Fog Water: A General Review of Its Physical and Chemical Aspects
Abstract
:1. Introduction
2. Fog Types
3. Fog Forecasting
3.1. Radiation Fog
3.1.1. Initiation Phase
3.1.2. Maturation Phase
3.1.3. Dissipation Phase
3.2. Valley Fog
- Nocturnal radiation from the surface and subsequent turbulent heat transfer from the air to the ground produce an early low-level temperature inversion and stimulate the downslope wind and upward return flow near the center of the valley. At this level, the deposition of dew at the cold surface creates the dew point inversion at the low level. The upward movement at the center of the valley carries the cool and dry air upward to cause the inversion to deepen.
- Almost 3 h before fog formation, the wind coming from the mountain provides a continuity for the downslope wind and prevents the upward movement of the air near the valley center. Cooling is restricted only to low and mid-levels of the valley which are the two levels in which fog will form. The downslope wind is mixed with warm air masses at mid-levels in the valley leading to the maximization of the cooling air in this zone. Then, a thin layer of fog appears.
- Later, the cold foggy air is mixed with almost saturated air, causing saturated air to propagate downward.
4. Fog Frequency
5. Fog Nucleation and Activation
5.1. Fog Nucleation
- Heterogeneous nucleation (nucleation scavenging): It is the condensation of water vapor into a subset of particles in the presence of foreign condensation nuclei. Many atmospheric aerosols (AAs) are hydroscopic in nature. The presence of hydrophilic particles in the atmosphere is an important factor that facilitates the condensation of water vapor into droplets. The resulting droplet diameter ranges from several micrometers to tens of micrometers. The nucleation of supersaturated water vapor on aerosol wettable particles, whether soluble or insoluble, will be responsible for fog droplet formation. Particles having the tendency to nucleate liquid fog droplets are known as CCN [145,146]. Among the factors that determine the ability of particles to act as CCN at a given level of supersaturation, are the size, shape, and wettability of particles, solute content, surface tension, solubility, supersaturation level, and the presence of surface-active substances. In the absence of suitable particles, fog will not be able to form because very high supersaturation levels are required for the condensation of water vapor, and such levels usually remain below 10% and even below 1% [40,143].
- Total organic carbon (TOC)/dissolved organic carbon (DOC): A substantial amount of organic carbon (OC) is found in fog water. Its concentration ranges from 1 ppm in remote marine environments to 100 ppm in polluted radiation fogs. Very high concentrations have been measured in biomass-burning-impacted atmospheres which vary between 100 and 200 ppm (mgC L−1). Such high levels were obtained at Mt. Tai in China at a high altitude (1500 m), released from abundant smoke from agricultural combustion [22]. Most of the organic fraction in fog is considered to be DOC which reflects the abundance of volatile organic carbon (VOCs) in the atmosphere. It has been found that DOC constitutes about 80% of the TOC in the aqueous phase. Thus, DOC is a nearly quantitative measure of TOC in the condensed phase of fogs [154,155,156].
- Monocarboxylic (MCA) and dicarboxylic acid (DCA): The predominant species belonging to MCA in fogs are formic (HCOOH) and acetic (CH2COOH) acids, while DCA species such as oxalic acid, malonic acid, and succinic acid constitute only a small fraction of the total water-soluble organic species in the atmosphere [153]. Previous work demonstrated that mono-, di-, and poly-functional carboxylic acids are the major contributors to the water-soluble organic matter in fog water [142,154,155].
- Humic-like substances (HULIS): They are fine particles having good water solubility consisting of aliphatic and polysaccharide substructures. They originate from biogenic sources and comprise a large fraction of OC. They are found in fog droplets with a similar scavenging ratio to that of inorganic ions. These substances affect the physico-chemical properties of aerosol particles as well as the formation of CCN. HULIS have been characterized as surface-active materials produced from the oxidation of gaseous precursors on aerosols in the atmosphere. Their presence increases the surface-active nature of fog water and decreases surface tension contributing to a higher uptake of hygroscopic organic vapor-phase compounds [153,157].
- Bacteria (0.25 to 8 µm in diameter): A group of very metabolically diverse, prokaryotic, and unicellular microorganisms. They are found to be temperate vegetation zones, such as raw crop areas (high primary production) and desert areas (relatively low production). Living and dead bacteria have been observed in cloud water, fog water, and rainwater as well as in different parts of the atmosphere (boundary layer, upper troposphere, and stratosphere (up to 41 km above sea level)). Among the bacteria able to act as CCN at low saturation ratios (from 0.07% to 1%), are the plant pathogenic bacteria Erwinia carotovora, as well as Gram-positive and Gram-negative bacteria (Micrococcus agilis, Mycoplana bullata, and Brevundimonas diminuta) [153].
5.2. Fog Activation
5.3. Effects of CCN
5.4. Droplet Size Dependence
6. Fog Impacts
6.1. Air Quality
6.2. Human Health
6.3. Transportation and Economy
6.4. Benefits
7. Fog Collectors
8. Fog Water Chemistry
8.1. Processes Controlling Fog Chemistry
8.1.1. Oxidative Reactions
8.1.2. Acid–Base Interaction
8.1.3. Fog Scavenging
8.1.4. Fog Deposition
8.2. Literature Studies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hyslop, N.P. Impaired Visibility: The Air Pollution People See. Atmos. Environ. 2009, 43, 182–195. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, P.; Yan, L.; Chen, J.; Cheng, T.; Xu, S. Characterization of Polycyclic Aromatic Hydrocarbons in Fog–Rain Events. J. Environ. Monit. 2011, 13, 2988. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Payra, S. Urban Environment of Megacity Delhi, India. Environ. Monit. Assess. 2009, 151, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Díaz, J.; Ivanov, O.; Peshev, Z.; Álvarez-Valenzuela, M.; Valiente-Blanco, I.; Evgenieva, T.; Dreischuh, T.; Gueorguiev, O.; Todorov, P.; Vaseashta, A. Fogs: Physical Basis, Characteristic Properties, and Impacts on the Environment and Human Health. Water 2017, 9, 807. [Google Scholar] [CrossRef]
- Leung, A.C.W.; Gough, W.A.; Butler, K.A. Changes in Fog, Ice Fog, and Low Visibility in the Hudson Bay Region: Impacts on Aviation. Atmosphere 2020, 11, 186. [Google Scholar] [CrossRef]
- Peng, Y.; Abdel-Aty, M.; Lee, J.; Zou, Y. Analysis of the Impact of Fog-Related Reduced Visibility on Traffic Parameters. J. Transp. Eng. Part Syst. 2018, 144, 04017077. [Google Scholar] [CrossRef]
- Abdel-Aty, M.; Ekram, A.-A.; Huang, H.; Choi, K. A Study on Crashes Related to Visibility Obstruction Due to Fog and Smoke. Accid. Anal. Prev. 2011, 43, 1730–1737. [Google Scholar] [CrossRef]
- Frank, G.; Martinsson, B.; Cederfelt, S.-I.; Berg, O.; Swietlicki, E.; Wendish, M.; Yuskiewicz, B.; Heintzenberg, J.; Wiedensohler, A.; Orsini, D.; et al. Droplet Formation and Growth in Polluted Fogs. Contrib. Atmos. Phys. 1998, 71, 65–85. [Google Scholar]
- Croft, P.J.; Pfost, R.L.; Medlin, J.M.; Johnson, G.A. Fog Forecasting for the Southern Region: A Conceptual Model Approach. Weather Forecast. 1997, 12, 545–556. [Google Scholar] [CrossRef]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog Research: A Review of Past Achievements and Future Perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Gultepe, I.; Milbrandt, J.A.; Zhou, B. Marine Fog: A Review on Microphysics and Visibility Prediction. In Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting; Koračin, D., Dorman, C.E., Eds.; Springer Atmospheric Sciences; Springer International Publishing: Cham, Switzerland, 2017; pp. 345–394. [Google Scholar] [CrossRef]
- Herckes, P.; Chang, H.; Lee, T.; Collett, J.L. Air Pollution Processing by Radiation Fogs. Water. Air. Soil Pollut. 2007, 181, 65–75. [Google Scholar] [CrossRef]
- Mazzoleni, L.R.; Ehrmann, B.M.; Shen, X.; Marshall, A.G.; Collett, J.L. Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Identification of Water-Soluble Atmospheric Organic Matter in Polluted Fog Waters, (Invited). Michigan Tech. 2010, 2010, A14D-01. [Google Scholar]
- Yin, H.; Ye, Z.; Yang, Y.; Yuan, W.; Qiu, C.; Yuan, H.; Wang, M.; Li, S.; Zou, C. Evolution of Chemical Composition of Fogwater in Winter in Chengdu, China. J. Environ. Sci. 2013, 25, 1824–1832. [Google Scholar] [CrossRef]
- Collett, J. Internal Acid Buffering in San Joaquin Valley Fog Drops and Its Influence on Aerosol Processing. Atmos. Environ. 1999, 33, 4833–4847. [Google Scholar] [CrossRef]
- Graber, E.R.; Rudich, Y. Atmospheric HULIS: How Humic-like Are They? A Comprehensive and Critical Review. Atmos. Chem. Phys. 2006, 6, 729–753. [Google Scholar] [CrossRef]
- Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Analytical Procedure for the Concomitant Analysis of 242 Polar and Non-Polar Organic Compounds of Different Functional Groups in Fog Water. Microchem. J. 2023, 185, 108235. [Google Scholar] [CrossRef]
- Gupta, T.; Rajeev, P.; Rajput, R. Emerging Major Role of Organic Aerosols in Explaining the Occurrence, Frequency, and Magnitude of Haze and Fog Episodes during Wintertime in the Indo Gangetic Plain. ACS Omega 2022, 7, 1575–1584. [Google Scholar] [CrossRef]
- Beiderwieden, E.; Wrzesinsky, T.; Klemm, O. Chemical Characterization of Fog and Rain Water Collected at the Eastern Andes Cordillera. Hydrol. Earth Syst. Sci. 2005, 9, 185–191. [Google Scholar] [CrossRef]
- Kim, H.; Collier, S.; Ge, X.; Xu, J.; Sun, Y.; Jiang, W.; Wang, Y.; Herckes, P.; Zhang, Q. Chemical Processing of Water-Soluble Species and Formation of Secondary Organic Aerosol in Fogs. Atmos. Environ. 2019, 200, 158–166. [Google Scholar] [CrossRef]
- Herckes, P.; Valsaraj, K.T.; Collett, J.L. A Review of Observations of Organic Matter in Fogs and Clouds: Origin, Processing and Fate. Atmos. Res. 2013, 132–133, 434–449. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmos. Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Petterssen, S. Weather Analysis and Forecasting, 2nd ed.; McGraw-Hill Publ. Inc.: New York, NY, USA, 1956; Volume 2, 266p. [Google Scholar]
- Willett, H.C. Fog and haze, their causes, distribution, and forecasting. Mon. Weather Rev. 1928, 56, 435–468. [Google Scholar] [CrossRef]
- Lewis, J.; Koracin, D.; Rabin, R.; Businger, J. Sea Fog off the California Coast: Viewed in the Context of Transient Weather Systems. J. Geophys. Res. Atmospheres 2003, 108, 2002JD002833. [Google Scholar] [CrossRef]
- Tardif, R.; Rasmussen, R.M. Event-Based Climatology and Typology of Fog in the New York City Region. J. Appl. Meteorol. Climatol. 2007, 46, 1141–1168. [Google Scholar] [CrossRef]
- Perez-Diaz, J.L.; Alvarez-Valenzuela, M.A.; Sanchez-Garcia-Casarrubios, J.; Jimenez-Lopez, S. Ice Surface Entropy Induction by Humidity or How Humidity Prompts Freezing. arXiv 2015, arXiv:1509.06728. Available online: http://arxiv.org/abs/1509.06728 (accessed on 26 October 2023).
- Stolaki, S.; Haeffelin, M.; Lac, C.; Dupont, J.-C.; Elias, T.; Masson, V. Influence of Aerosols on the Life Cycle of a Radiation Fog Event. A Numerical and Observational Study. Atmos. Res. 2015, 151, 146–161. [Google Scholar] [CrossRef]
- Zhou, Y.; Niu, S.; Lü, J.; Zhou, Y. The Effect of Freezing Drizzle, Sleet and Snow on Microphysical Characteristics of Supercooled Fog during the Icing Process in a Mountainous Area. Atmosphere 2016, 7, 143. [Google Scholar] [CrossRef]
- Byers, H.R. General Meteorology, 4th ed.; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Saunders, P.M. Sea Smoke and Steam Fog. Q. J. R. Meteorol. Soc. 1964, 90, 156–165. [Google Scholar] [CrossRef]
- Økland, H.; Gotaas, Y. Modelling and prediction of steam fog. Contrib. Atmos. Phys. 1995, 68, 121–131. [Google Scholar]
- Gultepe, I.; Isaac, G.A.; Williams, A.; Marcotte, D.; Strawbridge, K.B. Turbulent Heat Fluxes over Leads and Polynyas, and Their Effects on Arctic Clouds during FIRE.ACE: Aircraft Observations for April 1998. Atmosphere-Ocean 2003, 41, 15–34. [Google Scholar] [CrossRef]
- George, J.J. Fog: Its Causes and Forecasting with Special Reference to Eastern and Southern United States, (I). Bull. Am. Meteorol. Soc. 1940, 21, 135–148. [Google Scholar] [CrossRef]
- George, J.J. Fog: Its Causes and Forecasting With Special Reference to Eastern and Southern United States, (II). Bull. Am. Meteorol. Soc. 1940, 21, 261–269. [Google Scholar] [CrossRef]
- George, J.J. Fog: Its Causes and Forecasting with Special Reference to Eastern and Southern United States, (III). Bull. Am. Meteorol. Soc. 1940, 21, 285–291. [Google Scholar] [CrossRef]
- Petterssen, S. Introduction to Meteorology, 3rd ed.; McGraw-Hill Publ. Inc.: New York, NY, USA, 1969. [Google Scholar]
- Maalick, Z.; Kühn, T.; Korhonen, H.; Kokkola, H.; Laaksonen, A.; Romakkaniemi, S. Effect of Aerosol Concentration and Absorbing Aerosol on the Radiation Fog Life Cycle. Atmos. Environ. 2016, 133, 26–33. [Google Scholar] [CrossRef]
- Ahrens, C.D.; Henson, R. Meteorology Today: An Introduction to Weather, Climate, and the Environment; Cengage Learning: Boston, MA, USA, 2021. [Google Scholar]
- Scott, R.H. Fogs Reported with Strong Winds during the 15 Years 1876–90 in the British Isles. Q. J. R. Meteorol. Soc. 1894, 20, 253–262. [Google Scholar] [CrossRef]
- Scott, A. Notes on some of the difference between fogs, as related to the weather systems which accompany them, submitted to the Fog Committee. Q. J. R. Meteorol. Soc. 1896, 97, 41–65. [Google Scholar] [CrossRef]
- Mensbrugghe, V. The formation of fog and of clouds, translated from Ciel et Terre. Symons’s Monthly Meteor. Magazine 1982, 27, 40–41. [Google Scholar]
- Poku, C.; Ross, A.N.; Blyth, A.M.; Hill, A.A.; Price, J.D. How Important Are Aerosol–Fog Interactions for the Successful Modelling of Nocturnal Radiation Fog? Weather 2019, 74, 237–243. [Google Scholar] [CrossRef]
- Bari, D.; Bergot, T.; Tardif, R. Fog Decision Support Systems: A Review of the Current Perspectives. Atmosphere. 2023, 14, 1314. [Google Scholar] [CrossRef]
- Ballard, S.P.; Golding, B.W.; Smith, R.N.B. Mesoscale Model Experimental Forecasts of the Haar of Northeast Scotland. Mon. Weather Rev. 1991, 119, 2107–2123. [Google Scholar] [CrossRef]
- Golding, B.W. The, U.K. Meteorological Office Mesoscale Model. Bound.-Layer Meteorol. 1987, 41, 97–107. [Google Scholar] [CrossRef]
- Zhou, B.; Du, J. Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System. Weather Forecast. 2010, 25, 303–322. [Google Scholar] [CrossRef]
- Van Der Velde, I.R.; Steeneveld, G.J.; Wichers Schreur, B.G.J.; Holtslag, A.A.M. Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions. Mon. Weather Rev. 2010, 138, 4237–4253. [Google Scholar] [CrossRef]
- Bergot, T. Small-scale Structure of Radiation Fog: A Large-eddy Simulation Study. Q. J. R. Meteorol. Soc. 2013, 139, 1099–1112. [Google Scholar] [CrossRef]
- Zíková, N.; Pokorná, P.; Makeš, O.; Sedlák, P.; Pešice, P.; Ždímal, V. Activation of Atmospheric Aerosols in Fog and Low Clouds. Atmos. Environ. 2020, 230, 117490. [Google Scholar] [CrossRef]
- Koračin, D.; Businger, J.A.; Dorman, C.E.; Lewis, J.M. Formation, Evolution, and Dissipation of Coastal Sea Fog. Bound.-Layer Meteorol. 2005, 117, 447–478. [Google Scholar] [CrossRef]
- Pahlavan, R.; Moradi, M.; Tajbakhsh, S.; Azadi, M.; Rahnama, M. Fog Probabilistic Forecasting Using an Ensemble Prediction System at Six Airports in Iran for 10 Fog Events. Meteorol. Appl. 2021, 28, e2033. [Google Scholar] [CrossRef]
- Pagowski, M.; Gultepe, I.; King, P. Analysis and Modeling of an Extremely Dense Fog Event in Southern Ontario. J. Appl. Meteorol. 2004, 43, 3–16. [Google Scholar] [CrossRef]
- Fernando, H.J.S.; Gultepe, I.; Dorman, C.; Pardyjak, E.; Wang, Q.; Hoch, S.W.; Richter, D.; Creegan, E.; Gaberšek, S.; Bullock, T.; et al. C-FOG: Life of Coastal Fog. Bull. Am. Meteorol. Soc. 2021, 102, E244–E272. [Google Scholar] [CrossRef]
- Gultepe, I.; Pearson, G.; Milbrandt, J.A.; Hansen, B.; Platnick, S.; Taylor, P.; Gordon, M.; Oakley, J.P.; Cober, S.G. The Fog Remote Sensing and Modeling Field Project. Bull. Am. Meteorol. Soc. 2009, 90, 341–360. [Google Scholar] [CrossRef]
- Gultepe, I.; Zhou, B.; Milbrandt, J.; Bott, A.; Li, Y.; Heymsfield, A.J.; Ferrier, B.; Ware, R.; Pavolonis, M.; Kuhn, T.; et al. A Review on Ice Fog Measurements and Modeling. Atmos. Res. 2015, 151, 2–19. [Google Scholar] [CrossRef]
- Pithani, P.; Ghude, S.D.; Chennu, V.N.; Kulkarni, R.G.; Steeneveld, G.-J.; Sharma, A.; Prabhakaran, T.; Chate, D.M.; Gultepe, I.; Jenamani, R.K.; et al. WRF Model Prediction of a Dense Fog Event Occurred During the Winter Fog Experiment, (WIFEX). Pure Appl. Geophys. 2019, 176, 1827–1846. [Google Scholar] [CrossRef]
- Pithani, P.; Ghude, S.D.; Prabhakaran, T.; Karipot, A.; Hazra, A.; Kulkarni, R.; Chowdhuri, S.; Resmi, E.A.; Konwar, M.; Murugavel, P.; et al. WRF Model Sensitivity to Choice of PBL and Microphysics Parameterization for an Advection Fog Event at Barkachha, Rural Site in the Indo-Gangetic Basin, India. Theor. Appl. Climatol. 2019, 136, 1099–1113. [Google Scholar] [CrossRef]
- Román-Cascón, C.; Steeneveld, G.J.; Yagüe, C.; Sastre, M.; Arrillaga, J.A.; Maqueda, G. Forecasting Radiation Fog at Climatologically Contrasting Sites: Evaluation of Statistical Methods and WRF. Q. J. R. Meteorol. Soc. 2016, 142, 1048–1063. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Porson, A.N.F.; Bornemann, F.J.; Weeks, M.; Field, P.R.; Lock, A.P. Improved Microphysical Parametrization of Drizzle and Fog for Operational Forecasting Using the Met Office Unified Model. Q. J. R. Meteorol. Soc. 2013, 139, 488–500. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A.M. The Challenge of Forecasting the Onset and Development of Radiation Fog Using Mesoscale Atmospheric Models. Bound.-Layer Meteorol. 2015, 154, 265–289. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, Z.; Pu, Z.; Wang, F. Numerical Simulations of an Advection Fog Event over Shanghai Pudong International Airport with the WRF Model. J. Meteorol. Res. 2017, 31, 874–889. [Google Scholar] [CrossRef]
- Roquelaure, S.; Bergot, T. Seasonal Sensitivity on COBEL-ISBA Local Forecast System for Fog and Low Clouds. Pure Appl. Geophys. 2007, 164, 1283–1301. [Google Scholar] [CrossRef]
- Parde, A.N.; Ghude, S.D.; Dhangar, N.G.; Lonkar, P.; Wagh, S.; Govardhan, G.; Biswas, M.; Jenamani, R.K. Operational Probabilistic Fog Prediction Based on Ensemble Forecast System: A Decision Support System for Fog. Atmosphere 2022, 13, 1608. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Lorenz, E.N. The Predictability of a Flow Which Possesses Many Scales of Motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Jayakumar, A.; Rajagopal, E.N.; Boutle, I.A.; George, J.P.; Mohandas, S.; Webster, S.; Aditi, S. An Operational Fog Prediction System for Delhi Using the 330 m Unified Model. Atmos. Sci. Lett. 2018, 19, e796. [Google Scholar] [CrossRef]
- Bott, A.; Trautmann, T. PAFOG—A New Efficient Forecast Model of Radiation Fog and Low-Level Stratiform Clouds. Atmos. Res. 2002, 64, 191–203. [Google Scholar] [CrossRef]
- Bergot, T.; Koracin, D. Observation, Simulation and Predictability of Fog: Review and Perspectives. Atmosphere 2021, 12, 235. [Google Scholar] [CrossRef]
- Bergot, T.; Carrer, D.; Noilhan, J.; Bougeault, P. Improved Site-Specific Numerical Prediction of Fog and Low Clouds: A Feasibility Study. Weather Forecast. 2005, 20, 627–646. [Google Scholar] [CrossRef]
- Pithani, P.; Ghude, S.D.; Jenamani, R.K.; Biswas, M.; Naidu, C.V.; Debnath, S.; Kulkarni, R.; Dhangar, N.G.; Jena, C.; Hazra, A.; et al. Real-Time Forecast of Dense Fog Events over Delhi: The Performance of the WRF Model during the WiFEX Field Campaign. Weather Forecast. 2020, 35, 739–756. [Google Scholar] [CrossRef]
- Kutty, S.G.; Dimri, A.P.; Gultepe, I. Climatic Trends in Fog Occurrence over the Indo-Gangetic Plains. Int. J. Climatol. 2020, 40, 2048–2061. [Google Scholar] [CrossRef]
- Steeneveld, G.; De Bode, M. Unravelling the Relative Roles of Physical Processes in Modelling the Life Cycle of a Warm Radiation Fog. Q. J. R. Meteorol. Soc. 2018, 144, 1539–1554. [Google Scholar] [CrossRef]
- Spirig, R.; Vogt, R.; Larsen, J.A.; Feigenwinter, C.; Wicki, A.; Franceschi, J.; Parlow, E.; Adler, B.; Kalthoff, N.; Cermak, J.; et al. Probing the fog life cycles in the Namib Desert. Bull. Am. Meteorol. Soc. 2019, 100, 2491–2507. [Google Scholar] [CrossRef]
- Yadav, P.; Parde, A.N.; Dhangar, N.G.; Govardhan, G.; Lal, D.M.; Wagh, S.; Prasad, D.S.V.V.D.; Ahmed, R.; Ghude, S.D. Understanding the Genesis of a Dense Fog Event over Delhi Using Observations and High-Resolution Model Experiments. Model. Earth Syst. Environ. 2022, 8, 5011–5022. [Google Scholar] [CrossRef]
- Ryerson, W.R. Toward Improving Short-Range Fog Prediction in Data-Denied Areas Using the Air Force Weather Agency Mesoscale Ensemble; Naval Postgraduate School Monterey Ca.: Monterey, CA, USA, 2012. [Google Scholar]
- Weston, M.; Temimi, M. Application of a Nighttime Fog Detection Method Using SEVIRI Over an Arid Environment. Remote Sens. 2020, 12, 2281. [Google Scholar] [CrossRef]
- Ahmed, R.; Dey, S.; Mohan, M. A Study to Improve Night Time Fog Detection in the Indo-Gangetic Basin Using Satellite Data and to Investigate the Connection to Aerosols. Meteorol. Appl. 2015, 22, 689–693. [Google Scholar] [CrossRef]
- Chaurasia, S.; Sathiyamoorthy, V.; Paul Shukla, B.; Simon, B.; Joshi, P.C.; Pal, P.K. Night Time Fog Detection Using MODIS Data over Northern India. Meteorol. Appl. 2011, 18, 483–494. [Google Scholar] [CrossRef]
- Lee, J.-R.; Chung, C.-Y.; Ou, M.-L. Fog Detection Using Geostationary Satellite Data: Temporally Continuous Algorithm. Asia-Pac. J. Atmos. Sci. 2011, 47, 113–122. [Google Scholar] [CrossRef]
- Yoo, J.-M.; Jeong, M.-J.; Hur, Y.M.; Shin, D.-B. Improved Fog Detection from Satellite in the Presence of Clouds. Asia-Pac. J. Atmos. Sci. 2010, 46, 29–40. [Google Scholar] [CrossRef]
- Jiskoot, H.; Harvey, T.; Nielsen, T.R. MODIS-Derived Arctic Melt Season Fog and Low Stratus over East Greenland Glaciers and the Ice Sheet. Can. J. Remote Sens. 2019, 45, 386–404. [Google Scholar] [CrossRef]
- Wang, J.L.; Li, S.M.; Liu, X.L.; Wu, X.J. An Analysis of the Fog Distribution in Beijing for the 2001–2005 Period Using NOAA and FY Data. Atmos. Res. 2010, 96, 575–589. [Google Scholar] [CrossRef]
- Cermak, J.; Eastman, R.M.; Bendix, J.; Warren, S.G. European Climatology of Fog and Low Stratus Based on Geostationary Satellite Observations. Q. J. R. Meteorol. Soc. 2009, 135, 2125–2130. [Google Scholar] [CrossRef]
- Kim, D.; Park, M.-S.; Park, Y.-J.; Kim, W. Geostationary Ocean Color Imager, (GOCI) Marine Fog Detection in Combination with Himawari-8 Based on the Decision Tree. Remote Sens. 2020, 12, 149. [Google Scholar] [CrossRef]
- Kim, W.; Yum, S.S.; Hong, J.; Song, J.I. Improvement of Fog Simulation by the Nudging of Meteorological Tower Data in the WRF and PAFOG Coupled Model. Atmosphere 2020, 11, 311. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Bullock, T.; Beale, S. Automatic Nighttime Sea Fog Detection Using GOES-16 Imagery. Atmos. Res. 2020, 238, 104712. [Google Scholar] [CrossRef]
- Baldocchi, D.; Waller, E. Winter Fog Is Decreasing in the Fruit Growing Region of the Central Valley of California: DECREASING FOG. Geophys. Res. Lett. 2014, 41, 3251–3256. [Google Scholar] [CrossRef]
- Anthis, A.I.; Cracknell, A.P. Use of Satellite Images for Fog Detection, (AVHRR) and Forecast of Fog Dissipation, (METEOSAT) over Lowland Thessalia, Hellas. Int. J. Remote Sens. 1999, 20, 1107–1124. [Google Scholar] [CrossRef]
- Xiao, Y.-F.; Zhang, J.; Qin, P. An Algorithm for Daytime Sea Fog Detection over the Greenland Sea Based on MODIS and CALIOP Data. J. Coast. Res. 2019, 90 (Suppl. S1), 95. [Google Scholar] [CrossRef]
- Wu, D.; Lu, B.; Zhang, T.; Yan, F. A Method of Detecting Sea Fogs Using CALIOP Data and Its Application to Improve MODIS-Based Sea Fog Detection. J. Quant. Spectrosc. Radiat. Transf. 2015, 153, 88–94. [Google Scholar] [CrossRef]
- Jun, L.; Zhi-Gang, H.; Hong-Bin, C.; Zeng-Liang, Z.; Hong-Yi, W. Fog Detection over China’s Adjacent Sea Area by Using the MTSAT Geostationary Satellite Data. Atmos. Ocean. Sci. Lett. 2012, 5, 128–133. [Google Scholar] [CrossRef]
- Gao, S.; Wu, W.; Zhu, L.; Fu, G. Detection of nighttime sea fog/stratus over the Huang-hai Sea using MTSAT-1R IR data. Acta Oceanol. 2009, 28, 23–35. [Google Scholar]
- Banerjee, S.; Padmakumari, B. Spatiotemporal Variability and Evolution of Day and Night Winter Fog over the Indo Gangetic Basin Using INSAT-3D and Comparison with Surface Visibility and Aerosol Optical Depth. Sci. Total Environ. 2020, 745, 140962. [Google Scholar] [CrossRef]
- Arun, S.H.; Sharma, S.K.; Chaurasia, S.; Vaishnav, R.; Kumar, R. Fog/Low Clouds Detection over the Delhi Earth Station Using the Ceilometer and the INSAT-3D/3DR Satellite Data. Int. J. Remote Sens. 2018, 39, 4130–4144. [Google Scholar] [CrossRef]
- Chaurasia, S.; Jenamani, R.K. Detection of Fog Using Temporally Consistent Algorithm With INSAT-3D Imager Data Over India. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5307–5313. [Google Scholar] [CrossRef]
- Chaurasia, S.; Gohil, B.S. Detection of Day Time Fog Over India Using INSAT-3D Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4524–4530. [Google Scholar] [CrossRef]
- Cuxart, J.; Jiménez, M.A. Deep radiation fog in a wide closed valley: Study by numerical modeling and remote sensing. Pure Appl Geophys. 2012, 169, 911–926. [Google Scholar] [CrossRef]
- Policarpo, C.; Salgado, R.; Costa, M.J. Numerical simulations of fog events in southern Portugal. Adv Meteorol. 2017, 2017, 1276784. [Google Scholar] [CrossRef]
- Pasini, A.; Potestà, S. Short-Range Visibility Forecast by Means of Neural-Network Modelling: A Case-Study. Nuovo Cimento C 1995, 18, 505–516. [Google Scholar] [CrossRef]
- Marzban, C.; Leyton, S.; Colman, B. Ceiling and Visibility Forecasts via Neural Networks. Weather Forecast. 2007, 22, 466–479. [Google Scholar] [CrossRef]
- Fabbian, D.; De Dear, R.; Lellyett, S. Application of Artificial Neural Network Forecasts to Predict Fog at Canberra International Airport. Weather Forecast. 2007, 22, 372–381. [Google Scholar] [CrossRef]
- Colabone, R.D.O.; Ferrari, A.L.; Tech, A.R.B.; Vecchia, F.A.D.S. Application of Artificial Neural Networks for Fog Forecast. J. Aerosp. Technol. Manag. 2015, 7, 240–246. [Google Scholar] [CrossRef]
- Costa, S.B.; Carvalho, F.D.O.; Amorim, R.F.; Campos, A.M.; Ribeiro, J.C.; Carvalho, V.N.; dos Santos, D.M. Fog forecast for the international airport of Maceió, Brazil using artificial neural network. In Proceedings of the International Conference on Southern Hemisphere Meteorology and Oceanography—8 ICSHMO, Foz do Iguacu, Brazil, 24–28 April 2006; pp. 24–28. [Google Scholar]
- Dewi, R.; Prawito; Harsa, H. Fog Prediction Using Artificial Intelligence: A Case Study in Wamena Airport. J. Phys. Conf. Ser. 2020, 1528, 012021. [Google Scholar] [CrossRef]
- Sujitjorn, S.; Sookjaras, P.; And Wainikorn, W. An expert system to forecast visibility in DonMuang Air Force Base. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Humans, Information and Technology, New York, NY, USA, 2–5 October 1994; pp. 2528–2531. [Google Scholar]
- Murtha, J. Applications of Fuzzy Logic in Operational Meteorology; Scientific Services and Professional Development Newsletter, Canadian Forces Weather Service: Winnipeg, MB, Canada, 1995; pp. 42–54. [Google Scholar]
- Hansen, B.K. Analog forecasting of ceiling and visibility using fuzzy sets, 2nd Conference on Artificial Intelligence. Am. Meteorol. Soc. 2000, 2000, 1–7. [Google Scholar]
- Mitra, A.K.; Nath, S.; Sharma, A.K. Fog Forecasting Using Rule-Based Fuzzy Inference System. J. Indian Soc. Remote Sens. 2008, 36, 243–253. [Google Scholar] [CrossRef]
- Miao, Y.; Potts, R.; Huang, X.; Elliott, G.; Rivett, R. A Fuzzy Logic Fog Forecasting Model for Perth Airport. Pure Appl. Geophys. 2012, 169, 1107–1119. [Google Scholar] [CrossRef]
- Bartoková, I.; Bott, A.; Bartok, J.; Gera, M. Fog Prediction for Road Traffic Safety in a Coastal Desert Region: Improvement of Nowcasting Skills by the Machine-Learning Approach. Bound.-Layer Meteorol. 2015, 157, 501–516. [Google Scholar] [CrossRef]
- Nakanishi, M. Large-Eddy Simulation Of Radiation Fog. Bound.-Layer Meteorol. 2000, 94, 461–493. [Google Scholar] [CrossRef]
- Wærsted, E.G.; Haeffelin, M.; Dupont, J.-C.; Delanoë, J.; Dubuisson, P. Radiation in Fog: Quantification of the Impact on Fog Liquid Water Based on Ground-Based Remote Sensing. Atmos. Chem. Phys. 2017, 17, 10811–10835. [Google Scholar] [CrossRef]
- Zhou, B.; Ferrier, B.S. Asymptotic Analysis of Equilibrium in Radiation Fog. J. Appl. Meteorol. Climatol. 2008, 47, 1704–1722. [Google Scholar] [CrossRef]
- Li, H.; Wu, H.; Wang, Q.; Yang, M.; Li, F.; Sun, Y.; Qian, X.; Wang, J.; Wang, C. Chemical Partitioning of Fine Particle-Bound Metals on Haze–Fog and Non-Haze–Fog Days in Nanjing, China and Its Contribution to Human Health Risks. Atmos. Res. 2017, 183, 142–150. [Google Scholar] [CrossRef]
- Rodhe, B. The Effect of Turbulence on Fog Formation. Tellus 1962, 14, 49–86. [Google Scholar] [CrossRef]
- Duynkerke, P.G. Radiation Fog: A Comparison of Model Simulation with Detailed Observations. Mon. Weather Rev. 1991, 119, 324–341. [Google Scholar] [CrossRef]
- Roach, W.T.; Brown, R.; Caughey, S.J.; Garland, J.A.; Readings, C.J. The Physics of Radiation Fog: I—A Field Study. Q. J. R. Meteorol. Soc. 1976, 102, 313–333. [Google Scholar] [CrossRef]
- Bergot, T.; Guedalia, D. Numerical Forecasting of Radiation Fog. Part I: Numerical Model and Sensitivity Tests. Mon. Weather Rev. 1994, 122, 1218–1230. [Google Scholar] [CrossRef]
- Bergot, T.; Escobar, J.; Masson, V. Effect of Small-scale Surface Heterogeneities and Buildings on Radiation Fog: Large-eddy Simulation Study at Paris–Charles de Gaulle Airport. Q. J. R. Meteorol. Soc. 2015, 141, 285–298. [Google Scholar] [CrossRef]
- Price, J. Radiation Fog. Part I: Observations of Stability and Drop Size Distributions. Bound. Layer Meteorol. 2011, 139, 167–191. [Google Scholar] [CrossRef]
- Pilié, R.J.; Mack, E.J.; Kocmond, W.C.; Eadie, W.J.; Rogers, C.W. The Life Cycle of Valley Fog. Part II: Fog Microphysics. J. Appl. Meteorol. 1975, 14, 364–374. [Google Scholar] [CrossRef]
- Bokwa, A.; Wypych, A.; Hajto, M.J. Impact of Natural and Anthropogenic Factors on Fog Frequency and Variability in Kraków, Poland in the Years 1966–2015. Aerosol Air Qual. Res. 2018, 18, 165–177. [Google Scholar] [CrossRef]
- Williams, A.P.; Schwartz, R.E.; Iacobellis, S.; Seager, R.; Cook, B.I.; Still, C.J.; Husak, G.; Michaelsen, J. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California. Geophys. Res. Lett. 2015, 42, 1527–1536. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.J.; Yiou, P.; Vautard, R. On the Roles of Circulation and Aerosols in the Decline of Mist and Dense Fog in Europe over the Last 30 Years. Atmos. Chem. Phys. 2010, 10, 4597–4609. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; Van Oldenborgh, G.J. Decline of Fog, Mist and Haze in Europe over the Past 30 Years. Nat. Geosci. 2009, 2, 115–119. [Google Scholar] [CrossRef]
- Araujo, G.P.; Freitas, E.D.; Goncalves, F.L.T. Climatological analysis and numerical modeling to the fog events at Sao Paulo metropolitan area. In Proceedings of the 2nd International Conference on Fog and Fog Collection, St. John’s, NB, Canada, 15–20 July 2001. [Google Scholar]
- Goncalves, F.L.T.; Fernandes, G.P. Analysis of Fog Events at Sao Paulo Metropolitan Area and Surroundings. In Proceedings of the 3rd International Conference on Fog, Fog Collection and Dew, Cape Town, South Africa, 11–15 October 2004. [Google Scholar]
- Goncalves, F.L.T.; da Rocha, R.P.; Petto, S. Drizzle and Fog Analysis at Sao Paulo Metropolitan Area: Climate Trends from 1933 to 2005. In Proceedings of the 4th International Conference on Fog, Fog Collection and Dew, La Serena, Chile, 22–27 July 2007. [Google Scholar]
- Goncalves, F.L.T.; da Rocha, R.P.; Fernandes, G.P.; Petto, S. Drizzle and Fog Analysis in the Sao Paulo Metropolitan Area: Changes 1933–2005 and Correlations with other Climate Factors. Die Erde. 2008, 139, 61–76. [Google Scholar]
- Han, S.; Cai, Z.; Zhang, Y.; Wang, J.; Yao, Q.; Li, P.; Li, X. Long-Term Trends in Fog and Boundary Layer Characteristics in Tianjin, China. Particuology 2015, 20, 61–68. [Google Scholar] [CrossRef]
- Fu, G.Q.; Xu, W.Y.; Yang, R.F.; Li, J.B.; Zhao, C.S. The Distribution and Trends of Fog and Haze in the North China Plain over the Past 30 Years. Atmos. Chem. Phys. 2014, 14, 11949–11958. [Google Scholar] [CrossRef]
- Quan, J.; Zhang, Q.; He, H.; Liu, J.; Huang, M.; Jin, H. Analysis of the Formation of Fog and Haze in North China Plain, (NCP). Atmos. Chem. Phys. 2011, 11, 11911–11937. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y. Analysis of Long-Term Variations of Fog and Haze in China in Recent 50 Years and Their Relations with Atmospheric Humidity. Sci. China Earth Sci. 2014, 57, 36–46. [Google Scholar] [CrossRef]
- Belorid, M.; Lee, C.B.; Kim, J.-C.; Cheon, T.-H. Distribution and Long-Term Trends in Various Fog Types over South Korea. Theor. Appl. Climatol. 2015, 122, 699–710. [Google Scholar] [CrossRef]
- Rahimi, M. Analyzing the Temporal and Spatial Variation of Fog Days in Iran. Pure Appl. Geophys. 2012, 169, 1165–1172. [Google Scholar] [CrossRef]
- Nomoto, S. Decreases in the Number of Foggy Days in Thailand and Japan, and Possible Causes. Institute of Comparative Economic Studies, Hosei University March. J. Int. Econ. Stud. 2003, 17, 13–28. [Google Scholar] [CrossRef]
- Giulianelli, L.; Gilardoni, S.; Tarozzi, L.; Rinaldi, M.; Decesari, S.; Carbone, C.; Facchini, M.C.; Fuzzi, S. Fog Occurrence and Chemical Composition in the Po Valley over the Last Twenty Years. Atmos. Environ. 2014, 98, 394–401. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. Cooling of Moist Air. In Microphysics of Clouds and Precipitation; Mysak, L.A., Hamilton, K., Eds.; Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 2010; Volume 18, pp. 485–501. [Google Scholar] [CrossRef]
- Nanev, C.N. Theory of Nucleation. In Handbook of Crystal Growth; Elsevier: Amsterdam, The Netherlands, 2015; pp. 315–358. [Google Scholar] [CrossRef]
- Facchini, M.C.; Fuzzi, S.; Zappoli, S.; Andracchio, A.; Gelencsér, A.; Kiss, G.; Krivácsy, Z.; Mészáros, E.; Hansson, H.; Alsberg, T.; et al. Partitioning of the Organic Aerosol Component between Fog Droplets and Interstitial Air. J. Geophys. Res. Atmospheres 1999, 104, 26821–26832. [Google Scholar] [CrossRef]
- Schmale, J.; Henning, S.; Decesari, S.; Henzing, B.; Keskinen, H.; Sellegri, K.; Ovadnevaite, J.; Pöhlker, M.L.; Brito, J.; Bougiatioti, A.; et al. Long-Term Cloud Condensation Nuclei Number Concentration, Particle Number Size Distribution and Chemical Composition Measurements at Regionally Representative Observatories. Atmos. Chem. Phys. 2018, 18, 2853–2881. [Google Scholar] [CrossRef]
- Mazoyer, M.; Burnet, F.; Denjean, C.; Roberts, G.C.; Haeffelin, M.; Dupont, J.-C.; Elias, T. Experimental Study of the Aerosol Impact on Fog Microphysics. Atmos. Chem. Phys. 2019, 19, 4323–4344. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Fromm, M.; Trentmann, J.; Luderer, G.; Andreae, M.O.; Servranckx, R. The Chisholm Firestorm: Observed Microstructure, Precipitation and Lightning Activity of a Pyro-Cumulonimbus. Atmos. Chem. Phys. 2007, 7, 645–659. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, X.; Wang, W. Aerosol Size Distributions during Haze Episodes in Winter in Jinan, China. Particuology 2016, 28, 77–85. [Google Scholar] [CrossRef]
- Tomasi, C.; Lupi, A. Primary and Secondary Sources of Atmospheric Aerosol. In Atmos, Aerosols; Tomasi, C., Fuzzi, S., Kokhanovsky, A., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 1–86. [Google Scholar] [CrossRef]
- Noone, K.J.; Ogren, J.A.; Hallberg, A.; Heintzenberg, J.; Ström, J.; Hansson, H.-C.; Svenningsson, B.; Wiedensohler, A.; Fuzzi, S.; Facchini, M.C.; et al. Changes in Aerosol Size- and Phase Distributions Due to Physical and Chemical Processes in Fog. Tellus B Chem. Phys. Meteorol. 1992, 44, 489. [Google Scholar] [CrossRef]
- Ming, Y.; Russell, L.M. Organic Aerosol Effects on Fog Droplet Spectra. J. Geophys. Res. Atmospheres 2004, 109, 2003JD004427. [Google Scholar] [CrossRef]
- Hammer, E.; Gysel, M.; Roberts, G.C.; Elias, T.; Hofer, J.; Hoyle, C.R.; Bukowiecki, N.; Dupont, J.-C.; Burnet, F.; Baltensperger, U.; et al. Size-Dependent Particle Activation Properties in Fog during the ParisFog 2012/13 Field Campaign. Atmos. Chem. Phys. 2014, 14, 10517–10533. [Google Scholar] [CrossRef]
- Swietlicki, E.; Hansson, H.-C.; Hämeri, K.; Svenningsson, B.; Massling, A.; McFiggans, G.; McMurry, P.H.; Petäjä, T.; Tunved, P.; Gysel, M.; et al. Hygroscopic Properties of Submicrometer Atmospheric Aerosol Particles Measured with H-TDMA Instruments in Various Environments—A Review. Tellus B Chem. Phys. Meteorol. 2008, 60, 432. [Google Scholar] [CrossRef]
- Wilson, W.E.; Suh, H.H. Fine Particles and Coarse Particles: Concentration Relationships Relevant to Epidemiologic Studies. J. Air Waste Manag. Assoc. 1997, 47, 1238–1249. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ariya, P. Atmospheric Organic and Bio-Aerosols as Cloud Condensation Nuclei, (CCN): A Review. Atmos. Environ. 2006, 40, 795–820. [Google Scholar] [CrossRef]
- Herckes, P.; Wortham, H.; Mirabel, P.; Millet, M. Evolution of the Fogwater Composition in Strasbourg, (France) from 1990 to 1999. Atmos. Res. 2002, 64, 53–62. [Google Scholar] [CrossRef]
- Raja, S.; Raghunathan, R.; Yu, X.-Y.; Lee, T.; Chen, J.; Kommalapati, R.R.; Murugesan, K.; Shen, X.; Qingzhong, Y.; Valsaraj, K.T.; et al. Fog Chemistry in the Texas–Louisiana Gulf Coast Corridor. Atmos. Environ. 2008, 42, 2048–2061. [Google Scholar] [CrossRef]
- Straub, D.J.; Hutchings, J.W.; Herckes, P. Measurements of Fog Composition at a Rural Site. Atmos. Environ. 2012, 47, 195–205. [Google Scholar] [CrossRef]
- Krivácsy, Z. Study of Humic-like Substances in Fog and Interstitial Aerosol by Size-Exclusion Chromatography and Capillary Electrophoresis. Atmos. Environ. 2000, 34, 4273–4281. [Google Scholar] [CrossRef]
- Błaś, M.; Polkowska, Ż.; Sobik, M.; Klimaszewska, K.; Nowiński, K.; Namieśnik, J. Fog Water Chemical Composition in Different Geographic Regions of Poland. Atmos. Res. 2010, 95, 455–469. [Google Scholar] [CrossRef]
- Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.J.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, M.C.; et al. Surface Tension Prevails over Solute Effect in Organic-Influenced Cloud Droplet Activation. Nature 2017, 546, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Bourcier, L.; Masson, O.; Laj, P.; Chausse, P.; Pichon, J.M.; Paulat, P.; Bertrand, G.; Sellegri, K. A New Method for Assessing the Aerosol to Rain Chemical Composition Relationships. Atmos. Res. 2012, 118, 295–303. [Google Scholar] [CrossRef]
- Poku, C.; Ross, A.N.; Hill, A.A.; Blyth, A.M.; Shipway, B. Is a More Physical Representation of Aerosol Activation Needed for Simulations of Fog? Atmos. Chem. Phys. 2021, 21, 7271–7292. [Google Scholar] [CrossRef]
- Mazoyer, M. Impact du Processus d’activation sur les Propriétés Microphysiques des Brouillards et sur Leur Cycle de Vie. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Labège, France, 2016. [Google Scholar]
- Iorga, G.; Stefan, S. Sensitivity of cloud albedo to aerosol concentration and spectral dispersion of cloud droplet size distribution. Atmósfera 2007, 20, 247–269. [Google Scholar]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate Forcing by Anthropogenic Aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Haywood, J.M.; Shine, K.P. The Effect of Anthropogenic Sulfate and Soot Aerosol on the Clear Sky Planetary Radiation Budget. Geophys. Res. Lett. 1995, 22, 603–606. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; Heymsfield, A.J.; Ramanathan, V.; Welton, E.J. Reduction of Tropical Cloudiness by Soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef]
- Lohmann, U.; Feichter, J. Global Indirect Aerosol Effects: A Review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef]
- Guo, L.; Guo, X.; Fang, C.; Zhu, S. Observation Analysis on Characteristics of Formation, Evolution and Transition of a Long-Lasting Severe Fog and Haze Episode in North China. Sci. China Earth Sci. 2015, 58, 329–344. [Google Scholar] [CrossRef]
- Gautam, R.; Singh, M.K. Urban Heat Island Over Delhi Punches Holes in Widespread Fog in the Indo-Gangetic Plains. Geophys. Res. Lett. 2018, 45, 1114–1121. [Google Scholar] [CrossRef]
- LaDochy, S.; Witiw, M. The Continued Reduction in Dense Fog in the Southern California Region: Possible Causes. Pure Appl. Geophys. 2012, 169, 1157–1163. [Google Scholar] [CrossRef]
- LaDochy, S. The Disappearance of Dense Fog in Los Angeles: Another Urban Impact? Phys. Geogr. 2005, 26, 177–191. [Google Scholar] [CrossRef]
- Hudson, J.G. Relationship Between Fog Condensation Nuclei and Fog Microstructure. J. Atmos. Sci. 1980, 37, 1854–1867. [Google Scholar] [CrossRef]
- Jia, X.; Quan, J.; Zheng, Z.; Liu, X.; Liu, Q.; He, H.; Liu, Y. Impacts of Anthropogenic Aerosols on Fog in North China Plain. J. Geophys. Res. Atmospheres 2019, 124, 252–265. [Google Scholar] [CrossRef]
- Pandis, S.N.; Seinfeld, J.H.; Pilinis, C. Chemical Composition Differences in Fog and Cloud Droplets of Different Sizes. Atmos. Environ. Part Gen. Top. 1990, 24, 1957–1969. [Google Scholar] [CrossRef]
- Moore, K.F.; Sherman, D.E.; Reilly, J.E.; Collett, J.L. Drop Size-Dependent Chemical Composition in Clouds and Fogs. Part, I. Observations. Atmos. Environ. 2004, 38, 1389–1402. [Google Scholar] [CrossRef]
- Niu, F.; Li, Z.; Li, C.; Lee, K.-H.; Wang, M. Increase of Wintertime Fog in China: Potential Impacts of Weakening of the Eastern Asian Monsoon Circulation and Increasing Aerosol Loading. J. Geophys. Res. 2010, 115, D00K20. [Google Scholar] [CrossRef]
- Bullough, J.D.; Rea, M.S. Impacts of Fog Characteristics, Forward Illumination, and Warning Beacon Intensity Distribution on Roadway Hazard Visibility. Sci. World J. 2016, 2016, 4687816. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Li, J.; Chang, Y.; Du, Q.; Pan, T. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season. PLoS ONE 2015, 10, e0133919. [Google Scholar] [CrossRef]
- Peng, Z.; Wu, L. A New Perspective on Formation of Haze-Fog: The Fuzzy Cognitive Map and Its Approaches to Data Mining. Sustainability 2017, 9, 352. [Google Scholar] [CrossRef]
- Allaby, M. Fog, Smog, and Poisoned Rain; Facts on File: New York, NY, USA, 2008. [Google Scholar]
- Osibanjo, O.O.; Rappenglück, B.; Retama, A. Anatomy of the March 2016 Severe Ozone Smog Episode in Mexico-City. Atmos. Environ. 2021, 244, 117945. [Google Scholar] [CrossRef]
- Hu, Y.; Lin, J.; Zhang, S.; Kong, L.; Fu, H.; Chen, J. Identification of the Typical Metal Particles among Haze, Fog, and Clear Episodes in the Beijing Atmosphere. Sci. Total Environ. 2015, 511, 369–380. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Czerwińska, J. Smog Episodes in Poland. Atmosphere 2020, 11, 277. [Google Scholar] [CrossRef]
- Gilardoni, S.; Fuzzi, S. Chemical Composition of Aerosols of Different Origin. In Atmos, Aerosols; Tomasi, C., Fuzzi, S., Kokhanovsky, A., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 183–221. [Google Scholar] [CrossRef]
- Rajput, P.; Singh, D.K.; Singh, A.K.; Gupta, T. Chemical Composition and Source-Apportionment of Sub-Micron Particles during Wintertime over Northern India: New Insights on Influence of Fog-Processing. Environ. Pollut. 2018, 233, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Honma, S.; Nishi, M.; Igarashi, T.; Teramoto, S.; Nishio, F.; Abe, S. Acid Fog and Hospital Visits for Asthma: An Epidemiological Study. Eur. Respir. J. 1998, 11, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Castanas, E. Human Health Effects of Air Pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Hutchings, J.W.; Ervens, B.; Straub, D.; Herckes, P. N-Nitrosodimethylamine Occurrence, Formation and Cycling in Clouds and Fogs. Environ. Sci. Technol. 2010, 44, 8128–8133. [Google Scholar] [CrossRef]
- Pope, C.A. Respiratory Disease Associated with Community Air Pollution and a Steel Mill, Utah Valley. Am. J. Public Health 1989, 79, 623–628. [Google Scholar] [CrossRef]
- Avol, E.L.; Linn, W.S.; Wightman, L.H.; Whynot, J.D.; Anderson, K.R.; Hackney, J.D. Short-Term Respiratory Effects of Sulfuric Acid in Fog: A Laboratory Study of Healthy and Asthmatic Volunteers. JAPCA 1988, 38, 258–263. [Google Scholar] [CrossRef]
- Lavorini, F.; Fontana, G.A.; Pantaleo, T.; Camiciottoli, G.; Castellani, W.; Maluccio, N.M.; Pistolesi, M. Fog-Induced Respiratory Responses Are Attenuated by Nedocromil Sodium in Humans. Am. J. Respir. Crit. Care Med. 2001, 163, 1117–1120. [Google Scholar] [CrossRef] [PubMed]
- Hackney, J.D.; Linn, W.S.; Avol, E.L. Potential Risks to Human Respiratory Health from “Acid Fog”: Evidence from Experimental Studies of Volunteers. Environ. Health Perspect. 1985, 63, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.W.; Anderson, K.R.; Linn, W.S.; Gong, H. Influence of Breathing-Zone Ammonia on Human Exposures to Acid Aerosol Pollution. J. Air Waste Manag. Assoc. 1995, 45, 923–925. [Google Scholar] [CrossRef]
- Percy, K.E.; Jensen, K.F.; McQUATTIE, C.J. Effects of Ozone and Acidic Fog on Red Spruce Needle Epicuticular Wax Production, Chemical Composition, Cuticular Membrane Ultrastructure and Needle Wettability. New Phytol. 1992, 122, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Polivka, B.J. The great London smog of 1952. AJN 2018, 118, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Javed, A.; Aamir, F.; Gohar, U.; Mukhtar, H.; Zia-UI-Haq, M.; Alotaibi, M.; Bin-Jumah, M.; Marc, R.; Pop, O. The Potential Impact of Smog Spell on Humans’ Health Amid COVID-19 Rages. Int. J. Environ. Res. Public. Health 2021, 18, 11408. [Google Scholar] [CrossRef]
- Park, J.; Lim, M.N.; Hong, Y.; Kim, W.J. The Influence of Asian Dust, Haze, Mist, and Fog on Hospital Visits for Airway Diseases. Tuberc. Respir. Dis. 2015, 78, 326. [Google Scholar] [CrossRef]
- Croft, P.J. Fog. In Encyclopedia of Atmos. Sciences; Holton, J.R., Curry, J.A., Pyle, J.A., Eds.; Academic: San Diego, CA, USA, 2003; pp. 777–792. [Google Scholar]
- Forthun, G.M.; Johnson, M.B.; Schmitz, W.G.; Blume, J.; Caldwell, R.J. Trends in Fog Frequency and Duration in the Southeast United States. Phys. Geogr. 2006, 27, 206–222. [Google Scholar] [CrossRef]
- Wong, D.K.Y.; Pitfield, D.E.; Caves, R.E.; Appleyard, A.J. Quantifying and Characterising Aviation Accident Risk Factors. J. Air Transp. Manag. 2006, 12, 352–357. [Google Scholar] [CrossRef]
- Aviation Safety Network. Aviation Safety Database. 2021. Available online: https://aviation-safety.net/database/ (accessed on 12 May 2020).
- Governments of India, Ministry of Road Transport & Highways, Transport Research Wing, New Delhi. Road Accidents in India. 2019. Available online: www.morth.nic.in (accessed on 12 May 2020).
- Houghton, H.G.; Radford, W.H. On the local dissipation of warm fog. Papers Phys. Ocean. Meteor. 1938, 6, 63. [Google Scholar]
- Jiusto, J.E.; Pilié, R.J.; Kocmond, W.C. Fog Modification with Giant Hygroscopic Nuclei. J. Appl. Meteorol. 1968, 7, 860–869. [Google Scholar] [CrossRef]
- Plank, V.G.; Spatola, A.A.; Hicks, J.R. Summary Results of the Lewisburg Fog Clearing Program. J. Appl. Meteorol. 1971, 10, 763–779. [Google Scholar] [CrossRef]
- Czyz, H.; Markowski, T. Acoustic method of airport fog precipitation. Aviation 2007, 11, 26–30. [Google Scholar] [CrossRef]
- Olivier, J. Fog-Water Harvesting along the West Coast of South Africa: A Feasibility Study. Water SA 2002, 28, 349–360. [Google Scholar] [CrossRef]
- Fessehaye, M.; Abdul-Wahab, S.A.; Savage, M.J.; Kohler, T.; Gherezghiher, T.; Hurni, H. Fog-Water Collection for Community Use. Renew. Sustain. Energy Rev. 2014, 29, 52–62. [Google Scholar] [CrossRef]
- Qadir, M.; Jiménez, G.; Farnum, R.; Dodson, L.; Smakhtin, V. Fog Water Collection: Challenges beyond Technology. Water 2018, 10, 372. [Google Scholar] [CrossRef]
- Qadir, M.; Jiménez, G.C.; Farnum, R.L.; Trautwein, P. Research History and Functional Systems of Fog Water Harvesting. Front. Water 2021, 3, 675269. [Google Scholar] [CrossRef]
- Azeem, M.; Guérin, A.; Dumais, T.; Caminos, L.; Goldstein, R.E.; Pesci, A.I.; De Dios Rivera, J.; Torres, M.J.; Wiener, J.; Campos, J.L.; et al. Optimal Design of Multilayer Fog Collectors. ACS Appl. Mater. Interfaces 2020, 12, 7736–7743. [Google Scholar] [CrossRef]
- UNEP. Sourcebook of Alternative Technologies for Freshwater Augmentation in Some Countries in Asia; UNEP, Unit of Sustainable Development and Environment General Secretariat, Organisation of American States: Washington, DC, USA, 1997.
- Schemenauer, R.S.; Cereceda, P. A Proposed Standard Fog Collector for Use in High-Elevation Regions. J. Appl. Meteorol. 1994, 33, 1313–1322. [Google Scholar] [CrossRef]
- NISA (University of South Africa). Research Report; UNISA (University of South Africa): Cape Town, Australia, 2008. [Google Scholar]
- Shanyengana, E.S.; Henschel, J.R.; Seely, M.K.; Sanderson, R.D. Exploring Fog as a Supplementary Water Source in Namibia. Atmos. Res. 2002, 64, 251–259. [Google Scholar] [CrossRef]
- Olivier, J. Fog Harvesting: An Alternative Source of Water Supply on the West Coast of South Africa. GeoJournal 2004, 61, 203–214. [Google Scholar] [CrossRef]
- Dodson, L.L.; Bargach, J. Harvesting Fresh Water from Fog in Rural Morocco: Research and Impact Dar Si Hmad’s Fogwater Project in Aït Baamrane. Procedia Eng. 2015, 107, 186–193. [Google Scholar] [CrossRef]
- Carter Gamberini, M.V.; Schemenauer, R.; Osse, P.; Streeter, H. The Atacama Desert fog collection project at Falda Verde, Chile. In Proceedings of the 4th International Conference on Fog, Fog Collection and Dew, La Serena, Chile, 22–27 July 2007. [Google Scholar]
- Gandhidasan, P.; Abualhamayel, H.I. Fog Collection as a Source of Fresh Water Supply in the Kingdom of Saudi Arabia. Water Environ. J. 2007, 21, 19–25. [Google Scholar] [CrossRef]
- Al-hassan, G.A. Fog Water Collection Evaluation in Asir Region–Saudi Arabia. Water Resour. Manag. 2009, 23, 2805–2813. [Google Scholar] [CrossRef]
- Harb, O.M.; Salem, M.S.; Abd EL-Hay, G.H.; Makled, K.M. Fog Water Harvesting Providing Stability for Small Bedwe Communities Lives in North Cost of Egypt. Ann. Agric. Sci. 2016, 61, 105–110. [Google Scholar] [CrossRef]
- Salem, T.A.; Omar, M.E.D.M.; El Gammal, H.A.A. Evaluation of Fog and Rain Water Collected at Delta Barrage, Egypt as a New Resource for Irrigated Agriculture. J. Afr. Earth Sci. 2017, 135, 34–40. [Google Scholar] [CrossRef]
- Meunier, D.; Beysens, D. Dew, Fog, Drizzle and Rain Water in Baku, (Azerbaijan). Atmos. Res. 2016, 178–179, 65–72. [Google Scholar] [CrossRef]
- Carrera-Villacrés, D.V.; Rodríguez-Espinosa, F.; Toulkeridis, T. Potential Solutions for the Water Shortage Using Towers of Fog Collectors in a High Andean Community in Central Ecuador. Sustainability 2023, 15, 9237. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Lea, V. Reviewing Fog Water Collection Worldwide and in Oman. Int. J. Environ. Stud. 2008, 65, 487–500. [Google Scholar] [CrossRef]
- Marzol Jaén, M.V. Fog Water Collection in a Rural Park in the Canary Islands, (Spain). Atmos. Res. 2002, 64, 239–250. [Google Scholar] [CrossRef]
- Nieberding, F.; Breuer, B.; Braeckevelt, E.; Klemm, O.; Song, Q.; Zhang, Y. Fog Water Chemical Composition on Ailaoshan Mountain, Yunnan Province, SW China. Aerosol Air Qual. Res. 2018, 18, 37–48. [Google Scholar] [CrossRef]
- Tognetti, R. Trees Harvesting the Clouds: Fog Nets Threatened by Climate Change: Figure 1. Tree Physiol. 2015, 35, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Weathers, K.C.; Ponette-González, A.G.; Dawson, T.E. Medium, Vector, and Connector: Fog and the Maintenance of Ecosystems. Ecosystems 2020, 23, 217–229. [Google Scholar] [CrossRef]
- Mitchell, D.; Henschel, J.R.; Hetem, R.S.; Wassenaar, T.D.; Strauss, W.M.; Hanrahan, S.A.; Seely, M.K. Fog and Fauna of the Namib Desert: Past and Future. Ecosphere 2020, 11, e02996. [Google Scholar] [CrossRef]
- Qiao, N.; Zhang, L.; Huang, C.; Jiao, W.; Maggs-Kölling, G.; Marais, E.; Wang, L. Satellite Observed Positive Impacts of Fog on Vegetation. Geophys. Res. Lett. 2020, 47, e2020GL088428. [Google Scholar] [CrossRef]
- Lange, C.A.; Matschullat, J.; Zimmermann, F.; Sterzik, G.; Wienhaus, O. Fog Frequency and Chemical Composition of Fog Water—A Relevant Contribution to Atmospheric Deposition in the Eastern Erzgebirge, Germany. Atmos. Environ. 2003, 37, 3731–3739. [Google Scholar] [CrossRef]
- Jacob, D.J.; Waldman, J.M.; Haghi, M.; Hoffmann, M.R.; Flagan, R.C. Instrument to Collect Fogwater for Chemical Analysis. Rev. Sci. Instrum. 1985, 56, 1291–1293. [Google Scholar] [CrossRef]
- Daube, B.C., Jr.; Flagan, R.C.; Hoffmann, M.R. Active cloudwater collector. U.S. Patent No. 4697462, 25 May 1987. [Google Scholar]
- Munger, J.W. The Chemical Composition of Fogs and Clouds in Southern California. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1989. [Google Scholar] [CrossRef]
- Collett, J.; Daube, B.; Munger, J.W.; Hoffmann, M.R. Cloud Water Chemistry in Sequoia National Park. Atmos. Environ. 1967 1989, 23, 999–1007. [Google Scholar] [CrossRef]
- Klemm, O.; Bachmeier, A.S.; Talbot, R.W.; Klemm, K.I. Fog Chemistry at the New England Coast: Influence of Air Mass History. Atmos. Environ. 1994, 28, 1181–1188. [Google Scholar] [CrossRef]
- Hoag, K. The Influence of Drop Size-Dependent Fog Chemistry on Aerosol Processing by San Joaquin Valley Fogs. Atmos. Environ. 1999, 33, 4817–4832. [Google Scholar] [CrossRef]
- Wrzesinsky, T.; Klemm, O. Summertime Fog Chemistry at a Mountainous Site in Central Europe. Atmos. Environ. 2000, 34, 1487–1496. [Google Scholar] [CrossRef]
- Anastasio, C.; McGregor, K.G. Chemistry of Fog Waters in California’s Central Valley: 1. In Situ Photoformation of Hydroxyl Radical and Singlet Molecular Oxygen. Atmos. Environ. 2001, 35, 1079–1089. [Google Scholar] [CrossRef]
- Collett, J.L.; Bator, A.; Sherman, D.E.; Moore, K.F.; Hoag, K.J.; Demoz, B.B.; Rao, X.; Reilly, J.E. The Chemical Composition of Fogs and Intercepted Clouds in the United States. Atmos. Res. 2002, 64, 29–40. [Google Scholar] [CrossRef]
- Thalmann, E.; Burkard, R.; Wrzesinsky, T.; Eugster, W.; Klemm, O. Ion Fluxes from Fog and Rain to an Agricultural and a Forest Ecosystem in Europe. Atmos. Res. 2002, 64, 147–158. [Google Scholar] [CrossRef]
- Ervens, B.; Herckes, P.; Feingold, G.; Lee, T.; Collett, J.L., Jr. Kreidenweis, S.M. On the drop-size dependence of organic acid and formaldehyde concentrations in fog. J. Atmos. Chem. 2003, 46, 239–269. [Google Scholar] [CrossRef]
- Lu, C.; Niu, S.; Tang, L.; Lv, J.; Zhao, L.; Zhu, B. Chemical Composition of Fog Water in Nanjing Area of China and Its Related Fog Microphysics. Atmos. Res. 2010, 97, 47–69. [Google Scholar] [CrossRef]
- Fuzzi, S.; Orsi, G.; Bonforte, G.; Zardini, B.; Franchini, P.L. An automated fog water collector suitable for deposition networks: Design, operation and field tests. Water. Air. Soil Pollut. 1997, 93, 383–394. [Google Scholar] [CrossRef]
- Minami, Y.; Ishizaka, Y. Evaluation of Chemical Composition in Fog Water near the Summit of a High Mountain in Japan. Atmos. Environ. 1996, 30, 3363–3376. [Google Scholar] [CrossRef]
- Sasakawa, M.; Uematsu, M. Chemical Composition of Aerosol, Sea Fog, and Rainwater in the Marine Boundary Layer of the Northwestern North Pacific and Its Marginal Seas. J. Geophys. Res. Atmospheres 2002, 107, ACH17-1–ACH17-9. [Google Scholar] [CrossRef]
- Demoz, B.B.; Collett, J.L.; Daube, B.C. On the Caltech Active Strand Cloudwater Collectors. Atmos. Res. 1996, 41, 47–62. [Google Scholar] [CrossRef]
- Skarżyńska, K.; Polkowska, Ż.; Namieśnik, J. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution. J. Autom. Methods Manag. Chem. 2006, 2006, 026908. [Google Scholar] [CrossRef]
- Collett, J.L.; Daube, B.C.; Munger, J.W.; Hoffmann, M.R. A Comparison of Two Cloudwater/Fogwater Collectors: The Rotating Arm Collector and the Caltech Active Strand Cloudwater Collector. Atmos. Environ. Part Gen. Top. 1990, 24, 1685–1692. [Google Scholar] [CrossRef]
- Bator, A.; Collett, J.L. Cloud Chemistry Varies with Drop Size. J. Geophys. Res. Atmospheres 1997, 102, 28071–28078. [Google Scholar] [CrossRef]
- Reilly, J.E.; Rattigan, O.V.; Moore, K.F.; Judd, C.; Eli Sherman, D.; Dutkiewicz, V.A.; Kreidenweis, S.M.; Husain, L.; Collett, J.L. Drop Size-Dependent S(IV) Oxidation in Chemically Heterogeneous Radiation Fogs. Atmos. Environ. 2001, 35, 5717–5728. [Google Scholar] [CrossRef]
- Straub, D.J.; Collett, J.L. Development of a Multi-Stage Cloud Water Collector Part 2: Numerical and Experimental Calibration. Atmos. Environ. 2002, 36, 45–56. [Google Scholar] [CrossRef]
- Moore, K.F.; Sherman, D.E.; Reilly, J.E.; Collett, J.L. Development of a Multi-Stage Cloud Water Collector Part 1: Design and Field Performance Evaluation. Atmos. Environ. 2002, 36, 31–44. [Google Scholar] [CrossRef]
- Michna, P.; Schenk, J.; Werner, R.A.; Eugster, W. MiniCASCC—A Battery Driven Fog Collector for Ecosystem Research. Atmos. Res. 2013, 128, 24–34. [Google Scholar] [CrossRef]
- Ponche, J.L.; George, C.; Mirabel, P. Mass Transfer at the Air/Water Interface: Mass Accommodation Coefficients of SO2, HNO3, NO2 and NH3. J. Atmos. Chem. 1993, 16, 1–21. [Google Scholar] [CrossRef]
- Sigg, L.; Stumm, W.; Zobrist, J.; Zuercher, F. The Chemistry of Fog: Factors Regulating Its Composition. ChemInform 1987, 18, 159–165. [Google Scholar] [CrossRef]
- Aleksic, N.; Dukett, J.E. Probabilistic Relationship between Liquid Water Content and Ion Concentrations in Cloud Water. Atmos. Res. 2010, 98, 400–405. [Google Scholar] [CrossRef]
- Elbert, W. Control of Solute Concentrations in Cloud and Fog Water by Liquid Water Content. Atmos. Environ. 2000, 34, 1109–1122. [Google Scholar] [CrossRef]
- Elbert, W.; Krämer, M.; Andreae, M.O. Reply to Discussion on Control of Solute Concentrations in Cloud and Fog Water by Liquid Water Content. Atmos. Environ. 2002, 36, 1909–1910. [Google Scholar] [CrossRef]
- Kasper-Giebl, A. Control of Solute Concentrations in Cloud and Fog Water by Liquid Water Content. Atmos. Environ. 2002, 36, 1907–1908. [Google Scholar] [CrossRef]
- Millet, M.; Wortham, H.; Sanusi, A.; Mirabel, P. Atmospheric Contamination by Pesticides: Determination in the Liquid, Gaseous and Particulate Phases. Environ. Sci. Pollut. Res. 1997, 4, 172–180. [Google Scholar] [CrossRef]
- Yue, Y.; Niu, S.; Zhao, L.; Zhang, Y.; Xu, F. Chemical Composition of Sea Fog Water Along the South China Sea. Pure Appl. Geophys. 2012, 169, 2231–2249. [Google Scholar] [CrossRef]
- Nath, S.; Yadav, S. A Comparative Study on Fog and Dew Water Chemistry at New Delhi, India. Aerosol Air Qual. Res. 2018, 18, 26–36. [Google Scholar] [CrossRef]
- van Pinxteren, D.; Fomba, K.W.; Mertes, S.; Müller, K.; Spindler, G.; Schneider, J.; Lee, T.; Collett, J.L.; Herrmann, H. Cloud Water Composition during HCCT-2010: Scavenging Efficiencies, Solute Concentrations, and Droplet Size Dependence of Inorganic Ions and Dissolved Organic Carbon. Atmos. Chem. Phys. 2016, 16, 3185–3205. [Google Scholar] [CrossRef]
- Izhar, S.; Gupta, T.; Panday, A.K. Scavenging Efficiency of Water Soluble Inorganic and Organic Aerosols by Fog Droplets in the Indo Gangetic Plain. Atmos. Res. 2020, 235, 104767. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, J.; Chen, Y.; Liu, Y.; Ye, Z.; Ge, X. Aqueous-Phase Production of Secondary Organic Aerosols from Oxidation of Dibenzothiophene, (DBT). Atmosphere 2020, 11, 151. [Google Scholar] [CrossRef]
- Sawlani, R.; Agnihotri, R.; Sharma, C.; Patra, P.K.; Dimri, A.P.; Ram, K.; Verma, R.L. The Severe Delhi SMOG of 2016: A Case of Delayed Crop Residue Burning, Coincident Firecracker Emissions, and Atypical Meteorology. Atmos. Pollut. Res. 2019, 10, 868–879. [Google Scholar] [CrossRef]
- Acker, K.; Beysens, D.; Möller, D. Nitrite in Dew, Fog, Cloud and Rain Water: An Indicator for Heterogeneous Processes on Surfaces. Atmos. Res. 2008, 87, 200–212. [Google Scholar] [CrossRef]
- Collett, J.L.; Sherman, D.E.; Moore, K.F.; Hannigan, M.; Lee, T. Aerosol particle processing and removal by fogs: Observations in chemically heterogeneous central California radiation fogs. Water Air Soil Poll. Focus. 2001, 1, 303–312. [Google Scholar] [CrossRef]
- Yuskiewicz, B.A.; Orsini, D.; Stratmann, F.; Wendisch, M.; Wiedensohler, A.; Heintzenberg, J.; Martinsson, B.G.; Frank, G.; Wobrock, W.; Schell, D. Changes in submicrometer particle distributions and light scattering during haze and fog events in a highly polluted environment. Contrib. Atmos. Phys. 1998, 71, 33–45. [Google Scholar]
- Pant, V.; Deshpande, C.G.; Kamra, A.K. Changes in concentration and size distribution of aerosols during fog over the south Indian Ocean. J. Earth Syst. Sci. 2010, 119, 479–487. [Google Scholar] [CrossRef]
- Gilardoni, S.; Massoli, P.; Giulianelli, L.; Rinaldi, M.; Paglione, M.; Pollini, F.; Lanconelli, C.; Poluzzi, V.; Carbone, S.; Hillamo, R.; et al. Fog Scavenging of Organic and Inorganic Aerosol in the Po Valley. Atmos. Chem. Phys. 2014, 14, 6967–6981. [Google Scholar] [CrossRef]
- Aikawa, M.; Hiraki, T.; Suzuki, M.; Tamaki, M.; Kasahara, M. Separate Chemical Characterizations of Fog Water, Aerosol, and Gas before, during, and after Fog Events near an Industrialized Area in Japan. Atmos. Environ. 2007, 41, 1950–1959. [Google Scholar] [CrossRef]
- Aikawa, M.; Hiraki, T.; Shoga, M.; Tamaki, M.; Sumitomo, S. Seven-Year Trend and the Time and Seasonal Dependence of Fog Water Collected near an Industrialized Area in Japan. Atmos. Res. 2007, 83, 1–9. [Google Scholar] [CrossRef]
- Kaul, D.S.; Gupta, T.; Tripathi, S.N.; Tare, V.; Collett, J.L. Secondary Organic Aerosol: A Comparison between Foggy and Nonfoggy Days. Environ. Sci. Technol. 2011, 45, 7307–7313. [Google Scholar] [CrossRef] [PubMed]
- Collett, J.L.; Herckes, P.; Youngster, S.; Lee, T. Processing of Atmospheric Organic Matter by California Radiation Fogs. Atmos. Res. 2008, 87, 232–241. [Google Scholar] [CrossRef]
- Klemm, O.; Wrzesinsky, T. Fog Deposition Fluxes of Water and Ions to a Mountainous Site in Central Europe. Tellus B Chem. Phys. Meteorol. 2007, 59, 705. [Google Scholar] [CrossRef]
- Pacyna, J.; Torseth, K. Norwegian institute for air research, (nilu). In Restoration of Forests: Environmental Challenges in Central and Eastern Europe; Springer: Berlin/Heidelberg, Germany, 2012; Volume 30, p. 15. [Google Scholar]
- Barrie, L.A.; Schemenauer, R.S. Pollutant Wet Deposition Mechanisms in Precipitation and Fog Water. Water. Air. Soil Pollut. 1986, 30, 91–104. [Google Scholar] [CrossRef]
- Glotfelty, D.E.; Seiber, J.N.; Liljedahl, A. Pesticides in Fog. Nature 1987, 325, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Ehrenhauser, F.S.; Khadapkar, K.; Wang, Y.; Hutchings, J.W.; Delhomme, O.; Kommalapati, R.R.; Herckes, P.; Wornat, M.J.; Valsaraj, K.T. Processing of Atmospheric Polycyclic Aromatic Hydrocarbons by Fog in an Urban Environment. J. Environ. Monit. 2012, 14, 2566. [Google Scholar] [CrossRef] [PubMed]
- Leuenberger, C.; Czuczwa, J.; Heyerdahl, E.; Giger, W. Aliphatic and Polycyclic Aromatic Hydrocarbons in Urban Rain, Snow and Fog. Atmos. Environ. 1988, 22, 695–705. [Google Scholar] [CrossRef]
- Capel, P.D.; Leuenberger, C.; Giger, W. Hydrophobic Organic Chemicals in Urban Fog. Atmos. Environ. Part Gen. Top. 1991, 25, 1335–1346. [Google Scholar] [CrossRef]
- Millet, M.; Sanusi, A.; Wortham, H. Chemical Composition of Fogwater in an Urban Area: Strasbourg, (France). Environ. Pollut. 1996, 94, 345–354. [Google Scholar] [CrossRef]
- Richartz, H.; Reischl, A.; Trautner, F.; Hutzinger, O. Nitrated Phenols in Fog. Atmos. Environ. Part Gen. Top. 1990, 24, 3067–3071. [Google Scholar] [CrossRef]
- Fernández-González, R.; Yebra-Pimentel, I.; Martínez-Carballo, E.; Simal-Gándara, J.; Pontevedra-Pombal, X. Atmospheric Pollutants in Fog and Rain Events at the Northwestern Mountains of the Iberian Peninsula. Sci. Total Environ. 2014, 497–498, 188–199. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Yang, C.; Wang, X.; Chen, J.; Collett, J.L. Fog Water Chemistry in Shanghai. Atmos. Environ. 2011, 45, 4034–4041. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Li, Y.; Wang, Z.; Zhang, H.; Xu, P.; Wang, W. Characterization of Polycyclic Aromatic Hydrocarbons Deposition in PM2.5 and Cloud/Fog Water at Mount Taishan, (China). Atmos. Environ. 2010, 44, 1996–2003. [Google Scholar] [CrossRef]
- Munger, J.W.; Jacob, D.J.; Waldman, J.M.; Hoffmann, M.R. Fogwater Chemistry in an Urban Atmosphere. J. Geophys. Res. Oceans 1983, 88, 5109–5121. [Google Scholar] [CrossRef]
- Johnson, C.A.; Sigg, L.; Zobrist, J. Case Studies on the Chemical Composition of Fogwater: The Influence of Local Gaseous Emissions. Atmos. Environ. 1987, 21, 2365–2374. [Google Scholar] [CrossRef]
- Munger, J.W.; Collett, J.; Daube, B.; Hoffmann, M.R. Fogwater Chemistry at Riverside, California. Atmos. Environ. Part B Urban Atmosphere 1990, 24, 185–205. [Google Scholar] [CrossRef]
- Schemenauer, R. High Elevation Fog and Precipitation Chemistry in Southern Quebec, Canada. Atmos. Environ. 1995, 29, 2235–2252. [Google Scholar] [CrossRef]
- Ali, K.; Momin, G.A.; Tiwari, S.; Safai, P.D.; Chate, D.M.; Rao, P.S.P. Fog and Precipitation Chemistry at Delhi, North India. Atmos. Environ. 2004, 38, 4215–4222. [Google Scholar] [CrossRef]
- Gao, X.; Xue, L.; Wang, X.; Wang, T.; Yuan, C.; Gao, R.; Zhou, Y.; Nie, W.; Zhang, Q.; Wang, W. Aerosol Ionic Components at Mt. Heng in Central Southern China: Abundances, Size Distribution, and Impacts of Long-Range Transport. Sci. Total Environ. 2012, 433, 498–506. [Google Scholar] [CrossRef]
- Guo, L.; Lee, H.K. Low-Density Solvent-Based Solvent Demulsification Dispersive Liquid–Liquid Microextraction for the Fast Determination of Trace Levels of Sixteen Priority Polycyclic Aromatic Hydrocarbons in Environmental Water Samples. J. Chromatogr. A 2011, 1218, 5040–5046. [Google Scholar] [CrossRef]
- Liu, X.; Wai, K.-M.; Wang, Y.; Zhou, J.; Li, P.; Guo, J.; Xu, P.; Wang, W. Evaluation of Trace Elements Contamination in Cloud/Fog Water at an Elevated Mountain Site in Northern China. Chemosphere 2012, 88, 531–541. [Google Scholar] [CrossRef]
- Shen, X.; Lee, T.; Guo, J.; Wang, X.; Li, P.; Xu, P.; Wang, Y.; Ren, Y.; Wang, W.; Wang, T.; et al. Aqueous Phase Sulfate Production in Clouds in Eastern China. Atmos. Environ. 2012, 62, 502–511. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Wang, T.; Ding, A.; Gao, J.; Zhou, Y.; Collett, J.L.; Wang, W. Influence of Regional Pollution and Sandstorms on the Chemical Composition of Cloud/Fog at the Summit of Mt. Taishan in Northern China. Atmos. Res. 2011, 99, 434–442. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; Li, P.; Li, Y.; Xue, L.; Wang, W. Variation of Low Molecular Weight Organic Acids in Precipitation and Cloudwater at High Elevation in South China. Atmos. Environ. 2011, 45, 6518–6525. [Google Scholar] [CrossRef]
- Watanabe, K.; Honoki, H.; Iwai, A.; Tomatsu, A.; Noritake, K.; Miyashita, N.; Yamada, K.; Yamada, H.; Kawamura, H.; Aoki, K. Chemical Characteristics of Fog Water at Mt. Tateyama, Near the Coast of the Japan Sea in Central Japan. Water. Air. Soil Pollut. 2010, 211, 379–393. [Google Scholar] [CrossRef]
- Watanabe, K.; Honoki, H.; Iwama, S.; Iwatake, K.; Mori, S.; Nishimoto, D.; Komori, S.; Saito, Y.; Yamada, H.; Uehara, Y. Chemical Composition of Fog Water at Mt. Tateyama near the Coast of the Japan Sea in Central Japan. Erdkunde 2011, 65, 233–245. [Google Scholar] [CrossRef]
- Lakhani, A.; Parmar, R.S.; Satsangi, G.S.; Prakash, S. Chemistry of Fogs at Agra, India: Influence of Soil Particulates and Atmospheric Gases. Environ. Monit. Assess. 2007, 133, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Safai, P.D.; Kewat, S.; Pandithurai, G.; Praveen, P.S.; Ali, K.; Tiwari, S.; Rao, P.S.P.; Budhawant, K.B.; Saha, S.K.; Devara, P.C.S. Aerosol Characteristics during Winter Fog at Agra, North India. J. Atmos. Chem. 2008, 61, 101–118. [Google Scholar] [CrossRef]
- Kim, M.-G.; Lee, B.-K.; Kim, H.-J. Cloud/Fog Water Chemistry at a High Elevation Site in South Korea. J. Atmos. Chem. 2006, 55, 13–29. [Google Scholar] [CrossRef]
- Sheu, G.-R.; Lin, N.-H. Mercury in Cloud Water Collected on Mt. Bamboo in Northern Taiwan during the Northeast Monsoon Season. Atmos. Environ. 2011, 45, 4454–4462. [Google Scholar] [CrossRef]
- Zapletal, M.; Kuňák, D.; Chroust, P. Chemical Characterization of Rain and Fog Water in the Cervenohorske Sedlo, (Hruby Jesenik Mountains, Czech Republic). Water. Air. Soil Pollut. 2007, 186, 85–96. [Google Scholar] [CrossRef]
- Fisak, J.; Stoyanova, V.; Tesar, M.; Petrova, P.; Daskalova, N.; Tsacheva, T.; Marinov, M. The Pollutants in Rime and Fog Water and in Air at Milesovka Observatory, (Czech Republic). Biologia 2009, 64, 492–495. [Google Scholar] [CrossRef]
- Błaś, M.; Sobik, M.; Twarowski, R. Changes of Cloud Water Chemical Composition in the Western Sudety Mountains, Poland. Atmos. Res. 2008, 87, 224–231. [Google Scholar] [CrossRef]
- Herrmann, H.; Wolke, R.; Müller, K.; Brüggemann, E.; Gnauk, T.; Barzaghi, P.; Mertes, S.; Lehmann, K.; Massling, A.; Birmili, W.; et al. FEBUKO and MODMEP: Field Measurements and Modelling of Aerosol and Cloud Multiphase Processes. Atmos. Environ. 2005, 39, 4169–4183. [Google Scholar] [CrossRef]
- Van Pinxteren, D.; Plewka, A.; Hofmann, D.; Müller, K.; Kramberger, H.; Svrcina, B.; Bächmann, K.; Jaeschke, W.; Mertes, S.; Collett, J.L.; et al. Schmücke Hill Cap Cloud and Valley Stations Aerosol Characterisation during FEBUKO, (II): Organic Compounds. Atmos. Environ. 2005, 39, 4305–4320. [Google Scholar] [CrossRef]
- Harris, E.; Sinha, B.; Van Pinxteren, D.; Tilgner, A.; Fomba, K.W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; et al. Enhanced Role of Transition Metal Ion Catalysis During In-Cloud Oxidation of SO2. Science 2013, 340, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Marinoni, A.; Laj, P.; Sellegri, K.; Mailhot, G. Cloud Chemistry at the Puy de Dôme: Variability and Relationships with Environmental Factors. Atmos. Chem. Phys. 2004, 4, 715–728. [Google Scholar] [CrossRef]
- Decesari, S.; Facchini, M.C.; Fuzzi, S.; Tagliavini, E. Characterization of Water-soluble Organic Compounds in Atmospheric Aerosol: A New Approach. J. Geophys. Res. Atmospheres 2000, 105, 1481–1489. [Google Scholar] [CrossRef]
- Hutchings, J.W.; Robinson, M.S.; McIlwraith, H.; Triplett Kingston, J.; Herckes, P. The Chemistry of Intercepted Clouds in Northern Arizona during the North American Monsoon Season. Water. Air. Soil Pollut. 2009, 199, 191–202. [Google Scholar] [CrossRef]
- Raja, S.; Ravikrishna, R.; Kommalapati, R.R.; Valsaraj, K.T. Monitoring of Fogwater Chemistry in the Gulf Coast Urban Industrial Corridor: Baton Rouge, (Louisiana). Environ. Monit. Assess. 2005, 110, 99–120. [Google Scholar] [CrossRef]
- Raja, S.; Raghunathan, R.; Kommalapati, R.R.; Shen, X.; Collett, J.L.; Valsaraj, K.T. Organic Composition of Fogwater in the Texas–Louisiana Gulf Coast Corridor. Atmos. Environ. 2009, 43, 4214–4222. [Google Scholar] [CrossRef]
- Weiss-Penzias, P.S.; Ortiz, C.; Acosta, R.P.; Heim, W.; Ryan, J.P.; Fernandez, D.; Collett, J.L.; Flegal, A.R. Total and Monomethyl Mercury in Fog Water from the Central California Coast. Geophys. Res. Lett. 2012, 39, 2011GL050324. [Google Scholar] [CrossRef]
- Beiderwieden, E.; Schmidt, A.; Hsia, Y.-J.; Chang, S.-C.; Wrzesinsky, T.; Klemm, O. Nutrient Input Through Occult and Wet Deposition into a Subtropical Montane Cloud Forest. Water. Air. Soil Pollut. 2007, 186, 273–288. [Google Scholar] [CrossRef]
- Lekouch, I.; Muselli, M.; Kabbachi, B.; Ouazzani, J.; Melnytchouk-Milimouk, I.; Beysens, D. Dew, Fog, and Rain as Supplementary Sources of Water in South-Western Morocco. Energy 2011, 36, 2257–2265. [Google Scholar] [CrossRef]
- Gioda, A.; Mayol-Bracero, O.L.; Morales-García, F.; Collett, J.; Decesari, S.; Emblico, L.; Facchini, M.C.; Morales-De Jesús, R.J.; Mertes, S.; Borrmann, S.; et al. Chemical Composition of Cloud Water in the Puerto Rican Tropical Trade Wind Cumuli. Water. Air. Soil Pollut. 2009, 200, 3–14. [Google Scholar] [CrossRef]
- Gioda, A.; Mayol-Bracero, O.L.; Reyes-Rodriguez, G.J.; Santos-Figueroa, G.; Collett, J.L. Water-Soluble Organic and Nitrogen Levels in Cloud and Rainwater in a Background Marine Environment under Influence of Different Air Masses. J. Atmos. Chem. 2008, 61, 85–99. [Google Scholar] [CrossRef]
- Gioda, A.; Mayol-Bracero, O.L.; Scatena, F.N.; Weathers, K.C.; Mateus, V.L.; McDowell, W.H. Chemical Constituents in Clouds and Rainwater in the Puerto Rican Rainforest: Potential Sources and Seasonal Drivers. Atmos. Environ. 2013, 68, 208–220. [Google Scholar] [CrossRef]
- Gioda, A.; Reyes-Rodríguez, G.J.; Santos-Figueroa, G.; Collett, J.L.; Decesari, S.; Ramos, M.D.C.K.V.; Bezerra Netto, H.J.C.; De Aquino Neto, F.R.; Mayol-Bracero, O.L. Speciation of Water-Soluble Inorganic, Organic, and Total Nitrogen in a Background Marine Environment: Cloud Water, Rainwater, and Aerosol Particles. J. Geophys. Res. 2011, 116, D05203. [Google Scholar] [CrossRef]
- Reyes-Rodríguez, G.J.; Gioda, A.; Mayol-Bracero, O.L.; Collett, J. Organic Carbon, Total Nitrogen, and Water-Soluble Ions in Clouds from a Tropical Montane Cloud Forest in Puerto Rico. Atmos. Environ. 2009, 43, 4171–4177. [Google Scholar] [CrossRef]
- Ambade, B. Characterization and Source of Fog Water Contaminants in Central India. Nat. Hazards 2014, 70, 1535–1552. [Google Scholar] [CrossRef]
- Michna, P.; Werner, R.A.; Eugster, W. Does Fog Chemistry in Switzerland Change with Altitude? Atmos. Res. 2015, 151, 31–44. [Google Scholar] [CrossRef]
- Nahar, K.; Nahian, S.; Jeba, F.; Islam, M.S.; Rahman, M.S.; Choudhury, T.R.; Fatema, K.J.; Salam, A. Characterization and Source Discovery of Wintertime Fog on Coastal Island, Bangladesh. Atmosphere 2022, 13, 497. [Google Scholar] [CrossRef]
- Khoury, D.; Millet, M.; Weissenberger, T.; Delhomme, O.; Jabali, Y. Chemical Composition of Fogwater Collected at Four Sites in North- and Mount-Lebanon during 2021. Atmos. Pollut. Res. 2024, 15, 101958. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Fog Water: A General Review of Its Physical and Chemical Aspects. Environments 2023, 10, 224. https://doi.org/10.3390/environments10120224
Khoury D, Millet M, Jabali Y, Delhomme O. Fog Water: A General Review of Its Physical and Chemical Aspects. Environments. 2023; 10(12):224. https://doi.org/10.3390/environments10120224
Chicago/Turabian StyleKhoury, Dani, Maurice Millet, Yasmine Jabali, and Olivier Delhomme. 2023. "Fog Water: A General Review of Its Physical and Chemical Aspects" Environments 10, no. 12: 224. https://doi.org/10.3390/environments10120224
APA StyleKhoury, D., Millet, M., Jabali, Y., & Delhomme, O. (2023). Fog Water: A General Review of Its Physical and Chemical Aspects. Environments, 10(12), 224. https://doi.org/10.3390/environments10120224