Legacy Phosphorus in Sediments of Lowland Waterways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Design of the Study
2.2. Study Site
2.3. Sampling, In Situ, and Laboratory Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Total P Contents of the Warnow River Basin
Source | Catchment | Region | TP Levels mg P kg−1 Sediment−1 | Main Land Use |
---|---|---|---|---|
[17] | Recknitz River | Europe, Northern Germany | 912–3974 | Agriculture |
[43] | River Swale | Europe, England, Yorkshire | 500–1500 | Agriculture, Moorland |
[11] | Sävjaån River | Europe, central Sweden | 73–1568 | Permanent Forest |
[44] | West Holland River | North America, Canada | 1600–2000 | Agriculture |
[45] | Hadlock Brook | North America, USA | 211–223 | Forest |
[46] | Agudo River | South America, Brazil, Rio Grande du sol | 622–992 | Permanent Forest |
[47] | Mekong River | Asia, China, Yunnan Province | 500–800 | Non-Agricultural |
[12] | Yangtze River | Asia, China, | 550–844 | Urban, Agriculture |
3.2. P Fractionation and Controlling Factors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rowe, H.; Withers, P.J.A.; Baas, P.; Chan, N.I.; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.; MacDonald, G.K.; McDowell, R.; et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr. Cycl. Agroecosyst. 2016, 104, 393–412. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Smith, V. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Mccrackin, M.L.; Muller-Karulis, B.; Gustafsson, B.G.; Howarth, R.W.; Humborg, C.; Svanbäck, A.; Swaney, D.P. A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin. Glob. Biogeochem. Cycles 2018, 32, 1107–1122. [Google Scholar] [CrossRef]
- Ekholm, P.; Rankinen, K.; Rita, H.; Räike, A.; Sjöblom, H.; Raateland, A.; Vesikko, L.; Cano Bernal, J.E.; Taskinen, A. Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985–2006. Environ. Monit. Assess. 2015, 187, 216. [Google Scholar] [CrossRef]
- Koch, S.; Kahle, P.; Lennartz, B. Spatio-temporal analysis of phosphorus concentrations in a North-Eastern German lowland watershed. J. Hydrol. Reg. Stud. 2018, 15, 203–216. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [Green Version]
- Haygarth, P.M.; Jarvie, H.P.; Powers, S.M.; Sharpley, A.N.; Elser, J.J.; Shen, J.; Peterson, H.M.; Chan, N.I.; Howden, N.J.K.; Burt, T.; et al. Sustainable phosphorus management and the need for a long-term perspective: The legacy hypothesis. Environ. Sci. Technol. 2014, 48, 8417–8419. [Google Scholar] [CrossRef]
- Powers, S.M.; Bruulsema, T.W.; Burt, T.P.; Chan, N.I.; Elser, J.J.; Haygarth, P.M.; Howden, N.J.K.; Jarvie, H.P.; Lyu, Y.; Peterson, H.M.; et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 2016, 9, 353–356. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Sharpley, A.N.; Brahana, V.; Simmons, T.; Price, A.; Neal, C.; Lawlor, A.J.; Sleep, D.; Thacker, S.; Haggard, B.E. Phosphorus retention and remobilization along hydrological pathways in karst terrain. Environ. Sci. Technol. 2014, 48, 4860–4868. [Google Scholar] [CrossRef] [Green Version]
- Lannergård, E.E.; Agstam-Norlin, O.; Huser, B.J.; Sandström, S.; Rakovic, J.; Futter, M.N. New Insights Into Legacy Phosphorus From Fractionation of Streambed Sediment. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005763. [Google Scholar] [CrossRef]
- Jin, X.; He, Y.; Kirumba, G.; Hassan, Y.; Li, J. Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze River estuary reservoir. Ecol. Eng. 2013, 55, 62–66. [Google Scholar] [CrossRef]
- Temporetti, P.; Beamud, G.; Nichela, D.; Baffico, G.; Pedrozo, F. The effect of pH on phosphorus sorbed from sediments in a river with a natural pH gradient. Chemosphere 2019, 228, 287–299. [Google Scholar] [CrossRef]
- Rydin, E. Potentially mobile phosphorus in Lake Erken sediment. Water Res. 2000, 34, 2037–2042. [Google Scholar] [CrossRef]
- Levy, E.T.; Schlesinger, W.H. A comparison of fractionation methods for forms of phosphorus in soils. Biogeochemistry 1999, 47, 25–38. [Google Scholar] [CrossRef]
- Bauke, S.L.; Landl, M.; Koch, M.; Hofmann, D.; Nagel, K.A.; Siebers, N.; Schnepf, A.; Amelung, W. Macropore effects on phosphorus acquisition by wheat roots—A rhizotron study. Plant Soil 2017, 416, 67–82. [Google Scholar] [CrossRef]
- Prüter, J.; Leipe, T.; Michalik, D.; Klysubun, W.; Leinweber, P. Phosphorus speciation in sediments from the Baltic Sea, evaluated by a multi-method approach. J. Soils Sediments 2020, 20, 1676–1691. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Bol, R.; Julich, D.; Brödlin, D.; Siemens, J.; Kaiser, K.; Dippold, M.A.; Spielvogel, S.; Zilla, T.; Mewes, D.; von Blanckenburg, F.; et al. Dissolved and colloidal phosphorus fluxes in forest ecosystems—An almost blind spot in ecosystem research. J. Plant Nutr. Soil Sci. 2016, 179, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Bauke, S.L.; von Sperber, C.; Siebers, N.; Tamburini, F.; Amelung, W. Biopore effects on phosphorus biogeochemistry in subsoils. Soil Biol. Biochem. 2017, 111, 157–165. [Google Scholar] [CrossRef]
- Leinweber, P. Phosphorus fractions in soils from an area with high density of livestock population. Z. Pflanz. Bodenkd. 1996, 159, 251–256. [Google Scholar] [CrossRef]
- Guo, F.; Yost, R.S.; Hue, N.V.; Evensen, C.I.; Silva, J.A. Changes in Phosphorus Fractions in Soils under Intensive Plant Growth. Soil Sci. Soc. Am. J. 2000, 64, 1681–1689. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Mcdowell, R.W.; Kleinman, P.J.A. Amounts, Forms, and Solubility of Phosphorus in Soils Receiving Manure. Soil Sci. Soc. Am. J. 2004, 68, 2048–2057. [Google Scholar] [CrossRef] [Green Version]
- Fytianos, K.; Kotzakioti, A. Sequential fractionation of phosphorus in lake sediments of Northern Greece. Environ. Monit. Assess. 2005, 100, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.; Jarosch, K.A.; Schneider, T.; Grosjean, M. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959. Sci. Total Environ. 2019, 685, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.; Heathwaite, A.L. Nutrient mobility within river basins: A European perspective. J. Hydrol. 2005, 304, 477–490. [Google Scholar] [CrossRef]
- Selig, U.; Schlungbaum, G. Longitudinal patterns of phosphorus and phosphorus binding in sediment of a lowland lake-river system. Hydrobiologia 2002, 472, 67–76. [Google Scholar] [CrossRef]
- Koch, F.; Küchler, A.; Mehl, D.; Hoffmann, T.G. Ermittlung von Art und Intensität Künstlicher Entwässerung von Landwirtschaftlichen Nutzflächen in Mecklenburg-Vorpommern. In Aktuelle Probleme im Wasserhaushalt von Nordostdeutschland: Trends, Ursachen, Lösungen; Scientific Technical Report 10/10; Deutsches GeoForschungsZentrum: Potsdam, Germany, 2010. [Google Scholar]
- Koch, S.; Bauwe, A.; Lennartz, B. Application of the SWAT Model for a Tile-Drained Lowland Catchment in North-Eastern Germany on Subbasin Scale. Water Resour. Manag. 2013, 27, 791–805. [Google Scholar] [CrossRef]
- Bitschofsky, F.; Nausch, M. Spatial and seasonal variations in phosphorus speciation along a river in a lowland catchment (Warnow, Germany). Sci. Total Environ. 2019, 657, 671–685. [Google Scholar] [CrossRef]
- Thiele, V.; Degen, B.; Kasper, D. Erarbeitung Einer Methodik zur Fließgewässerstrukturgütekartierung in Mecklenburg-Vorpommern. Endbericht. Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern: Güstrow, Germany, 2010. [Google Scholar]
- Tiessen, H.; Moir, J.O. Characterization of available P by sequential extraction. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Canadian Society of Soil Science: Boca Raton, FL, USA, 1993; pp. 75–86. [Google Scholar]
- Do Nascimento, C.A.C.; Pagliari, P.H.; Schmitt, D.; He, Z.; Waldrip, H. Phosphorus concentrations in sequentially fractionated soil samples as affected by digestion methods. Sci. Rep. 2015, 5, 17967. [Google Scholar] [CrossRef] [Green Version]
- Ruttenberg, K.C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 1992, 37, 1460–1482. [Google Scholar] [CrossRef]
- Copernicus. CLC 2018—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 26 August 2022).
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Core Development Team: Vienna, Austria, 2019. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 9 September 2021).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.B.; Friendly, M.; Kindt, R.; Simpson, G.L.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; et al. vegan: Community Ecology Package 2020. Available online: https://CRAN.R-project.org/package=vegan (accessed on 9 September 2021).
- Prüter, J.; McLaren, T.I.; Pätzig, M.; Hu, Y.; Leinweber, P. Phosphorus Speciation Along a Soil to Kettle Hole Transect: Sequential P Fractionation, P Xanes, and 31p Nmr Spectroscopy. SSRN Electron. J. 2022, 429, 116215. [Google Scholar] [CrossRef]
- Prüter, J.; Schumann, R.; Klysubun, W.; Leinweber, P. Characterization of Phosphate Compounds along a Catena from Arable and Wetland Soil to Sediments in a Baltic Sea lagoon. Soil Syst. 2023, 7, 15. [Google Scholar] [CrossRef]
- Baumann, K.; Shaheen, S.M.; Hu, Y.; Gros, P.; Heilmann, E.; Morshedizad, M.; Wang, J.; Wang, S.L.; Rinklebe, J.; Leinweber, P. Speciation and sorption of phosphorus in agricultural soil profiles of redoximorphic character. Environ. Geochem. Health 2020, 42, 3231–3246. [Google Scholar] [CrossRef] [Green Version]
- Owens, P.N.; Walling, D.E. The phosphorus content of fluvial sediment in rural and industrialized river basins. Water Res. 2002, 36, 685–701. [Google Scholar] [CrossRef]
- Audette, Y.; O’Halloran, I.P.; Nowell, P.M.; Dyer, R.; Kelly, R.; Voroney, R.P. Speciation of Phosphorus from Agricultural Muck Soils to Stream and Lake Sediments. J. Environ. Qual. 2018, 47, 884–892. [Google Scholar] [CrossRef]
- SanClements, M.D.; Fernandez, I.J.; Norton, S.A. Soil and sediment phosphorus fractions in a forested watershed at Acadia National Park, ME, USA. For. Ecol. Manag. 2009, 258, 2318–2325. [Google Scholar] [CrossRef]
- Tiecher, T.; Schenato, R.B.; Santanna, M.A.; Caner, L.; dos Santos, D.R. Phosphorus forms in sediments as indicators of anthropic pressures in an agricultural catchment in Southern Brazil. Rev. Bras. Cienc. Solo 2017, 41, e0160569. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, S.; Zhao, H.; Deng, L.; Wang, C.; Zhao, Q.; Dong, S. The phosphorus speciations in the sediments up- and down-stream of cascade dams along the middle Lancang River. Chemosphere 2015, 120, 653–659. [Google Scholar] [CrossRef]
- Persaud, D.; Jaagumagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario Ministry of Environment and Energy; Ontario Ministry of the Environment: Toronto, ON, Canada, 1993. [Google Scholar]
- Katsaounos, C.Z.; Giokas, D.L.; Leonardos, I.D.; Karayannis, M.I. Speciation of phosphorus fractionation in river sediments by explanatory data analysis. Water Res. 2007, 41, 406–418. [Google Scholar] [CrossRef]
- Tiemeyer, B.; Kahle, P.; Lennartz, B. Phosphorus losses from an artificially drained rural lowland catchment in North-Eastern Germany. Agric. Water Manag. 2009, 96, 677–690. [Google Scholar] [CrossRef]
- Sandström, S.; Futter, M.N.; Kyllmar, K.; Bishop, K.; O’Connell, D.W.; Djodjic, F. Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. Sci. Total Environ. 2020, 711, 134616. [Google Scholar] [CrossRef] [PubMed]
- Darch, T.; Blackwell, M.S.A.; Hawkins, J.M.B.; Haygarth, P.M.; Chadwick, D. A meta-analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: Implications for water quality. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2172–2202. [Google Scholar] [CrossRef]
- Koch, S.; Kahle, P.; Lennartz, B. Biogas Digestate Application Modifies Solute Transport Conditions in Soils and Increases the Release of Phosphorus. Vadose Zone J. 2019, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wacha, K.M.; Papanicolaou, A.N.T.; Abban, B.K.; Wilson, C.G.; Giannopoulos, C.P.; Hou, T.; Filley, T.R.; Hatfield, J.L. The impact of tillage row orientation on physical and chemical sediment enrichment. Agrosyst. Geosci. Environ. 2020, 3, e20007. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, D.; Kahle, P.; Baum, C. Loss of soil phosphorus by tile drains during storm events. Agric. Water Manag. 2016, 167, 21–28. [Google Scholar] [CrossRef]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, T.N.; Christensen, V.G.; Richardson, W.B.; Frey, J.W.; Gellis, A.C.; Kieta, K.A.; Fitzpatrick, F.A. Stream Sediment Sources in Midwest Agricultural Basins with Land Retirement along Channel. J. Environ. Qual. 2014, 43, 1624–1634. [Google Scholar] [CrossRef]
- Zhang, K.; Cheng, P.D.; Zhong, B.C.; Wang, D.Z. Total phosphorus release from bottom sediments in flowing water. J. Hydrodyn. 2012, 24, 589–594. [Google Scholar] [CrossRef]
- Park, J.; Batalla, R.J.; Birgand, F.; Esteves, M.; Gentile, F.; Harrington, J.R.; Navratil, O.; López-Tarazón, J.A.; Vericat, D. Influences of catchment and river channel characteristics on the magnitude and dynamics of storage and re-suspension of fine sediments in river beds. Water 2019, 11, 878. [Google Scholar] [CrossRef] [Green Version]
- Eder, A.; Exner-Kittridge, M.; Strauss, P.; Blöschl, G. Re-suspension of bed sediment in a small stream – Results from two flushing experiments. Hydrol. Earth Syst. Sci. 2014, 18, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Wang, Y.; He, J.; Luo, X.; Zheng, Z. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi. Environ. Pollut. 2016, 219, 580–587. [Google Scholar] [CrossRef]
- Negassa, W.; Leinweber, P. How does the hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. J. Plant Nutr. Soil Sci. 2009, 172, 305–325. [Google Scholar] [CrossRef]
- Bol, R.; Gruau, G.; Mellander, P.E.; Dupas, R.; Bechmann, M.; Skarbøvik, E.; Bieroza, M.; Djodjic, F.; Glendell, M.; Jordan, P.; et al. Challenges of reducing phosphorus based water eutrophication in the agricultural landscapes of Northwest Europe. Front. Mar. Sci. 2018, 5, 276. [Google Scholar] [CrossRef] [Green Version]
- Smolders, E.; Baetens, E.; Verbeeck, M.; Nawara, S.; Diels, J.; Verdievel, M.; Peeters, B.; De Cooman, W.; Baken, S. Internal Loading and Redox Cycling of Sediment Iron Explain Reactive Phosphorus Concentrations in Lowland Rivers. Environ. Sci. Technol. 2017, 51, 2584–2592. [Google Scholar] [CrossRef]
- Eckert, W.; Didenko, J.; Uri, E.; Eldar, D. Spatial and temporal variability of particulate phosphorus fractions in seston and sediments of Lake Kinneret under changing loading scenario. In The Interactions between Sediments and Water; Springer: Dordrecht, The Netherlands, 2003; pp. 223–229. [Google Scholar]
- Jiang, X.; Livi, K.J.T.; Arenberg, M.R.; Chen, A.; Chen, K.Y.; Gentry, L.; Li, Z.; Xu, S.; Arai, Y. High flow event induced the subsurface transport of particulate phosphorus and its speciation in agricultural tile drainage system. Chemosphere 2021, 263, 128147. [Google Scholar] [CrossRef]
- Poirier, S.-C.; Whalen, J.K.; Michaud, A.R. Bioavailable Phosphorus in Fine-Sized Sediments Transported from Agricultural Fields. Soil Sci. Soc. Am. J. 2012, 76, 258–267. [Google Scholar] [CrossRef] [Green Version]
H2O-P | NaHCO3-P | Resin-P | NaOH-P | H2SO4-P | Residual P | Total P | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subbasin | M ± sd | Range | M ± sd | Range | M ± sd | Range | M ± sd | Range | M ± sd | Range | M ± sd | Range | M ± sd | Range |
Beke | 15 ± 3 | 12–17 | 65 ± 51 | 28–101 | 58 ± 32 | 35–81 | 276 ± 283 | 76–476 | 266 ± 163 | 150–382 | 49 ± 30 | 27–71 | 728 ± 558 | 333–1123 |
Koesterbeck | 11 ± 9 | 1–18 | 129 ± 134 | 23–281 | 28 ± 11 | 18–40 | 55 ± 52 | 3–109 | 189 ± 54 | 149–251 | 37 ± 11 | 30–50 | 449 ± 147 | 350–619 |
Mildenitz | 8 ± 9 | 1–29 | 40 ± 63 | 3–178 | 30 ± 44 | 4–120 | 222 ± 518 | 7–1397 | 244 ± 181 | 124–628 | 70 ± 88 | 5–250 | 613 ± 874 | 161–2578 |
Muehlenfliess | 9 ± 5 | 5–18 | 87 ± 91 | 10–240 | 60 ± 65 | 3–176 | 393 ± 538 | 9–1369 | 287 ± 175 | 122–580 | 82 ± 93 | 15–265 | 918 ± 964 | 164–2648 |
Nebel | 9 ± 19 | 1–17 | 77 ± 87 | 4–237 | 47 ± 59 | 2–164 | 329 ± 555 | 5–1493 | 355 ± 158 | 79–536 | 55 ± 58 | 9–175 | 872 ± 790 | 155–2429 |
Oberwarnow | 23 ± 19 | 1–46 | 106 ± 157 | 14–341 | 41 ± 42 | 17–105 | 142 ± 181 | 12–402 | 144 ± 82 | 81–263 | 35 ± 38 | 9–91 | 491 ± 467 | 158–1182 |
Zarnow | 16 ± 5 | 11–21 | 159 ± 176 | 42–416 | 40 ± 39 | 12–99 | 111 ± 147 | 29–333 | 220 ± 121 | 112–390 | 42 ± 24 | 23–78 | 589 ± 506 | 257–1334 |
Whole watershed | 12 ± 9 | 1–46 | 88 ± 105 | 3–416 | 43 ± 45 | 2–176 | 241 ± 401 | 3–1493 | 257 ± 150 | 79–628 | 57 ± 61 | 5–265 | 698 ± 676 | 155–2648 |
Reference topsoils | 31 ± 18 | 24–34 | 21 ± 23 | 17–24 | 50 ± 24 | 36–57 | 171 ± 54 | 151–193 | 147 ± 56 | 123–182 | 50 ± 23 | 34–65 | 469 ± 198 | 417–515 |
Reference subsoils | 9 ± 8 | 3–18 | 7 ± 5 | 4–13 | 20 ± 14 | 12–32 | 63 ± 32 | 29–125 | 99 ± 28 | 69–156 | 53 ± 12 | 33–63 | 250 ± 123 | 149–407 |
Beke | Koesterbeck | Mildenitz | Muehlenfliess | Nebel | Warnow | Zarnow | Whole Watershed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | |
Fe (mg kg−1) | 0.7 | 0.4 | 1.4 | 0.8 | 1.0 | 1.5 | 1.6 | 1.5 | 1.1 | 1.2 | 0.7 | 0.6 | 0.9 | 0.7 | 1.1 | 1.1 |
Ca (mg kg−1) | 1.2 | 0.8 | 2.1 | 1.8 | 3.6 | 4.0 | 3.7 | 2.0 | 1.6 | 1.5 | 1.9 | 2.3 | 1.9 | 1.6 | 2.5 | 2.4 |
Al (mg kg−1) | 0.2 | 0.0 | 0.2 | 0.0 | 0.2 | 0.3 | 0.4 | 0.4 | 0.3 | 0.2 | 0.1 | 0.0 | 0.3 | 0.2 | 0.3 | 0.2 |
C (%) | 0.6 | 0.5 | 2.5 | 1.4 | 4.6 | 7.7 | 6.2 | 8.0 | 3.5 | 5.5 | 3.3 | 5.8 | 1.7 | 1.2 | 3.7 | 5.7 |
N (%) | 0.1 | 0.0 | 0.1 | 0.1 | 0.3 | 0.5 | 0.5 | 0.6 | 0.3 | 0.4 | 0.2 | 0.4 | 0.1 | 0.1 | 0.3 | 0.4 |
S (%) | 0.1 | 0.0 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.5 | 0.1 | 0.0 | 0.2 | 0.3 |
C:N ratio (1) | 9.8 | 5.3 | 26.3 | 17.0 | 19.8 | 11.5 | 12.6 | 2.2 | 15.0 | 13.2 | 13.2 | 9.9 | 12.9 | 6.9 | 15.8 | 10.6 |
openwater (km2) | 1.2 | 0.0 | 0.3 | 0.0 | 17.0 | 12.8 | 3.4 | 3.4 | 15.0 | 11.8 | 3.9 | 4.1 | 0.0 | 0.0 | - | - |
agriculture (km2) | 46.4 | 13.2 | 27.5 | 32.5 | 139.9 | 107.3 | 63.6 | 53.6 | 112.6 | 97.3 | 172.9 | 74.9 | 29.9 | 15.2 | - | - |
forest (km2) | 8.5 | 1.5 | 4.2 | 3.3 | 75.3 | 57.9 | 23.5 | 19.3 | 71.5 | 51.5 | 44.1 | 30.2 | 3.4 | 1.2 | - | - |
drainage_area (km2) | 39.4 | 19.0 | 34.6 | 34.1 | 112.9 | 55.7 | 48.7 | 54.1 | 49.6 | 54.7 | 76.2 | 49.4 | 46.4 | 19.1 | - | - |
area (km2) | 57.1 | - | 34.1 | - | 241.0 | - | 94.2 | - | 206.8 | - | 228.2 | - | 34.6 | - | - | - |
water_level (m) | 0.3 | 0.2 | 0.3 | 0.2 | 0.4 | 0.3 | 0.4 | 0.3 | 0.7 | 0.3 | 0.4 | 0.1 | 0.3 | 0.1 | 0.4 | 0.3 |
SO42− (mg L−1) | 108.1 | 23.8 | 65.6 | 16.1 | 87.1 | 51.3 | 77.2 | 39.8 | 101.1 | 81.8 | 95.1 | 35.6 | 160.2 | 54.4 | 97.2 | 54.4 |
NO3− (mg L−1) | 5.8 | 1.7 | 6.9 | 5.2 | 4.5 | 7.6 | 2.8 | 2.2 | 6.1 | 9.8 | 2.6 | 2.0 | 10.7 | 4.7 | 5.2 | 6.1 |
Cl− (mg L−1) | 57.0 | 27.8 | 47.5 | 4.9 | 29.0 | 2.7 | 150.1 | 255.0 | 40.3 | 12.3 | 30.8 | 1.0 | 36.5 | 12.3 | 57.6 | 110.7 |
velocity (m s−1) | 0.2 | 0.1 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 |
oxygen (mg L−1) | 9.0 | 0.1 | 4.1 | 4.8 | 8.9 | 1.7 | 6.6 | 2.9 | 6.8 | 2.2 | 6.0 | 2.9 | 7.2 | 1.5 | 7.0 | 2.7 |
pH (1) | 7.6 | 0.0 | 7.1 | 0.4 | 7.7 | 0.3 | 7.3 | 0.2 | 7.3 | 0.3 | 7.3 | 0.2 | 7.3 | 0.1 | 7.4 | 0.3 |
conductivity (µS cm−1) | 629.1 | 32.0 | 563.6 | 82.5 | 419.0 | 110.9 | 744.7 | 676.6 | 556.6 | 308.4 | 470.9 | 91.7 | 656.3 | 123.2 | 565.5 | 323.6 |
redox (mV) | 33.5 | 27.3 | −4.7 | 128.9 | 63.3 | 50.4 | 39.6 | 46.8 | 24.8 | 39.1 | 58.7 | 53.0 | 51.0 | 24.7 | 41.3 | 54.0 |
PO43− (mg L−1) | 0.0 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
TP (mg L−1) | 0.1 | 0.0 | 0.3 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 |
P from WWT (kg a−1) | 116.0 | 0.0 | 48.3 | 83.7 | 127.6 | 157.1 | 49.2 | 105.5 | 319.3 | 98.7 | 522.4 | 664.6 | 0.0 | 0.0 | 188.6 | 305.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, S.; Rosewig, E.I.; Lennartz, B. Legacy Phosphorus in Sediments of Lowland Waterways. Environments 2023, 10, 43. https://doi.org/10.3390/environments10030043
Koch S, Rosewig EI, Lennartz B. Legacy Phosphorus in Sediments of Lowland Waterways. Environments. 2023; 10(3):43. https://doi.org/10.3390/environments10030043
Chicago/Turabian StyleKoch, Stefan, Ellen Iva Rosewig, and Bernd Lennartz. 2023. "Legacy Phosphorus in Sediments of Lowland Waterways" Environments 10, no. 3: 43. https://doi.org/10.3390/environments10030043
APA StyleKoch, S., Rosewig, E. I., & Lennartz, B. (2023). Legacy Phosphorus in Sediments of Lowland Waterways. Environments, 10(3), 43. https://doi.org/10.3390/environments10030043