The Role of the Orbitofrontal and Dorsolateral Prefrontal Cortices in Aesthetic Preference for Art
Abstract
:1. Background
2. The Prefrontal Cortex and Art Aesthetics
3. Physiological Investigations of the Pre-Frontal Cortex in Humans and Non-Human Primates
4. Differences among Neuro-Recording Techniques
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Nadal, M. The experience of art: Insights from neuroimaging. Prog. Brain Res. 2013, 204, 135–158. [Google Scholar] [PubMed]
- Pearce, M.T.; Zaidel, D.W.; Vartanian, O.; Skov, M.; Leder, H.; Chatterjee, A.; Nadal, M. Neuroaesthetics: The Cognitive Neuroscience of Aesthetic Experience. Perspect. Psychol. Sci. 2016, 11, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Cela-Conde, C.J.; García-Prieto, J.; Ramasco, J.J.; Mirasso, C.R.; Bajo, R.; Munar, E.; Flexas, A.; del-Pozo, F.; Maestú, F. Dynamics of brain networks in the aesthetic appreciation. Proc. Natl. Acad. Sci. USA 2013, 110 (Suppl. 2), 10454–10461. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, H.; Zeki, S. Neural correlates of beauty. J. Neurophysiol. 2004, 91, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, T.; Schubotz, R.I.; Höfel, L.; Cramon, D.Y.V. Brain correlates of aesthetic judgment of beauty. Neuroimage 2006, 29, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Ishizu, T.; Zeki, S. Toward a brain-based theory of beauty. PLoS ONE 2011, 6, e21852. [Google Scholar] [CrossRef] [PubMed]
- Ishizu, T.; Zeki, S. The brain’s specialized systems for aesthetic and perceptual judgment. Eur. J. Neurosci. 2013, 37, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Zeki, S.; Romaya, J.P.; Benincasa, D.M.T.; Atiyah, M.F. The experience of mathematical beauty and its neural correlates. Front. Hum. Neurosci. 2014, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Cela-Conde, C.J.; Marty, G.; Maestú, F.; Ortiz, T.; Munar, E.; Fernández, A.; Roca, M.; Rosselló, J.; Quesney, F. Activation of the prefrontal cortex in the human visual aesthetic perception. Proc. Natl. Acad. Sci. USA 2004, 101, 6321–6325. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, Z.; Lega, C.; Flexas, A.; Nadal, M.; Munar, E.; Cela-Conde, C.J. The world can look better: Enhancing beauty experience with brain stimulation. Soc. Cogn. Affect. Neurosci. 2014, 9, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, Z.; Lega, C.; Gardelli, C.; Merabet, L.B.; Cela-Conde, C.J.; Nadal, M. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: A TMS study. Neuroimage 2014, 99, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Lengger, P.G.; Fischmeister, F.P.S.; Leder, H.; Bauer, H. Functional neuroanatomy of the perception of modern art: A DC-EEG study on the influence of stylistic information on aesthetic experience. Brain Res. 2007, 1158, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Boccia, M.; Barbetti, S.; Piccardi, L.; Guariglia, C.; Ferlazzo, F.; Giannini, A.M.; Zaidel, D.W. Where does brain neural activation in aesthetic responses to visual art occur? Meta-analytic evidence from neuroimaging studies. Neurosci. Biobehav. Rev. 2016, 60, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Davidson, R.J. What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biol. Psychol. 2004, 67, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed]
- O’Doherty, J.; Rolls, E.T.; Francis, S.; Bowtell, R.; McGlone, F. Representation of pleasant and aversive taste in the human brain. J. Neurophysiol. 2001, 85, 1315–1321. [Google Scholar] [PubMed]
- Rolls, E.T.; Kringelbach, M.L.; de Araujo, I.E.T. Different representations of pleasant and unpleasant odours in the human brain. Eur. J. Neurosci. 2003, 18, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Hornak, J.; O’Doherty, J.; Bramham, J.; Rolls, E.T.; Morris, R.G.; Bullock, P.R.; Polkey, C.E. Reward-related Reversal Learning after Surgical Excisions in Orbito-frontal or Dorsolateral Prefrontal Cortex in Humans. J. Cogn. Neurosci. 2004, 16, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, D.C. Contributions of the prefrontal cortex to the neural basis of human decision making. Neurosci. Biobehav. Rev. 2002, 26, 631–664. [Google Scholar] [CrossRef]
- Baxter, M.G.; Murray, E.A. The amygdala and reward. Nat. Rev. Neurosci. 2002, 3, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, R.N.; Parkinson, J.A.; Hall, J.; Everitt, B.J. Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 2002, 26, 321–352. [Google Scholar] [CrossRef]
- Bechara, A.; Damasio, H.; Tranel, D.; Anderson, S.W. Dissociation Of working memory from decision making within the human prefrontal cortex. J. Neurosci. 1998, 18, 428–437. [Google Scholar] [PubMed]
- Dias, R.; Robbins, T.W.; Roberts, A.C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 1996, 380, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Wallis, J.D.; Dias, R.; Robbins, T.W.; Roberts, A.C. Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. Eur. J. Neurosci. 2001, 13, 1797–1808. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol. Behav. 2005, 85, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, S.T.; Price, J.L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 1995, 363, 642–664. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S. Architecture of the prefrontal cortex and the central executive. Ann. N. Y. Acad. Sci. 1995, 769, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Gaffan, D.; Murray, E.A. Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus-reward associative learning in the monkey. J. Neurosci. 1990, 10, 3479–3493. [Google Scholar] [PubMed]
- Baylis, L.L.; Gaffan, D. Amygdalectomy and ventromedial prefrontal ablation produce similar deficits in food choice and in simple object discrimination learning for an unseen reward. Exp. Brain Res. 1991, 86, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Gaffan, D.; Murray, E.A.; Fabre-Thorpe, M. Interaction of the amygdala with the frontal lobe in reward memory. Eur. J. Neurosci. 1993, 5, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Passingham, R.E. The Frontal Lobes and Voluntary Action; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Damasio, A.R. Descartes’ Error: Emotion, Reason, and the Human Brain; Putman: New York, NY, USA, 1994. [Google Scholar]
- Fuster, J.M. The Prefrontal Cortex: Anatomy, Physiology and Neuropsychology of the Frontal Lobe; Raven: New York, NY, USA, 1980. [Google Scholar]
- Baxter, M.G.; Parker, A.; Lindner, C.C.; Izquierdo, A.D.; Murray, E.A. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J. Neurosci. 2000, 20, 4311–4319. [Google Scholar] [PubMed]
- Roberts, A.C.; Wallis, J.D. Inhibitory control and affective processing in the prefrontal cortex: Neuropsychological studies in the common marmoset. Cereb. Cortex 2000, 10, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Schultz, W. Multiple reward signals in the brain. Nat. Rev. Neurosci. 2000, 1, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.M.; Mufson, E.J. Insula of the old world monkey. III: Efferent cortical output and comments on function. J. Comp. Neurol. 1982, 212, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Barbas, H. Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey. Neuroscience 1993, 56, 841–864. [Google Scholar] [CrossRef]
- Pandya, D.N.; Barnes, C.L. Architecture and connections of the frontal lobe. In The Frontal Lobes Revisited; Perecman, E., Ed.; The IRBN Press: New York, NY, USA, 1987; pp. 41–72. [Google Scholar]
- Petrides, M.; Pandya, D.N. Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 1999, 11, 1011–1036. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, K.N.; Bunge, S.A.; Gross, J.J.; Gabrieli, J.D.E. Rethinking feelings: An FMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 2002, 14, 1215–1229. [Google Scholar] [CrossRef] [PubMed]
- Morawetz, C.; Bode, S.; Baudewig, J.; Kirilina, E.; Heekeren, H.R. Changes in Effective Connectivity between Dorsal and Ventral Prefrontal Regions Moderate Emotion Regulation. Cereb. Cortex 2016, 26, 1923–1937. [Google Scholar] [CrossRef] [PubMed]
- Wallis, J.D.; Miller, E.K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 2003, 18, 2069–2081. [Google Scholar] [CrossRef] [PubMed]
- Elliott, R.; Dolan, R.J.; Frith, C.D. Dissociable functions in the medial and lateral orbitofrontal cortex: Evidence from human neuroimaging studies. Cereb. Cortex 2000, 10, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Davidson, R.J.; Pizzagalli, D.; Nitschke, J.B.; Kalin, N.H. Parsing the subcomponents of emotion and disorders of emotion: Perspectives from affective neuroscience. In Handbook of Affective Sciences; Davidson, R.J., Scherer, K.R., Goldsmith, H.H., Eds.; Oxford University Press: Oxford, UK, 2003; pp. 8–24. [Google Scholar]
- Nadal, M.; Munar, E.; Capó, M.A.; Rosselló, J.; Cela-Conde, C.J. Towards a framework for the study of the neural correlates of aesthetic preference. Spat. Vis. 2008, 21, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A. Prospects for a cognitive neuroscience of visual aesthetics. Bull. Psychol. Arts 2003, 4, 55–60. [Google Scholar]
- Vanderhasselt, M.-A.; De Raedt, R.; Brunoni, A.R.; Campanhã, C.; Baeken, C.; Remue, J.; Boggio, P.S. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli. PLoS ONE 2013, 8, e62219. [Google Scholar] [CrossRef] [PubMed]
- Botvinick, M.M.; Braver, T.S.; Barch, D.M.; Carter, C.S.; Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001, 108, 624–652. [Google Scholar] [CrossRef] [PubMed]
- Cela-Conde, C.J.; Marty, G.; Munar, E.; Nadal, M.; Burges, L. The “style scheme” grounds perception of paintings. Percept. Mot. Skills 2002, 95, 91–100. [Google Scholar] [PubMed]
- Nadal, M.; Marty, G.; Munar, E. The search for objective measures of aesthetic judgment: The case of memory traces. Empir. Stud. Arts 2006, 24, 95–106. [Google Scholar] [CrossRef]
- Kühn, S.; Gallinat, J. The neural correlates of subjective pleasantness. Neuroimage 2012, 61, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Mayberg, H.S. Modulating dysfunctional limbic-cortical circuits in depression: Towards development of brain-based algorithms for diagnosis and optimised treatment. Br. Med. Bull. 2003, 65, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Boggio, P.S.; Lima, M.C.; Ferreira, M.J.L.; Wagner, T.; Rigonatti, S.P.; Castro, A.W.; Souza, D.R.; Riberto, M.; Freedman, S.D.; et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 2006, 122, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.C.; Mueller, C.J.; Dolski, I.; Dalton, K.M.; Nitschke, J.B.; Urry, H.L.; Rosenkranz, M.A.; Ryff, C.D.; Singer, B.H.; Davidson, R.J. Now you feel it, now you don’t: Frontal brain electrical asymmetry and individual differences in emotion regulation. Psychol. Sci. 2003, 14, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Brattico, E.; Bogert, B.; Jacobsen, T. Toward a neural chronometry for the aesthetic experience of music. Front. Psychol. 2013, 4, 206. [Google Scholar] [CrossRef] [PubMed]
- Forgas, J.P. Mood and judgment: The affect infusion model (AIM). Psychol. Bull. 1995, 117, 39–66. [Google Scholar] [CrossRef] [PubMed]
- Cupchik, G.C.; Vartanian, O.; Crawley, A.; Mikulis, D.J. Viewing artworks: Contributions of cognitive control and perceptual facilitation to aesthetic experience. Brain Cogn. 2009, 70, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kalin, N.H.; Larson, C.; Shelton, S.E.; Davidson, R.J. Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav. Neurosci. 1998, 112, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Urry, H.L.; Nitschke, J.B.; Dolski, I.; Jackson, D.C.; Dalton, K.M.; Mueller, C.J.; Rosenkranz, M.A.; Ryff, C.D.; Singer, B.H.; Davidson, R.J. Making a life worth living: Neural correlates of well-being. Psychol. Sci. 2004, 15, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Fregni, F.; Fecteau, S.; Grodzinsky, A.; Zahn, M.; Pascual-Leone, A. Transcranial direct current stimulation: A computer-based human model study. Neuroimage 2007, 35, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Utz, K.S.; Dimova, V.; Oppenländer, K.; Kerkhoff, G. Electrified minds: Transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—A review of current data and future implications. Neuropsychologia 2010, 48, 2789–2810. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Nitsche, M.A. Physiological basis of transcranial direct current stimulation. Neuroscientist 2011, 17, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Priori, A.; Berardelli, A.; Rona, S.; Accornero, N.; Manfredi, M. Polarization of the human motor cortex through the scalp. Neuroreport 1998, 9, 2257–2260. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. (Lond.) 2000, 527, 633–639. [Google Scholar] [CrossRef]
- Hummel, F.; Celnik, P.; Giraux, P.; Floel, A.; Wu, W.-H.; Gerloff, C.; Cohen, L.G. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005, 128, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Boggio, P.S.; Nitsche, M.A.; Marcolin, M.A.; Rigonatti, S.P.; Pascual-Leone, A. Treatment of major depression with transcranial direct current stimulation. Bipolar Disord. 2006, 8, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Boggio, P.S.; Rigonatti, S.P.; Ribeiro, R.B.; Myczkowski, M.L.; Nitsche, M.A.; Pascual-Leone, A.; Fregni, F. A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int. J. Neuropsychopharmacol. 2008, 11, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Boggio, P.S.; Nitsche, M.; Bermpohl, F.; Antal, A.; Feredoes, E.; Marcolin, M.A.; Rigonatti, S.P.; Silva, M.T.A.; Paulus, W.; et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 2005, 166, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Fecteau, S.; Pascual-Leone, A.; Zald, D.H.; Liguori, P.; Théoret, H.; Boggio, P.S.; Fregni, F. Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J. Neurosci. 2007, 27, 6212–6218. [Google Scholar] [CrossRef] [PubMed]
- Boggio, P.S.; Zaghi, S.; Fregni, F. Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia 2009, 47, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Dockery, C.A.; Hueckel-Weng, R.; Birbaumer, N.; Plewnia, C. Enhancement of planning ability by transcranial direct current stimulation. J. Neurosci. 2009, 29, 7271–7277. [Google Scholar] [CrossRef] [PubMed]
- Kalu, U.G.; Sexton, C.E.; Loo, C.K.; Ebmeier, K.P. Transcranial direct current stimulation in the treatment of major depression: A meta-analysis. Psychol. Med. 2012, 42, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.; Koslowsky, M.; Lavidor, M. tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Exp. Brain Res. 2012, 216, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, L.F.; de Souza, I.C.C.; Vidor, L.P.; de Souza, A.; Deitos, A.; Volz, M.S.; Fregni, F.; Caumo, W.; Torres, I.L.S. Neurobiological effects of transcranial direct current stimulation: A review. Front. Psychiatry 2012, 3, 110. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Bansal, V.; Diaz, J.; Patel, J.; Reato, D.; Bikson, M. Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009, 2, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Nitsche, M.S.; Klein, C.C.; Tergau, F.; Rothwell, J.C.; Paulus, W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin. Neurophysiol. 2003, 114, 600–604. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Seeber, A.; Frommann, K.; Klein, C.C.; Rochford, C.; Nitsche, M.S.; Fricke, K.; Liebetanz, D.; Lang, N.; Antal, A.; et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. (Lond.) 2005, 568, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. (Lond.) 2003, 553, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Lin, R.L.; Mezue, M.; Segerdahl, A.; Kong, Y.; Xie, J.; Tracey, I. Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J. Neurosci. 2013, 33, 11425–11431. [Google Scholar] [CrossRef] [PubMed]
- Keeser, D.; Padberg, F.; Reisinger, E.; Pogarell, O.; Kirsch, V.; Palm, U.; Karch, S.; Möller, H.-J.; Nitsche, M.A.; Mulert, C. Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: A standardized low resolution tomography (sLORETA) study. Neuroimage 2011, 55, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Nitsche, M.A.; Kruse, W.; Kincses, T.Z.; Hoffmann, K.-P.; Paulus, W. Direct Current Stimulation over V5 Enhances Visuomotor Coordination by Improving Motion Perception in Humans. J. Cogn. Neurosci. 2004, 16, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Cavada, C.; Compañy, T.; Tejedor, J.; Cruz-Rizzolo, R.J.; Reinoso-Suárez, F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb. Cortex 2000, 10, 220–242. [Google Scholar] [CrossRef] [PubMed]
- Barbas, H.; Pandya, D.N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 1989, 286, 353–375. [Google Scholar] [CrossRef] [PubMed]
- Kahnt, T.; Chang, L.J.; Park, S.Q.; Heinzle, J.; Haynes, J.-D. Connectivity-based parcellation of the human orbitofrontal cortex. J. Neurosci. 2012, 32, 6240–6250. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.S.; Strafella, A.P. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE 2009, 4, e6725. [Google Scholar] [CrossRef] [PubMed]
- Vartanian, O.; Skov, M. Neural correlates of viewing paintings: Evidence from a quantitative meta-analysis of functional magnetic resonance imaging data. Brain Cogn. 2014, 87, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Cross, E.S.; Kirsch, L.; Ticini, L.F.; Schütz-Bosbach, S. The impact of aesthetic evaluation and physical ability on dance perception. Front. Hum. Neurosci. 2011, 5, 102. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Gao, X.; Tisdelle, L.; Eickhoff, S.B.; Liotti, M. Naturalizing aesthetics: Brain areas for aesthetic appraisal across sensory modalities. Neuroimage 2011, 58, 250–258. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ticini, L.F. The Role of the Orbitofrontal and Dorsolateral Prefrontal Cortices in Aesthetic Preference for Art. Behav. Sci. 2017, 7, 31. https://doi.org/10.3390/bs7020031
Ticini LF. The Role of the Orbitofrontal and Dorsolateral Prefrontal Cortices in Aesthetic Preference for Art. Behavioral Sciences. 2017; 7(2):31. https://doi.org/10.3390/bs7020031
Chicago/Turabian StyleTicini, Luca F. 2017. "The Role of the Orbitofrontal and Dorsolateral Prefrontal Cortices in Aesthetic Preference for Art" Behavioral Sciences 7, no. 2: 31. https://doi.org/10.3390/bs7020031
APA StyleTicini, L. F. (2017). The Role of the Orbitofrontal and Dorsolateral Prefrontal Cortices in Aesthetic Preference for Art. Behavioral Sciences, 7(2), 31. https://doi.org/10.3390/bs7020031