Assessment of Mathematics Difficulties for Second and Third Graders: Cognitive and Psychological Parameters
Abstract
:1. Introduction
2. Literature Review
3. Method
3.1. Sample
3.2. Materials
3.2.1. Mathematical Achievement
3.2.2. Sustained Attention
3.2.3. Working Memory
3.2.4. Inductive Reasoning
3.2.5. Mental Arithmetic
3.2.6. Math Anxiety
3.3. Procedure
4. Results
4.1. Mathematical Achievement, Cognitive Skills, and Math Anxiety
4.2. Differences Between Second and Third Graders
4.3. Gender-Based Differences
4.4. Validity and Reliability of the Mathematical Achievement Test
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Rodic, M.; Cui, J.; Malykh, S.; Zhou, X.; Gynku, E.I.; Bogdanova, E.L.; Kovas, Y. Cognition, emotion, and arithmetic in primary school: A cross-cultural investigation. Br. J. Dev. Psychol. 2018, 36, 255–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, G.R.; Mazzocco, M.M.; Ansari, D. Why mental arithmetic counts: Brain activation during single digit arithmetic predicts high school math scores. J. Neurosci. 2013, 33, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Friso-van den Bos, I.; Kroesbergen, E.H.; Van Luit, J.E.; Xenidou-Dervou, I.; Jonkman, L.M.; Van der Schoot, M.; Van Lieshout, E.C. Longitudinal development of number line estimation and mathematics performance in primary school children. J. Exp. Child Psychol. 2015, 134, 12–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornoldi, C.; Carretti, B.; Drusi, S.; Tencati, C. Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory. Br. J. Educ. Psychol. 2015, 85, 424–439. [Google Scholar] [CrossRef] [PubMed]
- Christou, C.; Papageorgiou, E. A framework of mathematics inductive reasoning. Learn. Instr. 2007, 17, 55–66. [Google Scholar] [CrossRef]
- Cowan, R.; Hurry, J.; Midouhas, E. The relationship between learning mathematics and general cognitive ability in primary school. Br. J. Dev. Psychol. 2018, 36, 277–284. [Google Scholar] [CrossRef]
- De Smedt, B.; Noël, M.P.; Gilmore, C.; Ansari, D. How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends Neurosci. Educ. 2013, 2, 48–55. [Google Scholar] [CrossRef]
- Nath, S.; Szücs, D. Construction play and cognitive skills associated with the development of mathematical abilities in 7-year-old children. Learn. Instr. 2014, 32, 73–80. [Google Scholar] [CrossRef]
- Pappas, M.A.; Drigas, A.; Malli, E.; Kalpidi, V. Enhanced Assessment Technology and Neurocognitive Aspects of Specific Learning Disorder with Impairment in Mathematics. Int. J. Eng. Pedagog. 2018, 8, 4–15. [Google Scholar] [CrossRef]
- Starr, A.; Libertus, M.E.; Brannon, E.M. Number sense in infancy predicts mathematical abilities in childhood. Proc. Natl. Acad. Sci. USA 2013, 110, 18116–18120. [Google Scholar] [CrossRef] [Green Version]
- Aarnoudse-Moens, C.S.H.; Weisglas-Kuperus, N.; Duivenvoorden, H.J.; van Goudoever, J.B.; Oosterlaan, J. Executive function and IQ predict mathematical and attention problems in very preterm children. PLoS ONE 2013, 8, e55994. [Google Scholar] [CrossRef] [PubMed]
- Bull, R.; Lee, K. Executive functioning and mathematics achievement. Child Dev. Perspect. 2014, 8, 36–41. [Google Scholar] [CrossRef]
- Cragg, L.; Gilmore, C. Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends Neurosci. Educ. 2014, 3, 63–68. [Google Scholar] [CrossRef]
- LeFevre, J.A.; Berrigan, L.; Vendetti, C.; Kamawar, D.; Bisanz, J.; Skwarchuk, S.L.; Smith-Chant, B.L. The role of executive attention in the acquisition of mathematical skills for children in Grades 2 through 4. J. Exp. Child Psychol. 2013, 114, 243–261. [Google Scholar] [CrossRef] [PubMed]
- Valle-Tourangeau, F.; Sirota, M.; Villejoubert, G. Reducing the impact of math anxiety on mental arithmetic: The importance of distributed cognition. In Proceedings of the Annual Meeting of the Cognitive Science Society, Sapporo, Japan, 1–4 August 2012; January 2013; Volume 35, p. 35. [Google Scholar]
- Artemenko, C.; Pixner, S.; Moeller, K.; Nuerk, H.C. Longitudinal development of subtraction performance in elementary school. Br. J. Dev. Psychol. 2018, 36, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Krinzinger, H.; Kaufmann, L.; Willmes, K. Math anxiety and math ability in early primary school years. J. Psychoeduc. Assess. 2009, 27, 206–225. [Google Scholar] [CrossRef] [PubMed]
- Ashcraft, M.H.; Krause, J.A. Working memory, math performance, and math anxiety. Psychon. Bull. Rev. 2007, 14, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Cirino, P.T.; Tolar, T.D.; Fuchs, L.S.; Huston-Warren, E. Cognitive and numerosity predictors of mathematical skills in middle school. J. Exp. Child Psychol. 2016, 145, 95–119. [Google Scholar] [CrossRef]
- Sasanguie, D.; De Smedt, B.; Defever, E.; Reynvoet, B. Association between basic numerical abilities and mathematics achievement. Br. J. Dev. Psychol. 2012, 30, 344–357. [Google Scholar] [CrossRef]
- Merkley, R.; Ansari, D. Why numerical symbols count in the development of mathematical skills: Evidence from brain and behavior. Curr. Opin. Behav. Sci. 2016, 10, 14–20. [Google Scholar] [CrossRef]
- Morgan, P.L.; Farkas, G.; Hillemeier, M.M.; Maczuga, S. Who is at risk for persistent mathematics difficulties in the United States? J. Learn. Disabil. 2016, 49, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Doabler, C.T.; Nelson, N.J.; Clarke, B. Adapting evidence-based practices to meet the needs of English learners with mathematics difficulties. Teach. Except. Child. 2016, 48, 301–310. [Google Scholar] [CrossRef]
- Fuchs, L.S.; Fuchs, D.; Compton, D.L. The early prevention of mathematics difficulty: Its power and limitations. J. Learn. Disabil. 2012, 45, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, L.S.; Fuchs, D.; Prentice, K. Responsiveness to mathematical problem-solving instruction: Comparing students at risk of mathematics disability with and without risk of reading disability. J. Learn. Disabil. 2004, 37, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Gersten, R.; Jordan, N.C.; Flojo, J.R. Early identification and interventions for students with mathematics difficulties. J. Learn. Disabil. 2005, 38, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Jordan, N.C.; Resnick, I.; Rodrigues, J.; Hansen, N.; Dyson, N. Delaware longitudinal study of fraction learning: Implications for helping children with mathematics difficulties. J. Learn. Disabil. 2017, 50, 621–630. [Google Scholar] [CrossRef]
- Brannon, E.M. The representation of numerical magnitude. Curr. Opin. Neurobiol. 2006, 16, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Jitendra, A.K.; Harwell, M.R.; Dupuis, D.N.; Karl, S.R. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students with Mathematics Problem-Solving Difficulties. J. Learn. Disabil. 2017, 50, 322–336. [Google Scholar] [CrossRef]
- Cirino, P.T.; Fuchs, L.S.; Elias, J.T.; Powell, S.R.; Schumacher, R.F. Cognitive and mathematical profiles for different forms of learning difficulties. J. Learn. Disabil. 2015, 48, 156–175. [Google Scholar] [CrossRef]
- Gersten, R.; Schumacher, R.F.; Jordan, N.C. Life on the Number Line: Routes to Understanding Fraction Magnitude for Students with Difficulties Learning Mathematics. J. Learn. Disabil. 2017, 50, 655–657. [Google Scholar] [CrossRef]
- Purpura, D.J.; Reid, E.E.; Eiland, M.D.; Baroody, A.J. Using a brief preschool early numeracy skills screener to identify young children with mathematics difficulties. Sch. Psychol. Rev. 2015, 44, 41–59. [Google Scholar] [CrossRef]
- Carr, M.; Steiner, H.H.; Kyser, B.; Biddlecomb, B. A comparison of predictors of early emerging gender differences in mathematics competency. Learn. Individ. Differ. 2008, 18, 61–75. [Google Scholar] [CrossRef]
- Wei, W.; Lu, H.; Zhao, H.; Chen, C.; Dong, Q.; Zhou, X. Gender differences in children’s arithmetic performance are accounted for by gender differences in language abilities. Psychol. Sci. 2012, 23, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Preckel, F.; Goetz, T.; Pekrun, R.; Kleine, M. Gender differences in gifted and average-ability students: Comparing girls' and boys' achievement, self-concept, interest, and motivation in mathematics. Gift. Child Q. 2008, 52, 146–159. [Google Scholar] [CrossRef]
- Attout, L.; Majerus, S. Working memory deficits in developmental dyscalculia: The importance of serial order. Child Neuropsychol. 2015, 21, 432–450. [Google Scholar] [CrossRef] [PubMed]
- Friso-van den Bos, I.; van der Ven, S.H.; Kroesbergen, E.H.; van Luit, J.E. Working memory and mathematics in primary school children: A meta-analysis. Educ. Res. Rev. 2013, 10, 29–44. [Google Scholar] [CrossRef]
- Purpura, D.J.; Ganley, C.M. Working memory and language: Skill-specific or domain-general relations to mathematics? J. Exp. Child Psychol. 2014, 122, 104–121. [Google Scholar] [CrossRef]
- Swanson, H.L.; Fung, W. Working memory components and problem-solving accuracy: Are there multiple pathways? J. Educ. Psychol. 2016, 108, 1153. [Google Scholar] [CrossRef]
- Mammarella, I.C.; Hill, F.; Devine, A.; Caviola, S.; Szűcs, D. Math anxiety and developmental dyscalculia: A study on working memory processes. J. Clin. Exp. Neuropsychol. 2015, 37, 878–887. [Google Scholar] [CrossRef]
- Peng, P.; Namkung, J.; Barnes, M.; Sun, C. A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. J. Educ. Psychol. 2016, 108, 455. [Google Scholar] [CrossRef]
- Christakou, A.; Murphy, C.M.; Chantiluke, K.; Cubillo, A.I.; Smith, A.B.; Giampietro, V.; Rubia, K. Disorder-specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism. Mol. Psychiatry 2013, 18, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Steinmayr, R.; Ziegler, M.; Träuble, B. Do intelligence and sustained attention interact in predicting academic achievement? Learn. Individ. Differ. 2010, 20, 14–18. [Google Scholar] [CrossRef]
- Anobile, G.; Stievano, P.; Burr, D.C. Visual sustained attention and numerosity sensitivity correlate with math achievement in children. J. Exp. Child Psychol. 2013, 116, 380–391. [Google Scholar] [CrossRef]
- Razza, R.A.; Martin, A.; Brooks-Gunn, J. Associations among family environment, sustained attention, and school readiness for low-income children. Dev. Psychol. 2010, 46, 1528. [Google Scholar] [CrossRef]
- Steele, A.; Karmiloff-Smith, A.; Cornish, K.; Scerif, G. The multiple subfunctions of attention: Differential developmental gateways to literacy and numeracy. Child Dev. 2012, 83, 2028–2041. [Google Scholar] [CrossRef]
- Sarter, M.; Givens, B.; Bruno, J.P. The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Res. Rev. 2001, 35, 146–160. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Haverty, L.A.; Koedinger, K.R.; Klahr, D.; Alibali, M.W. Solving inductive reasoning problems in mathematics: Not-so-trivial pursuit. Cogn. Sci. 2000, 24, 249–298. [Google Scholar] [CrossRef]
- Santiago, M.C.C.; Martínez, E.C. A proposal of categorisation for analysing inductive reasoning. PNA 2007, 1, 2. [Google Scholar]
- Díaz-Morales, J.F.; Escribano, C. Predicting school achievement: The role of inductive reasoning, sleep length and morningness–eveningness. Personal. Individ. Differ. 2013, 55, 106–111. [Google Scholar] [CrossRef]
- Molnár, G. Playful fostering of 6-to 8-year-old students’ inductive reasoning. Think. Ski. Creat. 2011, 6, 91–99. [Google Scholar] [CrossRef]
- Klauer, K.J.; Phye, G.D. Inductive reasoning: A training approach. Rev. Educ. Res. 2008, 78, 85–123. [Google Scholar] [CrossRef]
- Braham, E.J.; Libertus, M.E. When approximate number acuity predicts math performance: The moderating role of math anxiety. PLoS ONE 2018, 13, e0195696. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, E.A.; Park, D.; Maloney, E.A.; Beilock, S.L.; Levine, S.C. Reciprocal relations among motivational frameworks, math anxiety, and math achievement in early elementary school. J. Cogn. Dev. 2018, 19, 21–46. [Google Scholar] [CrossRef]
- Herts, J.B.; Beilock, S.L. From Janet T. Spence’s manifest anxiety scale to the present day: Exploring math anxiety and its relation to math achievement. Sex Roles 2017, 77, 718–724. [Google Scholar] [CrossRef]
- Cargnelutti, E.; Tomasetto, C.; Passolunghi, M.C. How is anxiety related to math performance in young students? A longitudinal study of Grade 2 to Grade 3 children. Cogn. Emot. 2017, 31, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, J.; Nyroos, M.; Jonsson, B.; Eklöf, H. Additive and multiplicative effects of working memory and test anxiety on mathematics performance in grade 3 students. Educ. Psychol. 2018, 38, 572–595. [Google Scholar] [CrossRef]
- Ramirez, G.; Gunderson, E.A.; Levine, S.C.; Beilock, S.L. Math anxiety, working memory, and math achievement in early elementary school. J. Cogn. Dev. 2013, 14, 187–202. [Google Scholar] [CrossRef]
- Wu, S.; Amin, H.; Barth, M.; Malcarne, V.; Menon, V. Math anxiety in second and third graders and its relation to mathematics achievement. Front. Psychol. 2012, 3, 162. [Google Scholar] [CrossRef]
- Beilock, S.L.; Gunderson, E.A.; Ramirez, G.; Levine, S.C. Female teachers’ math anxiety affects girls’ math achievement. Proc. Natl. Acad. Sci. USA 2010, 107, 1860–1863. [Google Scholar] [CrossRef]
- Desoete, A.; Roeyers, H.; De Clercq, A. Children with mathematics learning disabilities in Belgium. J. Learn. Disabil. 2004, 37, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Dowker, A. Early identification and intervention for students with mathematics difficulties. J. Learn. Disabil. 2005, 38, 324–332. [Google Scholar] [CrossRef]
- Gersten, R.; Clarke, B.; Jordan, N.C.; Newman-Gonchar, R.; Haymond, K.; Wilkins, C. Universal screening in mathematics for the primary grades: Beginnings of a research base. Except. Child. 2012, 78, 423–445. [Google Scholar] [CrossRef]
- Simos, P.; Mouzaki, A.; Sideridis, G. Test of Executive Function for Elementary School Students; Greek Ministry of Education: Athens, Greek, 2007. [Google Scholar]
- Alloway, T.P.; Gathercole, S.E.; Kirkwood, H.J. Working Memory Rating Scale; Pearson Assessment: London, UK, 2008. [Google Scholar]
- Georgas, J.; Paraskevopoulos, I.; Besevegis, E.; Giannitsas, N. Greek Wechsler Intelligence Scale for Children, WISC-III: Manual; Ellinika Grammata: Athens, Greek, 1998. [Google Scholar]
- Carey, E.; Hill, F.; Devine, A.; Szűcs, D. The modified abbreviated math anxiety scale: A valid and reliable instrument for use with children. Front. Psychol. 2017, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Hopko, D.R.; Mahadevan, R.; Bare, R.L.; Hunt, M.K. The abbreviated math anxiety scale (AMAS) construction, validity, and reliability. Assessment 2003, 10, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Rachmawati, K.; Schultz, T.; Cusack, L. Translation, adaptation and psychometric testing of a tool for measuring nurses’ attitudes towards research in Indonesian primary health care. Nurs. Open 2017, 4, 96–107. [Google Scholar] [CrossRef]
- Gilmore, C.K.; Keeble, S.; Richardson, S.; Cragg, L. The interaction of procedural skill, conceptual understanding and working memory in early mathematics achievement. J. Numer. Cogn. 2017, 3, 400–416. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Beeres, K.; Coban, L.; Merz, S.; Susan Schmidt, S.; Stricker, J.; De Smedt, B. Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Dev. Sci. 2017, 20, e12372. [Google Scholar] [CrossRef]
- Clearman, J.; Klinger, V.; Szűcs, D. Visuospatial and verbal memory in mental arithmetic. Q. J. Exp. Psychol. 2017, 7, 1837–1855. [Google Scholar] [CrossRef]
- Süß, H.M.; Oberauer, K.; Wittmann, W.W.; Wilhelm, O.; Schulze, R. Working-memory capacity explains reasoning ability—And a little bit more. Intelligence 2002, 30, 261–288. [Google Scholar] [CrossRef]
- Tapia, M.; Marsh, G.E. The relationship of math anxiety and gender. Acad. Exch. Q. 2004, 8, 130–134. [Google Scholar]
- Dowker, A.; Sarkar, A.; Looi, C.Y. Mathematics anxiety: What have we learned in 60 years. Front. Psychol. 2016, 7, 508. [Google Scholar] [CrossRef] [PubMed]
- Maloney, E.A.; Beilock, S.L. Math anxiety: Who has it, why it develops, and how to guard against it. Trends Cogn. Sci. 2012, 16, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, S.E.; Pickering, S.J.; Ambridge, B.; Wearing, H. The structure of working memory from 4 to 15 years of age. Dev. Psychol. 2004, 40, 177. [Google Scholar] [CrossRef] [PubMed]
1 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Math Achievement | 1 | ||||||||||||||
1.1 Counting | 0.242 * | 1 | |||||||||||||
1.2 Addition | 0.626 ** | 0.090 | 1 | ||||||||||||
1.3 Subtraction | 0.701 ** | −0.065 | 0.511 ** | 1 | |||||||||||
1.4 Multiplication | 0.812 ** | 0.186 | 0.358 ** | 0.482 ** | 1 | ||||||||||
1.5 Division | 0.821 ** | 0.157 | 0.397 ** | 0.523 ** | 0.702 ** | 1 | |||||||||
1.6 Patterns | 0.593 ** | 0.167 | 0.301 ** | 0.285 ** | 0.422 ** | 0.377 ** | 1 | ||||||||
1.7 Number Line | 0.483 ** | 0.005 | 0.243 * | 0.247 * | 0.269 * | 0.362 ** | 0.161 | 1 | |||||||
1.8 Problem Solving | 0.635 ** | 0.100 | 0.324 ** | 0.259 * | 0.422 ** | 0.345 ** | 0.480 ** | 0.221 * | 1 | ||||||
2. Sustained Attention | 0.368 ** | 0.167 | 0.252 * | 0.196 | 0.357 ** | 0.315 ** | 0.158 | 0.291 ** | 0.125 | 1 | |||||
3. Inductive Reasoning (Stories) | 0.041 | 0.031 | −0.046 | −0.006 | 0.094 | 0.065 | 0.108 | 0.007 | −0.043 | 0.076 | 1 | ||||
4. Inductive Reasoning (Geometry) | 0.313 ** | −0.040 | 0.082 | 0.200 | 0.351 ** | 0.309 ** | 0.292 ** | 0.139 | 0.129 | 0.265 * | 0.303 ** | 1 | |||
5. Mental Arithmetic | 0.542 ** | 0.203 | 0.274 ** | 0.251 * | 0.442 ** | 0.486 ** | 0.414 ** | 0.375 ** | 0.306 ** | 0.142 | 0.248 * | 0.305 ** | 1 | ||
6. Math Anxiety | −0.263 * | 0.091 | −0.044 | −0.205 | −0.186 | −0.255 * | −0.238 * | −0.237 * | −0.165 | −0.083 | −0.155 | −0.212 * | −0.299 ** | 1 | |
7. Working Memory | −0.420 ** | −0.106 | −0.257 * | −0.283 ** | −0.286 ** | −0.410 ** | −0.233 * | −0.204 | −0.267 * | −0.094 | −0.093 | −0.314 ** | −0.386 ** | 0.079 | 1 |
R2 | F Change | |||
---|---|---|---|---|
Model 1 Mental Arithmetic | 0.292 | 0.284 | 0.292 | 36.316 *** |
Model 2 Mental Arithmetic Sustained Attention | 0.378 | 0.364 | 0.086 | 12.023 *** |
Model 3 Mental Arithmetic Sustained Attention Working Memory | 0.424 | 0.404 | 0.046 | 6.813 * |
Year 2 (N = 53) | Year 3 (N = 38) | |||
---|---|---|---|---|
Measures | M | SD | M | SD |
Mathematical Skills | 22.38 (32) | 5.80 | 27.68 | 4.11 |
Counting | 3.77 (4) | 0.64 | 3.63 | 0.67 |
Addition | 2.91 (4) | 0.96 | 3.66 | 0.48 |
Subtraction | 1.62 (4) | 1.24 | 3.05 | 1.11 |
Multiplication | 2.02 (4) | 1.39 | 3.34 | 1.14 |
Division | 2.30 (4) | 1.55 | 3.24 | 1.28 |
Patterns | 3.57 (4) | 0.84 | 3.87 | 0.41 |
Number Line | 3.38 (4) | 0.90 | 3.61 | 0.87 |
Problem Solving | 2.83 (4) | 1.40 | 3.29 | 1.09 |
Sustained Attention | 0.24 | 0.03 | 0.26 | 0.04 |
Inductive Reasoning (Stories) | 4.02 (5) | 1.07 | 4.05 | 0.93 |
Inductive Reasoning (Geometry) | 8.08 (12) | 2.81 | 9.63 | 2.07 |
Mental Arithmetic | 11.06 (30) | 2.90 | 11.79 | 2.89 |
Math Anxiety | 20.89 | 5.54 | 18.24 | 6.02 |
Working Memory | 8.96 | 12.90 | 5.61 | 9.19 |
Male (N = 42) | Female (N = 49) | |||
---|---|---|---|---|
Measures | M | SD | M | SD |
Mathematical Skills | 25.55 | 5.60 | 23.78 | 5.85 |
Counting | 3.71 | 0.55 | 3.71 | 0.74 |
Addition | 3.14 | 1.00 | 3.29 | 0.79 |
Subtraction | 2.48 | 1.37 | 2.00 | 1.37 |
Multiplication | 2.81 | 1.44 | 2.37 | 1.44 |
Division | 2.79 | 1.49 | 2.61 | 1.54 |
Patterns | 3.95 | 0.31 | 3.47 | 0.87 |
Number Line | 3.33 | 1.10 | 3.59 | 0.67 |
Problem Solving | 3.36 | 1.01 | 2.73 | 1.44 |
Sustained Attention | 0.24 | 0.41 | 0.251 | 0.035 |
Inductive Reasoning (Stories) | 4.07 | 1.03 | 4.00 | 1.00 |
Inductive Reasoning (Geometry) | 9.15 | 2.25 | 8.35 | 2.90 |
Mental Arithmetic | 12.00 | 3.11 | 10.86 | 2.66 |
Math Anxiety | 18.88 | 6.18 | 20.55 | 5.52 |
Working Memory | 8.19 | 10.83 | 7.02 | 12.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappas, M.A.; Polychroni, F.; Drigas, A.S. Assessment of Mathematics Difficulties for Second and Third Graders: Cognitive and Psychological Parameters. Behav. Sci. 2019, 9, 76. https://doi.org/10.3390/bs9070076
Pappas MA, Polychroni F, Drigas AS. Assessment of Mathematics Difficulties for Second and Third Graders: Cognitive and Psychological Parameters. Behavioral Sciences. 2019; 9(7):76. https://doi.org/10.3390/bs9070076
Chicago/Turabian StylePappas, Marios A., Fotini Polychroni, and Athanasios S. Drigas. 2019. "Assessment of Mathematics Difficulties for Second and Third Graders: Cognitive and Psychological Parameters" Behavioral Sciences 9, no. 7: 76. https://doi.org/10.3390/bs9070076
APA StylePappas, M. A., Polychroni, F., & Drigas, A. S. (2019). Assessment of Mathematics Difficulties for Second and Third Graders: Cognitive and Psychological Parameters. Behavioral Sciences, 9(7), 76. https://doi.org/10.3390/bs9070076