] |
Gasification type: Conventional gasification Feedstock: Human faces Study focus: Thermodynamic and energy analysis with Aspen Plus simulation. Explored the viability of human feces as a raw material for gasification. Estimation of the quantity of energy that could be produced from human feces |
| Onabanjo et al. [53] |
Gasification type: Conventional gasification Feedstock: Chicken manure Study focus: Parametric studies The effect of gasifying media (air, steam, carbon dioxide, and nitrogen) and temperatures ranging from 600 °C to 1000 °C on the pyrolysis and gasification of chicken manure |
| Hussein et al. [23] |
Gasification type: Conventional gasification Feedstock: Cattle manure Study focus: Parametric studies The viability of a two-step gasification route for producing hydrogen gas was examined by studying the temperature impact on biochar characteristics and product distribution |
| Xin et al. [58] |
Gasification type: Hydrothermal gasification Feedstock: Horse manure Catalyst: Homogeneous alkali catalyst including NaOH, Na2CO3, and K2CO3 Study focus: Parametric studies Explored the effect of reaction temperature (400–600 °C), biomass-to-water ratio (1:5 and 1:10), and reaction time (15–45 min) at a pressure range of 23–25 MPa on product yield during horse manure gasification in supercritical water |
| Nanda et al. [59] |
Gasification type: Conventional gasification Feedstock: Pig manure compost Heterogeneous catalyst: Ni/Al2O3, Ni-loaded brown coal char Study focus: Catalytic effect of supported Ni catalyst during gasification and parametric studies. |
| Xiao et al. [65] |
Gasification type: Hydrothermal gasification Feedstock: Chicken manure Catalyst: K2CO3 Study focus: Parametric studies, kinetics, and reaction mechanism evaluation |
| Liu et al. [57] |
3.3. Liquefaction
3.4. Hydrothermal Carbonization
4. Biological Conversion of Human and Animal Waste
4.1. Anaerobic Digestion
Authors | Aim of Study | Key Findings |
---|---|---|
Ihoeghian et al. [12] | Conversion pathway: Anaerobic digestion Investigated and established the best co-digestion ratio for cattle rumen content and food waste for synergistic biogas production. | A 50:50 ratio of cattle rumen content and food waste was recommended for biogas production Co-digestion of cattle rumen content and food waste enhanced biogas production |
Ma et al. [99] | Conversion pathway: Anaerobic digestion Adopted the meta-analysis approach to compare the methane yield between mono-digestion and co-digestion of animal manure with other feedstock. | Higher methane yield was obtained from the co-digestion (animal manure mixed with other feedstock) when compared to mono-digestion. |
Adjama et al. [114] | Conversion pathway: Anaerobic digestion To investigate the proportions of anaerobic co-digestion of rice straws and human feces that will give the optimal biogas yield. | An equal ratio of rice straws and human feces produced the highest biogas yield (61% percentage yield). |
Arifan et al. [103] | Conversion pathway: Anaerobic digestion To study the effectiveness of co-digestion of chicken manure, cow manure, and liquid tofu waste for producing biogas. | The best combination of feed materials that produced the optimum yield are as follow: 15% chicken manure, 70% cow manure, and 15% liquid tofu waste. |
Eduok et al. [115] | Conversion pathway: Anaerobic digestion To compare the effectiveness of water, human urine, and sodium bicarbonate (Na2CO3) as a buffering agent for the codigestion of poultry feces and lignocellulosic biomass for the generation of biogas. | The urine-buffered reactors produced the highest yield up to five times greater than those buffered with sodium bicarbonate and water. |
Silwadi et al. [116] | Conversion pathway: Anaerobic digestion To compare the biogas yield and composition resulting from mono-digestion (cow, chicken, and camel) and co-digestion (mixtures of cow, chicken, and camel). | The co-digestion gave a higher yield than the mono-digestion. Biogas yield increased 5 (co-digestion with chicken manure), 12 (co-digestion with cow manure), and 28 (co-digestion with camel manure) times when compared to mono-digestion. |
Pan et al. [117] | Conversion pathway: Anaerobic digestion Investigated the role of wood-based biochar during AD of chicken manure. | 25% reduction in TAN accumulation. 69% increase in biogas production compared to the control. |
Kizito et al. [118] | Conversion pathway: Anaerobic digestion Investigated the role of biochar on the removal of TAN during AD of piggery waste | 60% reduction in TAN accumulation which enhanced AD stability. |
Recebli et al. [119] | Conversion pathway: Fermentation To compare the daily biogas production rate from poultry manure and bovine animal manure. | Approximately 0.83 m3 and 6.33 m3 of biogas are produced daily from poultry manure and bovine animal manure, respectively. The lower heating value of the produced methane and biogas is 34,000 KJ/m3 and 21,000 kJ/m3 respectively. |
Zlateva et al. [120] | Conversion pathway: Fermentation To determine the quantity of biogas and energy produced from the anaerobic fermentation of cow manure, chicken manure, and pig manure. | It was revealed that approximately 556,000 kWh per annum of energy is produced. At the same time, 55,660 methane is released per annum, with pig manure, cow manure, and chicken manure contributing to the release of 7493 Nm3CH4/a, 234,111 Nm3CH4/a, and 24,756 Nm3CH4/a, respectively. |
Andreev et al. [121] | Conversion pathway: Fermentation To subject human urine to lactic acid fermentation to reduce its odor and enhance its fertilizing ability. | The pH of the treated urine ranges from 3.8–4.7 compared to the untreated which is 6.1. The ammonia composition decreases by 20–30% compared to the untreated, whose ammonia composition increases by 30% owing to hydrolysis. |
Andreev et al. [122] | Conversion pathway: Fermentation To subject human excreta to lactic acid fermentation to reduce the loss of nutrients and the number of pathogens present in them. | Human excreta is a promising source of nutrients via lactic acid fermentation. The nutrient loss is lowered in the presence of lactic acid with 7–10 days fermentation. |
Adjama et al. [114] | Conversion pathway: Fermentation To investigate anaerobic fermentation chicken manure and straw mixtures in a batch reactor at a temperature of 37 °C for ten weeks | The straw ratio of 3% gave the highest methane yield of 292.87 mLgVS−1 which is 17% greater than pure chicken manure. |
Dong-Jun Lee et al. [123] | Conversion pathway: Fermentation Evaluate the impact of two different pretreatment methods (NaOH and H2SO4) on the bioethanol yield during horse manure fermentation. | Alkaline/enzyme-hydrolysates showed higher bioethanol productivity (0.075 g L−1h−1) than those of acid/enzyme-hydrolysates (0.050 g L−1h−1). Fermentation of hydrolysates produced less inhibitory compounds due to the alkaline pretreatment. |
4.2. Fermentation
5. Nutrient and Fertilizer Recovery from Human and Animal Waste
5.1. Overview of Nutrient Recovery Technologies
5.1.1. Selective Adsorption
5.1.2. Struvite Precipitation
5.1.3. Ammonia Stripping
5.1.4. Evaporation
6. Bibliometric Research Trends on Resource Recovery from Human and Animal Waste
7. Conclusions and Future Research Directions
- Developing effective and safe methods for processing human and animal waste is needed. There is a need for safe and effective methods for processing hazardous waste to optimize nutrients and resource recovery.
- It is imperative to examine the most effective ways to use the recovered resources. Once resources have been recovered from human or animal waste, there is a need to determine the most effective ways to use them, such as for agricultural purposes or as a source of energy, while considering the environmental impacts of different utilization methods.
- Understanding the potential impacts of using recovered resources: It is important to understand any potential negative impacts of using recovered resources on the environment on a large scale. Usually, a cradle-to-grave lifecycle assessment should be performed.
- Developing technologies for the on-site recovery of resources: There is a need for technologies that can be used to recover resources from feces on-site, such as at a wastewater treatment plant or in a portable system. Offsite or district waste processing facilities with improved heat optimization and materials recovery could also be a viable alternative.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krounbi, L.; Enders, A.; van Es, H.; Woolf, D.; von Herzen, B.; Lehmann, J. Biological and thermochemical conversion of human solid waste to soil amendments. Waste Manag. 2019, 89, 366–378. [Google Scholar] [CrossRef] [PubMed]
- WHO. Population Practising Open Defecation (%). Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4823 (accessed on 20 January 2023).
- Hunter, B.; Deshusses, M.A. Resources recovery from high-strength human waste anaerobic digestate using simple nitrification and denitrification filters. Sci. Total. Environ. 2019, 712, 135509. [Google Scholar] [CrossRef] [PubMed]
- Hart, C.A.; Umar, L.W. Diarrhoeal Disease. Trop. Dr. 2000, 30, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Szogi, A.A.; Vanotti, M.; Ro, K. Methods for Treatment of Animal Manures to Reduce Nutrient Pollution Prior to Soil Application. Curr. Pollut. Rep. 2015, 1, 47–56. [Google Scholar] [CrossRef]
- Orner, K.D.; Mihelcic, J.R. A review of sanitation technologies to achieve multiple sustainable development goals that promote resource recovery. Environ. Sci. Water Res. Technol. 2018, 4, 16–32. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sustain. Energy Rev. 2020, 119, 109546. [Google Scholar] [CrossRef]
- Okolie, J.A.; Epelle, E.I.; Tabat, M.E.; Orivri, U.; Amenaghawon, A.N.; Okoye, P.U.; Gunes, B. Waste biomass valorization for the production of biofuels and value-added products: A comprehensive review of thermochemical, biological and integrated processes. Process. Saf. Environ. Prot. 2022, 159, 323–344. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, J.; Zhu, Z.; Zhang, Y.; Zhao, Y.; Li, R.; Watson, J.; Li, B.; Liu, Z. Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction. Energy Convers. Manag. 2017, 134, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Min, K.J.; Park, K.Y. Economic feasibility of phosphorus recovery through struvite from liquid anaerobic digestate of animal waste. Environ. Sci. Pollut. Res. 2021, 28, 40703–40714. [Google Scholar] [CrossRef]
- Onwosi, C.O.; Igbokwe, V.C.; Ezugworie, F.N. Decentralized Anaerobic Digestion Technology for Improved Management of Human Excreta in Nigeria. In Anaerobic Biodigesters for Human Waste Treatment; Springer: Cham, Switzerland, 2022; pp. 137–163. [Google Scholar] [CrossRef]
- Ihoeghian, N.A.; Amenaghawon, A.N.; Ajieh, M.U.; Oshoma, C.E.; Ogofure, A.; Erhunmwunse, N.O.; Edosa, V.I.; Tongo, I.; Obuekwe, I.S.; Isagba, E.S.; et al. Anaerobic co-digestion of cattle rumen content and food waste for biogas production: Establishment of co-digestion ratios and kinetic studies. Bioresour. Technol. Rep. 2022, 18, 101033. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Zhang, Z.; Nghiem, L.D.; Wang, Q. Urine pretreatment significantly promotes methane production in anaerobic waste activated sludge digestion. Sci. Total. Environ. 2022, 853, 158684. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Oa, S.-W. Resource-recovery processes from animal waste as best available technology. J. Mater. Cycles Waste Manag. 2015, 18, 201–207. [Google Scholar] [CrossRef]
- Kirchmann, H.; Pettersson, S. Human urine—Chemical composition and fertilizer use efficiency. Nutr. Cycl. Agroecosyst. 1994, 40, 149–154. [Google Scholar] [CrossRef]
- Rout, P.R.; Pandey, D.S.; Haynes-Parry, M.; Briggs, C.; Manuel, H.L.C.; Umapathi, R.; Mukherjee, S.; Panigrahi, S.; Goel, M. Sustainable Valorisation of Animal Manures via Thermochemical Conversion Technologies: An Inclusive Review on Recent Trends. Waste Biomass-Valorization 2022, 14, 553–582. [Google Scholar] [CrossRef]
- Olugasa, T.T.; Odesola, I.; Oyewola, M. Energy production from biogas: A conceptual review for use in Nigeria. Renew. Sustain. Energy Rev. 2014, 32, 770–776. [Google Scholar] [CrossRef]
- Malomo, G.A.; Madugu, A.S.; Bolu, S.A. Sustainable Animal Manure Management Strategies and Practices. In Agricultural Waste and Residues; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Zseni, A. Human Excreta Management: Human Excreta as an Important Base of Sustainable Agriculture. Proceedings of the 4th MAC 2015, Prague, Czech Republic, 20–21 February 2015; MAC Prague consulting Ltd.: Prague, Czech Republic, 2015. [Google Scholar]
- Tsai, W.-T.; Huang, C.-N.; Chen, H.-R.; Cheng, H.-Y. Pyrolytic Conversion of Horse Manure into Biochar and Its Thermochemical and Physical Properties. Waste Biomass Valorization 2015, 6, 975–981. [Google Scholar] [CrossRef]
- Afolabi, I.C.; Epelle, E.I.; Gunes, B.; Güleç, F.; Okolie, J.A. Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes. Clean Technol. 2022, 4, 1227–1241. [Google Scholar] [CrossRef]
- Shen, X.; Huang, G.; Yang, Z.; Han, L. Compositional characteristics and energy potential of Chinese animal manure by type and as a whole. Appl. Energy 2015, 160, 108–119. [Google Scholar] [CrossRef]
- Hussein, M.; Burra, K.; Amano, R.; Gupta, A. Temperature and gasifying media effects on chicken manure pyrolysis and gasification. Fuel 2017, 202, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Yacob, T.W.; Fisher, R.; Linden, K.G.; Weimer, A.W. Pyrolysis of human feces: Gas yield analysis and kinetic modeling. Waste Manag. 2018, 79, 214–222. [Google Scholar] [CrossRef]
- Nitsche, M.; Hensgen, F.; Wachendorf, M. Energy Generation from Horse Husbandry Residues by Anaerobic Digestion, Combustion, and an Integrated Approach. Sustainability 2017, 9, 358. [Google Scholar] [CrossRef] [Green Version]
- Chong, C.T.; Mong, G.R.; Ng, J.-H.; Chong, W.W.F.; Ani, F.N.; Lam, S.S.; Ong, H.C. Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers. Manag. 2019, 180, 1260–1267. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, H.; Zheng, X.; Liu, F.; Wang, A.; Zou, D.; Yuan, J.; Xiao, Z. Thermochemical liquefaction of pig manure: Factors influencing on oil. Fuel 2020, 264, 116884. [Google Scholar] [CrossRef]
- Islam, M.N.; Park, J.-H. A short review on hydrothermal liquefaction of livestock manure and a chance for Korea to advance swine manure to bio-oil technology. J. Mater. Cycles Waste Manag. 2016, 20, 1–9. [Google Scholar] [CrossRef]
- Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [Google Scholar] [CrossRef] [Green Version]
- Salana, S.; Banerji, T.; Kumar, A.; Singh, E.; Kumar, S. Resource Recovery-Oriented Sanitation and Sustainable Human Excreta Management. In Sustainable Resource Management: Technologies for Recovery and Reuse of Energy and Waste Materials; Wiley VCH: Weinheim, Germany, 2021; pp. 109–136. [Google Scholar] [CrossRef]
- Biswas, J.K.; Rana, S.; Meers, E. Bioregenerative Nutrient Recovery from Human Urine: Closing the Loop in Turning Waste into Wealth. In Biorefinery of Inorganics: Recovering Mineral Nutrients from Biomass and Organic Waste; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Simha, P.; Ganesapillai, M. Ecological Sanitation and nutrient recovery from human urine: How far have we come? A review. Sustain. Environ. Res. 2017, 27, 107–116. [Google Scholar] [CrossRef]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Rowles, L.S.; Morgan, V.L.; Li, Y.; Zhang, X.; Watabe, S.; Stephen, T.; Lohman, H.A.C.; DeSouza, D.; Hallowell, J.; Cusick, R.D.; et al. Financial Viability and Environmental Sustainability of Fecal Sludge Treatment with Pyrolysis Omni Processors. ACS Environ. AU 2022, 2, 455–466. [Google Scholar] [CrossRef]
- Selim, O.M.; Amano, R.S. Co-Pyrolysis of Chicken and Cow Manure. J. Energy Resour. Technol. 2021, 143, 011301. [Google Scholar] [CrossRef]
- Beik, F.; Williams, L.; Brown, T.; Wagland, S. Development and prototype testing of a novel small-scale pyrolysis system for the treatment of sanitary sludge. Energy Convers. Manag. 2023, 277, 116627. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, X.; Sun, Y.; Zhao, J.; Awasthi, M.K.; Liu, T.; Li, R.; Zhang, Z. Improvement of the composition and humification of different animal manures by black soldier fly bioconversion. J. Clean. Prod. 2021, 278, 123397. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Lee, D.-J.; Jung, S.; Jeong, K.-H.; Lee, S.-H.; Park, Y.-K.; Kwon, E.E. Catalytic pyrolysis of cow manure over a Ni/SiO2 catalyst using CO2 as a reaction medium. Energy 2020, 195, 117077. [Google Scholar] [CrossRef]
- Mong, G.R.; Chong, C.T.; Ng, J.-H.; Chong, W.W.F.; Ong, H.C.; Tran, M.-V. Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management. Energy 2021, 216, 119194. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Zhang, Y.; Feng, R.; Mahmood, I.B. Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process. Waste Manag. 2014, 34, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liang, H.; Han, L.; Huang, G.; Yang, Z. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties. Waste Manag. 2019, 88, 85–95. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef]
- Bleuler, M.; Gold, M.; Strande, L.; Schönborn, A. Pyrolysis of Dry Toilet Substrate as a Means of Nutrient Recycling in Agricultural Systems: Potential Risks and Benefits. Waste Biomass-Valorization 2021, 12, 4171–4183. [Google Scholar] [CrossRef]
- Koutcheiko, S.; Monreal, C.; Kodama, H.; McCracken, T.; Kotlyar, L. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresour. Technol. 2007, 98, 2459–2464. [Google Scholar] [CrossRef] [PubMed]
- Erdogdu, A.E.; Polat, R.; Ozbay, G. Pyrolysis of goat manure to produce bio-oil. Eng. Sci. Technol. Int. J. 2018, 22, 452–457. [Google Scholar] [CrossRef]
- Elkasabi, Y.; Mullen, C.A.; Pighinelli, A.L.; Boateng, A.A. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts. Fuel Process. Technol. 2014, 123, 11–18. [Google Scholar] [CrossRef]
- Pandey, D.S.; Katsaros, G.; Lindfors, C.; Leahy, J.J.; Tassou, S.A. Fast Pyrolysis of Poultry Litter in a Bubbling Fluidised Bed Reactor: Energy and Nutrient Recovery. Sustainability 2019, 11, 2533. [Google Scholar] [CrossRef] [Green Version]
- Mong, G.R.; Chong, C.T.; Ng, J.-H.; Chong, W.W.F.; Lam, S.S.; Ong, H.C.; Ani, F.N. Microwave pyrolysis for valorisation of horse manure biowaste. Energy Convers. Manag. 2020, 220, 113074. [Google Scholar] [CrossRef]
- Lee, D.-J.; Jung, S.; Jang, Y.; Jo, G.; Park, S.H.; Jeon, Y.J.; Park, Y.-K.; Kwon, E.E. Offering a new option to valorize hen manure by CO2-assisted catalytic pyrolysis over biochar and metal catalysts. J. CO2 Util. 2020, 42, 101344. [Google Scholar] [CrossRef]
- He, S.; Cao, C.; Wang, J.; Yang, J.; Cheng, Z.; Yan, B.; Pan, Y.; Chen, G. Pyrolysis study on cattle manure: From conventional analytical method to online study of pyrolysis photoionization time-of-flight mass spectrometry. J. Anal. Appl. Pyrolysis 2020, 151, 104916. [Google Scholar] [CrossRef]
- Ren, C.; Guo, S.; Wang, Y.; Liu, S.; Du, M.; Chen, Y.; Guo, L. Thermodynamic analysis and optimization of auto-thermal supercritical water gasification polygeneration system of pig manure. Chem. Eng. J. 2022, 427, 131938. [Google Scholar] [CrossRef]
- Onabanjo, T.; Patchigolla, K.; Wagland, S.; Fidalgo, B.; Kolios, A.; McAdam, E.; Parker, A.; Williams, L.; Tyrrel, S.; Cartmell, E. Energy recovery from human faeces via gasification: A thermodynamic equilibrium modelling approach. Energy Convers. Manag. 2016, 118, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, P.; Fernandez, A.; Al-Ansari, T.; Mackey, H.R.; Rodriguez, R.; McKay, G. Thermal degradation characteristics and gasification kinetics of camel manure using thermogravimetric analysis. J. Environ. Manag. 2021, 287, 112345. [Google Scholar] [CrossRef]
- Sobamowo, G.M.; Ojolo, S.J. Techno-Economic Analysis of Biomass Energy Utilization through Gasification Technology for Sustainable Energy Production and Economic Development in Nigeria. J. Energy 2018, 2018, 4860252. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Shu, L.; Zang, G.; Xu, L.; Abudula, A.; Ge, K. Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system. Energy 2018, 149, 750–761. [Google Scholar] [CrossRef]
- Liu, M.; Li, F.; Liu, H.; Wang, C.-H. Synergistic effect on co-gasification of chicken manure and petroleum coke: An investigation of sustainable waste management. Chem. Eng. J. 2020, 417, 128008. [Google Scholar] [CrossRef]
- Xin, Y.; Cao, H.; Yuan, Q.; Wang, D. Two-step gasification of cattle manure for hydrogen-rich gas production: Effect of biochar preparation temperature and gasification temperature. Waste Manag. 2017, 68, 618–625. [Google Scholar] [CrossRef]
- Nanda, S.; Dalai, A.K.; Gökalp, I.; Kozinski, J.A. Valorization of horse manure through catalytic supercritical water gasification. Waste Manag. 2016, 52, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Tavasoli, A.; Aslan, M.; Salimi, M.; Balou, S.; Pirbazari, S.; Hashemi, H.; Kohansal, K. Influence of the blend nickel/porous hydrothermal carbon and cattle manure hydrochar catalyst on the hydrothermal gasification of cattle manure for H2 production. Energy Convers. Manag. 2018, 173, 15–28. [Google Scholar] [CrossRef]
- Liu, S.; Cao, W.; Wang, Y.; Wei, W.; Li, L.; Jin, H.; Guo, L. Characteristics and mechanisms of nitrogen transformation during chicken manure gasification in supercritical water. Waste Manag. 2022, 153, 240–248. [Google Scholar] [CrossRef]
- De Blasio, C. Notions of Biomass Gasification. In Fundamentals of Biofuels Engineering and Technology; Springer: Cham, Switzerland, 2019; pp. 307–334. [Google Scholar] [CrossRef]
- Salierno, G.; Marinelli, F.; Likozar, B.; Ghavami, N.; De Blasio, C. Supercritical Water Gasification of glycerol: Continuous reactor kinetics and transport phenomena modeling. Int. J. Heat Mass Transf. 2022, 183, 122200. [Google Scholar] [CrossRef]
- Pandey, D.S.; Kwapinska, M.; Gómez-Barea, A.; Horvat, A.; Fryda, L.E.; Rabou, L.P.L.M.; Leahy, J.J.; Kwapinski, W. Poultry Litter Gasification in a Fluidized Bed Reactor: Effects of Gasifying Agent and Limestone Addition. Energy Fuels 2016, 30, 3085–3096. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Cao, J.; Meng, X.; Le, D.D.; Li, L.; Ogawa, Y.; Sato, K.; Takarada, T. Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded brown coal char. Fuel 2013, 103, 135–140. [Google Scholar] [CrossRef]
- Perera, S.M.; Wickramasinghe, C.; Samarasiri, B.; Narayana, M. Modeling of thermochemical conversion of waste biomass—A comprehensive review. Biofuel Res. J. 2021, 8, 1481–1528. [Google Scholar] [CrossRef]
- Güleç, F.; Riesco, L.M.G.; Williams, O.; Kostas, E.T.; Samson, A.; Lester, E. Hydrothermal conversion of different lignocellulosic biomass feedstocks—Effect of the process conditions on hydrochar structures. Fuel 2021, 302, 121166. [Google Scholar] [CrossRef]
- Castello, D.; Pedersen, T.H.; Rosendahl, L.A. Continuous Hydrothermal Liquefaction of Biomass: A Critical Review. Energies 2018, 11, 3165. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Li, H.; Zhang, Y.; Liu, Z. Nitrogen Migration and Transformation during Hydrothermal Liquefaction of Livestock Manures. ACS Sustain. Chem. Eng. 2018, 6, 13570–13578. [Google Scholar] [CrossRef]
- Conti, F.; Toor, S.S.; Pedersen, T.H.; Seehar, T.H.; Nielsen, A.H.; Rosendahl, L.A. Valorization of animal and human wastes through hydrothermal liquefaction for biocrude production and simultaneous recovery of nutrients. Energy Convers. Manag. 2020, 216, 112925. [Google Scholar] [CrossRef]
- Li, H.; Lu, J.; Zhang, Y.; Liu, Z. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals. J. Anal. Appl. Pyrolysis 2018, 135, 133–140. [Google Scholar] [CrossRef]
- Wang, W.; Yang, L.; Yin, Z.; Kong, S.; Han, W.; Zhang, J. Catalytic liquefaction of human feces over Ni-Tm/TiO2 catalyst and the influence of operating conditions on products. Energy Convers. Manag. 2018, 157, 239–245. [Google Scholar] [CrossRef]
- Alherbawi, M.; Parthasarathy, P.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study. Energy 2021, 232, 121027. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Cheng, Z.; Dong, H.; Yan, B.; Chen, G. Synergetic effect and primary reaction network of corn cob and cattle manure in single and mixed hydrothermal liquefaction. J. Anal. Appl. Pyrolysis 2021, 155, 105076. [Google Scholar] [CrossRef]
- Wei, L.; Sevilla, M.; Fuertes, A.B.; Mokaya, R.; Yushin, G. Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. Adv. Energy Mater. 2011, 1, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Murillo, A.; Sabio, E.; Ledesma, B.; Román, S.; González-García, C. Generation of biofuel from hydrothermal carbonization of cellulose. Kinetics modelling. Energy 2016, 94, 600–608. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl. Energy 2014, 135, 182–191. [Google Scholar] [CrossRef]
- Guangzhi, Y.; Jinyu, Y.; Yuhua, Y.; Zhihong, T.; DengGuang, Y.; Junhe, Y. Preparation and CO2 adsorption properties of porous carbon from camphor leaves by hydrothermal carbonization and sequential potassium hydroxide activation. RSC Adv. 2017, 7, 4152–4160. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, F.; Hoekman, S.K.; Liu, T.; Gai, C.; Peng, N. Homogeneously Dispersed Zerovalent Iron Nanoparticles Sup-ported on Hydrochar-Derived Porous Carbon: Simple, in situ Synthesis and Use for Dechlorination of PCBs. ACS Sustain. Chem. Eng. 2016, 4, 3261–3267. [Google Scholar] [CrossRef]
- Fan, F.; Xing, X.; Shi, S.; Zhang, X.; Zhang, X.; Li, Y.; Xing, Y. Combustion Characteristic and Kinetics Analysis of Hydrochars. Trans. Chin. Soc. Agric. Eng. 2016, 32, 219–224. [Google Scholar] [CrossRef]
- Hao, W.; Björkman, E.; Lilliestråle, M.; Hedin, N. Activated Carbons for Water Treatment Prepared by Phosphoric Acid Ac-tivation of Hydrothermally Treated Beer Waste. Ind. Eng. Chem. Res. 2014, 53, 15389–15397. [Google Scholar] [CrossRef]
- Titirici, M.-M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, R.Y.; Mau, V.; Gross, A. Using hydrothermal carbonization for sustainable treatment and reuse of human excreta. J. Clean. Prod. 2018, 205, 955–963. [Google Scholar] [CrossRef]
- Afolabi, O.O.D.; Sohail, M.; Thomas, C.P.L. Microwave Hydrothermal Carbonization of Human Biowastes. Waste Biomass-Valorization 2015, 6, 147–157. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Holdich, R.; Martin, S.; Shama, G.; Wheatley, A. Process energetics for the hydrothermal carbonisation of human faecal wastes. Energy Convers. Manag. 2015, 105, 1115–1124. [Google Scholar] [CrossRef] [Green Version]
- Czerwińska, K.; Śliz, M.; Wilk, M. Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renew. Sustain. Energy Rev. 2022, 154, 111873. [Google Scholar] [CrossRef]
- Jang, E.-S.; Ryu, D.-Y.; Kim, D. Hydrothermal carbonization improves the quality of biochar derived from livestock manure by removing inorganic matter. Chemosphere 2022, 305, 135391. [Google Scholar] [CrossRef] [PubMed]
- Qaramaleki, S.V.; Villamil, J.A.; Mohedano, A.F.; Coronella, C.J. Factors Affecting Solubilization of Phosphorus and Nitrogen through Hydrothermal Carbonization of Animal Manure. ACS Sustain. Chem. Eng. 2020, 8, 12462–12470. [Google Scholar] [CrossRef]
- Ghavami, N.; Özdenkçi, K.; Chianese, S.; Musmarra, D.; De Blasio, C. Process simulation of hydrothermal carbonization of digestate from energetic perspectives in Aspen Plus. Energy Convers. Manag. 2022, 270, 116215. [Google Scholar] [CrossRef]
- Neshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [Google Scholar] [CrossRef]
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R. BMC Energy Waste to Bioenergy: A Review on the Recent Conversion Technologies. BMC Energy 2019, 1, 4. [Google Scholar] [CrossRef]
- Karki, R.; Chuenchart, W.; Surendra, K.; Shrestha, S.; Raskin, L.; Sung, S.; Hashimoto, A.; Khanal, S.K. Anaerobic co-digestion: Current status and perspectives. Bioresour. Technol. 2021, 330, 125001. [Google Scholar] [CrossRef]
- Dalke, R.; Demro, D.; Khalid, Y.; Wu, H.; Urgun-Demirtas, M. Current status of anaerobic digestion of food waste in the United States. Renew. Sustain. Energy Rev. 2021, 151, 111554. [Google Scholar] [CrossRef]
- Ilo, O.; Simatele, M.; Nkomo, S.; Mkhize, N.; Prabhu, N. Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa. Sustainability 2021, 13, 6746. [Google Scholar] [CrossRef]
- Ripoll, V.; Agabo-García, C.; Solera, R.; Perez, M. Anaerobic digestion of slaughterhouse waste in batch and anaerobic sequential batch reactors. Biomass Convers. Biorefinery 2022, 1–12. [Google Scholar] [CrossRef]
- Rajendran, K.; Mahapatra, D.; Venkatraman, A.V.; Muthuswamy, S.; Pugazhendhi, A. Advancing anaerobic digestion through two-stage processes: Current developments and future trends. Renew. Sustain. Energy Rev. 2020, 123, 109746. [Google Scholar] [CrossRef]
- Donkor, K.O.; Gottumukkala, L.D.; Lin, R.; Murphy, J.D. A perspective on the combination of alkali pre-treatment with bioaugmentation to improve biogas production from lignocellulose biomass. Bioresour. Technol. 2022, 351, 126950. [Google Scholar] [CrossRef]
- Awosusi, A.; Sethunya, V.; Matambo, T. Synergistic effect of anaerobic co-digestion of South African food waste with cow manure: Role of low density-polyethylene in process modulation. Mater. Today Proc. 2021, 38, 793–803. [Google Scholar] [CrossRef]
- Ma, G.; Ndegwa, P.; Harrison, J.H.; Chen, Y. Methane yields during anaerobic co-digestion of animal manure with other feedstocks: A meta-analysis. Sci. Total. Environ. 2020, 728, 138224. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Kommalapati, R.R. Optimizing anaerobic co-digestion of goat manure and cotton gin trash using biochemical methane potential (BMP) test and mathematical modeling. SN Appl. Sci. 2021, 3, 724. [Google Scholar] [CrossRef]
- Alfa, M.I.; Owamah, H.I.; Onokwai, A.O.; Gopikumar, S.; Oyebisi, S.O.; Kumar, S.S.; Bajar, S.; Samuel, O.D.; Ilabor, S.C. Evaluation of biogas yield and kinetics from the anaerobic co-digestion of cow dung and horse dung: A strategy for sustainable management of livestock manure. Energy, Ecol. Environ. 2020, 6, 425–434. [Google Scholar] [CrossRef]
- Hamzah, A.F.A.; Hamzah, M.H.; Man, H.C.; Jamali, N.S.; Siajam, S.I.; Show, P.L. Biogas Production Through Mono- and Co-digestion of Pineapple Waste and Cow Dung at Different Substrate Ratios. BioEnergy Res. 2022, 1–12. [Google Scholar] [CrossRef]
- Arifan, F.; Abdullah, A.; Sumardiono, S. Effectiveness Analysis of Anaerobic Digestion Method in Making Biogas from Animal Manure and Tofu Liquid Waste. J. Ilmu Teknol. Has. Ternak 2021, 16, 84–94. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Xu, H.; Chang, J.; Wang, H.; Liu, Y.; Zhang, X.; Liang, P.; Huang, X. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms. Sci. Total. Environ. 2019, 695, 133876. [Google Scholar] [CrossRef]
- Lv, N.; Zhao, L.; Wang, R.; Ning, J.; Pan, X.; Li, C.; Cai, G.; Zhu, G. Novel strategy for relieving acid accumulation by enriching syntrophic associations of syntrophic fatty acid-oxidation bacteria and H2/formate-scavenging methanogens in anaerobic digestion. Bioresour. Technol. 2020, 313, 123702. [Google Scholar] [CrossRef]
- Wang, P.; Peng, H.; Adhikari, S.; Higgins, B.; Roy, P.; Dai, W.; Shi, X. Enhancement of biogas production from wastewater sludge via anaerobic digestion assisted with biochar amendment. Bioresour. Technol. 2020, 309, 123368. [Google Scholar] [CrossRef]
- Zhang, L.; Tsui, T.-H.; Loh, K.-C.; Dai, Y.; Tong, Y.W. Effects of plastics on reactor performance and microbial communities during acidogenic fermentation of food waste for production of volatile fatty acids. Bioresour. Technol. 2021, 337, 125481. [Google Scholar] [CrossRef]
- Arif, S.; Liaquat, R.; Adil, M. Applications of materials as additives in anaerobic digestion technology. Renew. Sustain. Energy Rev. 2018, 97, 354–366. [Google Scholar] [CrossRef]
- Sitthi, S.; Hatamoto, M.; Watari, T.; Yamaguchi, T. Enhancing anaerobic syntrophic propionate degradation using modified polyvinyl alcohol gel beads. Heliyon 2020, 6, e05665. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Y.; Euverink, G.J.W. Effect of bioaugmentation combined with activated charcoal on the mitigation of volatile fatty acids inhibition during anaerobic digestion. Chem. Eng. J. 2022, 428, 131015. [Google Scholar] [CrossRef]
- Lu, X.; Wang, H.; Ma, F.; Zhao, G.; Wang, S. Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: Effects of an iron oxide-zeolite additive. Bioresour. Technol. 2018, 262, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cui, Y.; Zhang, T.; Hu, Q.; Tong, Y.W.; He, Y.; Dai, Y.; Wang, C.-H.; Peng, Y. Food waste treating by biochar-assisted high-solid anaerobic digestion coupled with steam gasification: Enhanced bioenergy generation and porous biochar production. Bioresour. Technol. 2021, 331, 125051. [Google Scholar] [CrossRef]
- Adjama, I.; Derkyi, N.S.A.; Uba, F.; Akolgo, G.A.; Opuko, R. Anaerobic Co-Digestion of Human Feces with Rice Straw for Biogas Production: A Case Study in Sunyani. Model. Simul. Eng. 2022, 2022, 608045. [Google Scholar] [CrossRef]
- Eduok, S.; John, O.; Ita, B.; Inyang, E.; Coulon, F. Enhanced Biogas Production From Anaerobic Co-digestion of Lignocellulosic Biomass and Poultry Feces Using Source Separated Human Urine as Buffering Agent. Front. Environ. Sci. 2018, 6, 67. [Google Scholar] [CrossRef]
- Silwadi, M.; Mousa, H.; Al-Hajji, B.Y.; Al-Wahaibi, S.S.; Al-Harrasi, Z.Z. Enhancing biogas production by anaerobic digestion of animal manure. Int. J. Green Energy 2022, 20, 1–8. [Google Scholar] [CrossRef]
- Pan, J.; Ma, J.; Liu, X.; Zhai, L.; Ouyang, X.; Liu, H. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 2019, 275, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Kizito, S.; Wu, S.; Kirui, W.K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total. Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Recebli, Z.; Selimli, S.; Ozkaymak, M.; Gonc, O. Biogas Production from Animal Manure. J. Eng. Sci. Technol. 2015, 10, 722–729. [Google Scholar]
- Zlateva, P.; Terziev, A.; Yordanov, K. Study of regime parameters of the fermenter in the production of biogas from animal liquid waste materials. E3S Web Conf. 2021, 286, 02010. [Google Scholar] [CrossRef]
- Andreev, N.; Ronteltap, M.; Boincean, B.; Wernli, M.; Zubcov, E.; Bagrin, N.; Borodin, N.; Lens, P. Lactic acid fermentation of human urine to improve its fertilizing value and reduce odour emissions. J. Environ. Manag. 2017, 198, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Andreev, N.; Ronteltap, M.; Boincean, B.; Lens, P.N.L. Lactic acid fermentation of human excreta for agricultural application. J. Environ. Manag. 2018, 206, 890–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.-J.; Yim, J.H.; Jung, S.; Jang, M.-S.; Jeong, G.-T.; Jeong, K.-H.; Kim, J.K.; Tsang, Y.F.; Jeon, Y.J.; Kwon, E.E. Valorization of animal manure: A case study of bioethanol production from horse manure. Chem. Eng. J. 2021, 403, 126345. [Google Scholar] [CrossRef]
- Jimenez, J.; Bott, C.; Love, N.; Bratby, J. Source Separation of Urine as an Alternative Solution to Nutrient Management in Biological Nutrient Removal Treatment Plants. Water Environ. Res. 2015, 87, 2120–2129. [Google Scholar] [CrossRef]
- Koffi Konan, F.; Kouame, M.K.; Author, C.; Koffi Félix, K.; Nazo Edith, K.-K.; Théophile, G.; Kotchi Yves, B.; Kouamé Martin, K.; Yao Francis, K.; Kablan, T. Improving Anaerobic Biodigestion of Manioc Wastewater with Human Urine as Co-Substrate. Int. J. Innov. Appl. Stud. 2013, 2, 335–343. [Google Scholar]
- Twizerimana, M.; Marimi, M.; Bura, X.; Nganyi, E.O. Biogas Production from Co-digestion of Cotton Yarn Waste and Human Urine. J. Energy Res. Rev. 2020, 6, 20–29. [Google Scholar] [CrossRef]
- Giwa, A.S.; Xu, H.; Chang, F.; Wu, J.; Li, Y.; Ali, N.; Ding, S.; Wang, K. Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations. J. Environ. Chem. Eng. 2019, 7, 103067. [Google Scholar] [CrossRef]
- Wienchol, P.; Szlęk, A.; Ditaranto, M. Waste-to-energy technology integrated with carbon capture—Challenges and opportunities. Energy 2020, 198, 117352. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, J.J.; Nie, J.M.; Wu, N.; Yang, F.; Yang, R.J. Biogas production of Chicken Manure by Two-stage fermentation process. E3S Web Conf. 2018, 38, 01048. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; He, J.; Shen, Y.; Xu, X.; Liu, Y.; Li, Y.; Wu, S.; Xue, G.; Li, X.; Makinia, J. Enhanced degradation of glucocorticoids, a potential COVID-19 remedy, by co-fermentation of waste activated sludge and animal manure: The role of manure type and degradation mechanism. Environ. Res. 2021, 201, 111488. [Google Scholar] [CrossRef]
- Svetlitchnyi, A.V.; Kensch, O.; A Falkenhan, D.; Korseska, S.G.; Lippert, N.; Prinz, M.; Sassi, J.; Schickor, A.; Curvers, S. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol. Biofuels 2013, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doreswamy, R.; Deb, R.; De, S. Potential use of piggery excreta as a viable source of bioethanol production. J. Clean. Prod. 2021, 316, 128246. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, X.; Wang, Y.; Li, H.; Li, Z.; Zhou, L.; Qu, Y.; Li, Z.; Bao, X. Cow manure as a lignocellulosic substrate for fungal cellulase expression and bioethanol production. AMB Express 2018, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Dadrasnia, A.; Muñoz, I.D.B.; Yáñez, E.H.; Lamkaddam, I.U.; Mora, M.; Ponsá, S.; Ahmed, M.; Argelaguet, L.L.; Williams, P.M.; Oatley-Radcliffe, D.L. Sustainable nutrient recovery from animal manure: A review of current best practice technology and the potential for freeze concentration. J. Clean. Prod. 2021, 315, 128106. [Google Scholar] [CrossRef]
- Ruiz, D.; Miguel, G.S.; Corona, B.; Gaitero, A.; Domínguez, A. Environmental and economic analysis of power generation in a thermophilic biogas plant. Sci. Total. Environ. 2018, 633, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.F.; Queiroz, I.D.S.; Mikhael, J.E.R.; Oliveira, R.C.; Borges, E.N. Enriched animal manure as a source of phosphorus in sustainable agriculture. Int. J. Recycl. Org. Waste Agric. 2019, 8, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.M.P.; Esculier, F.; Levavasseur, F.; Houot, S. Human urine-based fertilizers: A review. Crit. Rev. Environ. Sci. Technol. 2020, 52, 890–936. [Google Scholar] [CrossRef]
- Sugihara, R. Reuse of Human Excreta in Developing Countries: Agricultural Fertilization Optimization. Consilience 2020, 22, 58–64. [Google Scholar] [CrossRef]
- Moya, B.; Parker, A.; Sakrabani, R. Challenges to the use of fertilisers derived from human excreta: The case of vegetable exports from Kenya to Europe and influence of certification systems. Food Policy 2019, 85, 72–78. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Ogunbiyi, O.D.; Omotola, E.O.; Adeyemi, W.J.; Agboola, O.O.; Onwudiwe, D.C. Urine: Useless or useful “waste”? Results Eng. 2022, 16, 100522. [Google Scholar] [CrossRef]
- Pathy, A.; Ray, J.; Paramasivan, B. Challenges and opportunities of nutrient recovery from human urine using biochar for fertilizer applications. J. Clean. Prod. 2021, 304, 127019. [Google Scholar] [CrossRef]
- Akpan-Idiok, A.U.; Udo, I.A.; Braide, E.I. The use of human urine as an organic fertilizer in the production of okra (Abelmoschus esculentus) in South Eastern Nigeria. Resour. Conserv. Recycl. 2012, 62, 14–20. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Lebuf, V.; Michels, E.; Belia, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valorization 2017, 8, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Mungray, A.A.; Mungray, A.K. Technologies for the recovery of nutrients, water and energy from human urine: A review. Chemosphere 2020, 259, 127372. [Google Scholar] [CrossRef]
- Harder, R.; Wielemaker, R.; Larsen, T.A.; Zeeman, G.; Öberg, G. Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Crit. Rev. Environ. Sci. Technol. 2019, 49, 695–743. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Shim, S.; Won, S.; Ra, C. Struvite recovered from various types of wastewaters: Characteristics, soil leaching behaviour, and plant growth. Land Degrad. Dev. 2018, 29, 2864–2879. [Google Scholar] [CrossRef]
- Papurello, D.; Boschetti, A.; Silvestri, S.; Khomenko, I.; Biasioli, F. Real-time monitoring of removal of trace compounds with PTR-MS: Biochar experimental investigation. Renew. Energy 2018, 125, 344–355. [Google Scholar] [CrossRef]
- Wei, S.P.; van Rossum, F.; van de Pol, G.J.; Winkler, M.-K.H. Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: A pilot study. Chemosphere 2018, 212, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Masrura, S.U.; Dissanayake, P.; Sun, Y.; Ok, Y.S.; Tsang, D.C.W.; Khan, E. Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: A critical review. Crit. Rev. Environ. Sci. Technol. 2020, 51, 3016–3048. [Google Scholar] [CrossRef]
- Zhang, J.; She, Q.; Chang, V.W.C.; Tang, C.Y.; Webster, R.D. Mining Nutrients (N, K, P) from Urban Source-Separated Urine by Forward Osmosis Dewatering. Environ. Sci. Technol. 2014, 48, 3386–3394. [Google Scholar] [CrossRef] [PubMed]
- Azuara, M.; Kersten, S.R.; Kootstra, A.M.J. Recycling phosphorus by fast pyrolysis of pig manure: Concentration and extraction of phosphorus combined with formation of value-added pyrolysis products. Biomass-Bioenergy 2012, 49, 171–180. [Google Scholar] [CrossRef]
- Zhang, T.; Bowers, K.E.; Harrison, J.H.; Chen, S. Releasing Phosphorus from Calcium for Struvite Fertilizer Production from Anaerobically Digested Dairy Effluent. Water Environ. Res. 2010, 82, 34–42. [Google Scholar] [CrossRef] [Green Version]
Review Title | The Main Issue Addressed | References |
---|---|---|
A review of sanitation technologies to achieve multiple sustainable development goals that promote resource recovery |
| Orner and Mihelcic [6] |
Resource recovery processes from animal waste as best available technology |
| Lee and Oa. [14] |
Sustainable Valorization of Animal Manures via Thermochemical Conversion Technologies: An Inclusive Review on Recent Trends |
| Rout et al. [16] |
Energy production from biogas: A conceptual review for use in Nigeria |
| Olugasa et al. [17] |
Sustainable Animal Manure Management Strategies and Practices |
| Malomo et al. [18] |
Human excreta management: human excreta as an important base of sustainable agriculture |
| Zseni. [19] |
A technical review on resource recovery from human and animal waste |
| This study |
Category | Moisture Content (%) | Weight (kg) | N (kg) | K (kg) | P (kg) | Volatile Solids (kg) | Total Solids (kg) | Biological Oxygen Demand, (BOD) (kg) |
---|---|---|---|---|---|---|---|---|
Poultry manures | ||||||||
Broilers | 74 | 40.00 | 0.44 | 0.25 | 0.13 | 7.72 | 9.99 | 2.41 |
Duck | 74 | 46.31 | 0.45 | 0.23 | 0.16 | 7.26 | 12.26 | 2.04 |
Layers | 75 | 25.88 | 0.50 | 0.18 | 0.15 | 5.00 | 6.81 | 1.51 |
Swine manure | ||||||||
Boar | 90 | 8.63 | 0.06 | 0.04 | 0.03 | 0.77 | 0.86 | 0.30 |
Gestating sow | 90 | 11.34 | 0.07 | 0.05 | 0.03 | 1.04 | 1.14 | 0.38 |
Lactating sow | 90 | 26.79 | 0.20 | 0.13 | 0.06 | 2.45 | 2.68 | 0.91 |
Beef manure | ||||||||
Finishing cattle | 92 | 29.51 | 0.16–0.23 | 0.11 | 0.02–0.03 | 1.95 | 2.36 | 0.45 |
Beef cow in confinement | 88 | 47.22 | 0.16 | 0.11 | 0.04 | 5.00 | 5.90 | 1.14 |
Growing calf in confinement | 88 | 34.96 | 0.20 | 0.13 | 0.04 | 3.50 | 4.18 | 0.77 |
Human | ||||||||
Human feces | 72 | 0.225 | 0.01 | 0.004 | 0.01 | - | - | 5.48 |
Human urine | 95 | 0.12 | 0.02 | 0.005 | 0.005 | - | - | 1.83 |
Waste Types | Proximate Analysis | Ultimate Analysis | Higher Heating Value | References | |||||
---|---|---|---|---|---|---|---|---|---|
Volatile Matter (wt.%) | Fixed Carbon (wt.%) | Ash Content (wt.%) | C (wt.%) | S (wt.%) | O (wt.%) | H (wt.%) | HHV (MJ/kg) | ||
Chicken manure | 65.6 | 12.9 | 21.7 | 35.6 | 1.5 | 35.5 | 4.6 | 13.2 | Hussein et al. [23] |
Human feces | 50.2 | 25.1 | 14.8 | 43.5 | 0.7 | 30.1 | 6.4 | 19.3 | Yacob et al. [24] |
Horse manure | 70.4 | 11 | 10.5 | 46.1 | 0.2 | 53.1 | 5.4 | 22.5 | Nitsche et al. [25] Chong et al. [26] |
Pig manure | - | - | 22.3 | 40.4 | 0.4 | 50.6 | 6.3 | 13.7 | Wu et al. [27] |
Cattle manure | - | - | 7.2 | 35.4 | - | 57.5 | 4.7 | 15.2 | Islam et al. [28] |
Type of Pyrolysis and Key Products | Main Findings | Reference |
---|---|---|
Feedstock: Animal manure Type: Slow pyrolysis Non-catalytic Main product: Biochar |
| Cantrell et al. [38] |
Feedstock: Human waste Type: Slow pyrolysis Non-catalytic Main product: Biochar |
| Krounbi et al. [1] |
Feedstock: Human Faces Type: Slow pyrolysis Non-catalytic Main product: Biochar |
| Yacob et al. [24] |
Feedstock: Dry toilet substrates comprising of urine, feces, and wood chips Type: Slow pyrolysis Non-catalytic Main product: Biochar |
| Blueler et al. [44] |
Feedstock: Chicken manure Physical activation with CO2 to activated carbon. Type: Slow pyrolysis Catalyst: Homogeneous NaOH Main product: Biochar |
| Koutcheiko [45] |
Feedstock: Goat manure Type: Fast pyrolysis Non-catalytic Main product: Bio-oil |
| Erdogdu et al. [46] |
Feedstock: Equine manure Type: Fast pyrolysis Catalyst: HZSM-5 catalyst Main product: Bio-oil |
| Elkasabi et al. [47] |
Feedstock: Poultry litter Type: Fast pyrolysis Non-catalytic Main product: Biochar and gases |
| Pandey et al. [48] |
Feedstock: Horse manure Type: Microwave-assisted pyrolysis Catalyst: Activated carbon Main product: Biochar and gases |
| Mong et al. [49] |
Feedstock: Hen manure Type: CO2-assisted catalytic pyrolysis Catalyst: Transition metal Main product: Biochar, bio-oil and gases |
| Lee et al. [50] |
Aim of Study | Key Findings | Authors |
---|---|---|
To examine the effects of temperature, holding time, and catalyst on the product distribution of a Ni-Tm/TiO2-catalyzed liquefaction of human feces. |
| Wang et al. [72] |
The feasibility of using hydrothermal liquefaction to produce energy (biocrude oil), recover nutrients and metals from human feces at specific retention times, temperatures, and total solid contents. |
| Lu et al. [69] |
Nutrient recovery and energy production from the decomposition of animal manure, sewage sludge, and fish sludge, with or without K2CO3 (catalyst), under subcritical (350 °C) and supercritical conditions (450 °C). |
| Conti et al. [70] |
Studied the influence of temperatures, solvent filling rates, and solid–liquid rates on the composition and yield of bio-oil derived from pig manure are examined. |
| Wu et al. [27] |
To compare the hydrothermal liquefaction of dairy manure, broiler manure, dairy manure, laying hen manure, swine manure, and beef manure. |
| Li et al. [71] |
Explored the possibilities of converting camel manure into bio-oil and upgrading to drop in fuel via hydrothermal liquefaction. |
| Alherbawi et al. [73] |
Studied the synergistic effect during the co-liquefaction of corn cob and cattle manure. |
| He et al. [74] |
Recovery Technology | Nutrients Recovered | Source | Efficiency (%) | References |
---|---|---|---|---|
Air stripping | Ammonium | Human urine | 90 | Wei et al. [148] |
Struvite precipitation | Phosphorus | Human urine | 94 | Masrura et al. [149] |
Membrane separation | Ammonium, phosphate | Human urine | Above 90 | Zhang et al. [150] |
Bio-electrochemical systems | Ammonia | Human urine | 60 | Martin et al. [137] |
Wet extraction | Phosphorus | Pig manure | 92–97 | Azuara et al. [151] |
Chemical precipitation | Phosphate | Dairy manure | 82 | Zhang et al. [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okolie, J.A.; Jimoh, T.; Akande, O.; Okoye, P.U.; Ogbaga, C.C.; Adeleke, A.A.; Ikubanni, P.P.; Güleç, F.; Amenaghawon, A.N. Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals. Environments 2023, 10, 46. https://doi.org/10.3390/environments10030046
Okolie JA, Jimoh T, Akande O, Okoye PU, Ogbaga CC, Adeleke AA, Ikubanni PP, Güleç F, Amenaghawon AN. Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals. Environments. 2023; 10(3):46. https://doi.org/10.3390/environments10030046
Chicago/Turabian StyleOkolie, Jude A., Toheeb Jimoh, Olugbenga Akande, Patrick U. Okoye, Chukwuma C. Ogbaga, Adekunle A. Adeleke, Peter P. Ikubanni, Fatih Güleç, and Andrew Nosakhare Amenaghawon. 2023. "Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals" Environments 10, no. 3: 46. https://doi.org/10.3390/environments10030046
APA StyleOkolie, J. A., Jimoh, T., Akande, O., Okoye, P. U., Ogbaga, C. C., Adeleke, A. A., Ikubanni, P. P., Güleç, F., & Amenaghawon, A. N. (2023). Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals. Environments, 10(3), 46. https://doi.org/10.3390/environments10030046