Working Memory Training in Schizophrenia and Healthy Populations
Abstract
:1. Introduction
2. Cognitive Remediation in Schizophrenia
3. Working Memory and Working Memory Training
4. Working Memory Training in Healthy Individuals
4.1. Cognitive Benefits
4.2. Neural Correlates
5. Working Memory Training in Schizophrenia
5.1. Cognitive Benefits
5.2. Neural Benefits
6. Recommendations for Further Investigation
7. Limitations
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Keefe, R.S.; Eesley, C.E.; Poe, M.P. Defining a cognitive function decrement in schizophrenia. Biol. Psychiatry 2005, 57, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, R.W.; Davis, M.; Goff, D.; Green, M.F.; Keefe, R.S.E.; Leon, A.C.; Nuechterlein, K.H.; Laughren, T.; Levin, R.; Stover, E.; et al. A summary of the FDA-NIMH-MATRICS workshop on clinical trial design for neurocognitive drugs for schizophrenia. Schizophr. Bull. 2005, 39, 5–19. [Google Scholar] [CrossRef]
- Woodberry, K.A.; Giuliano, A.J.; Seidman, L.J. Premorbid IQ in schizophrenia: A meta-analytic review. Am. J. Psych. 2008, 165, 579–587. [Google Scholar] [CrossRef]
- Meier, M.H.; Caspi, A.; Reichenberg, A.; Keefe, R.S.E.; Fisher, H.L.; Harrington, H.; Houts, R.; Poulton, R.; Moffitt, T.E. Neuropsychological decline in schizophrenia from the premorbid to the postonset period: Evidence from a population-representative longitudinal study. Am. J. Psych. 2014, 171, 91–101. [Google Scholar] [CrossRef]
- Nuechterlein, K.H.; Barch, D.M.; Gold, J.M.; Goldberg, T.E.; Green, M.F.; Heaton, R.K. Identification of separable cognitive factors in schizophrenia. Schizophr. Res. 2004, 72, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Green, M.F.; Kern, R.S.; Heaton, R.K. Longitudinal studies of cognition and functional outcome in schizophrenia: Implications for MATRICS. Schizophr. Res. 2004, 72, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Snitz, B.E.; Macdonald, A.W., III; Carter, C.S. Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: A meta-analytic review of putative endophenotypes. BSchizophr. Bull. 2006, 32, 179–194. [Google Scholar]
- Green, M.F. What are the functional consequences of neurocognitive deficits in schizophrenia? Am. J. Psychiatry 1996, 153, 321–320. [Google Scholar]
- Bowie, C.R.; Reichenberg, A.; Patterson, T.L.; Heaton, R.K.; Harvey, P.D. Determinants of real-world functional performance in schizophrenia subjects: Correlations with cognition, functional capacity, and symptoms. Am. J. Psychiatry 2006, 163, 418–425. [Google Scholar] [CrossRef] [PubMed]
- McGurk, S.R.; Meltzer, H.Y. The role of cognition in vocational functioning in schizophrenia. Schizophr. Res. 2000, 45, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P.D.; Lombardi, J.; Leibman, M.; White, L.; Parrella, M.; Powchik, P.; Davidson, M. Cognitive impairment and negative symptoms in geriatric chronic schizophrenic patients: A follow-up study. Schizophr. Res. 1996, 22, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Forbes, N.F.; Carrick, L.A.; McIntosh, A.M.; Lawrie, S.M. Working memory in schizophrenia: A meta-analysis. Psychol. Med. 2009, 39, 889–905. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, S. Working memory impairments in schizophrenia: A meta-analysis. J. Abnorm Psychol. 2005, 114, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Working memory. Science 1992, 255, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Rajji, T.K.; Miranda, D.; Mulsant, B.H. Cognition, function, and disability in patients with schizophrenia: A review of longitudinal studies. Can. J. Psychiatry 2014, 59, 13–17. [Google Scholar] [PubMed]
- Wykes, T.; Huddy, V.; Cellard, C.; McGurk, S.R.; Czobor, P. A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. Am. J. Psychiatry 2011, 168, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Krabbendam, L.; Arts, B.; van Os, J.; Aleman, A. Cognitive functioning in patients with schizophrenia and bipolar disorder: A quantitative review. Schizophr. Res. 2005, 80, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, M.M.; Seltzer, J.C.; Shagan, D.S.; Thime, W.R.; Wexler, B.E. Computer-assisted cognitive remediation in schizophrenia: What is the active ingredient? Schizophr. Res. 2007, 89, 251–260. [Google Scholar]
- McGurk, S.; Twamley, E.W.; Sitzer, D.I.; McHugo, G.J.; Mueser, K.T. A meta-analysis of cognitive remediation in schizophrenia. Am. J. Psychiatry 2007, 164, 1791–1802. [Google Scholar] [CrossRef] [PubMed]
- Pilling, S.; Bebbington, P.; Kuipers, E.; Garety, P.; Geddes, J.; Martindale, B.; Orbach, G.; Morgan, C. Psychological treatments in schizophrenia: II. Meta-analyses of randomized controlled trials of social skills training and cognitive remediation. Psychol. Med. 2002, 32, 783–791. [Google Scholar]
- Twamley, E.W.; Jeste, D.V.; Bellack, A.S. A review of cognitive training in schizophrenia. Schizophr. Bull. 2003, 29, 359–382. [Google Scholar] [CrossRef] [PubMed]
- Grynszpan, O.; Perbal, S.; Pelissolo, A.; Fossati, P.; Jouvent, R.; Dubal, S.; Perez-Diaz, F. Efficacy and specificity of computer-assisted cognitive remediation in schizophrenia: A meta-analytical study. Psychol. Med. 2011, 41, 163–173. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.; Hayes, R. Cognitive rehabilitation for people with schizophrenia and related conditions. Cochrane Database Syst. Rev. 2000, 3. [Google Scholar]
- Vinogradov, S.; Fisher, M.; de Villers-Sidani, E. Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology 2012, 37, 43–76. [Google Scholar] [CrossRef] [PubMed]
- Eack, S.M. Cognitive remediation: A new generation of psychosocial interventions for people with schizophrenia. Soc. Work. 2012, 57, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Vita, A.; Barlati, S.; Bellani, M.; Brambilla, P. Cognitive remediation in schizophrenia: Background, techniques, evidence of efficacy and perspectives. Epidemiol. Psychiatr. Sci. 2013, 23, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Zaytseva, Y.; Korsakova, N.; Agius, M.; Gurovich, I. Neurocognitive functioning in schizophrenia and during the early phases of psychosis: Targeting cognitive remediation interventions. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef]
- Morrison, A.B.; Chein, J.M. Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon. Bull. Rev. 2011, 18, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Knapp, M.; Romeo, R.; Reeder, C.; Matthiasson, P.; Everitt, B.; Wykes, T. Cognitive remediation therapy in schizophrenia: Cost-effectiveness analysis. Schizophr. Res. 2010, 120, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Wykes, T.; Reeder, C.; Williams, C.; Corner, J.; Rice, C.; Everitt, B. Are the effects of cognitive remediation therapy (CRT) durable? Results from an exploratory trial in schizophrenia. Schizophr. Res. 2003, 61, 163–174. [Google Scholar] [CrossRef]
- Lett, T.A.; Voineskos, A.N.; Kennedy, J.L.; Levine, B.; Daskalakis, Z.J. Treating Working Memory Deficits in Schizophrenia: A Review of the Neurobiology. Biol. Psychiatry. 2014, 75, 361–370. [Google Scholar]
- Miyake, A.; Shah, P. (Eds.) Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Cambridge University Press: Cambridge, UK, 1999.
- Baddeley, A.D.; Logie, R.H. Working memory: The multi-component model. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 28–61. [Google Scholar]
- Cowan, N. An embedded-process model of working memory. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 62–101. [Google Scholar]
- Kieras, D.E.; Meyer, D.E.; Mueller, S.; Seymour, T. Insights into working memory from the perspective of the EPIC Architecture for modeling skilled perceptual-motor and cognitive human performance. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 183–223. [Google Scholar]
- Schneider, W. Working memory in a multilevel hybrid connectionist control architecture (CAP2). In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 340–374. [Google Scholar]
- Kintsch, W.; Healy, A.F.; Hegarty, M.; Pennington, B.F.; Salthouse, T.A. Models of working memory: Eight questions and some general issues. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 412–441. [Google Scholar]
- Miyake, A.; Shah, P. Toward unified theories of working memory: Emerging general consensus, unresolved theoretical issues, and future research directions. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 442–481. [Google Scholar]
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Working Memory: Theories, Models, and Controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Salminen, T.; Strobach, T.; Schubert, T. On the impacts of working memory training on executive functioning. Front. Hum. Neurosci. 2012, 6, 166. [Google Scholar] [CrossRef] [PubMed]
- Colom, R.; Román, F.J.; Abad, F.J.; Shih, P.C.; Privado, J.; Froufe, M.; Escorial, S.; Martínez, K.; Burgaleta, M.; Quiroga, M.A.; et al. Adaptive n-back training does not improve fluid intelligence at the construct level: Gains on individual tests suggest that training may enhance visuospatial processing. Intelligence 2013, 41, 712–727. [Google Scholar] [CrossRef]
- Kundu, B.; Sutterer, D.W.; Emrich, S.M.; Postle, B.R. Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. J. Neurosci. 2013, 33, 8705–8715. [Google Scholar] [CrossRef] [PubMed]
- Lilienthal, L.; Tamez, E.; Shelton, J.T.; Myerson, J.; Hale, S. Dual n-back training increases the capacity of the focus of attention. Psychon. Bull. Rev. 2013, 20, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Seidler, R.D.; Bernard, J.A.; Buschkuehl, M.; Jaeggi, S.; Jonides, J.; Humfleet, J. Cognitive Training as an Intervention to Improve Driving Ability in the Older Adult; Technical Report M-CASTL 2010–01; University of Michigan: Ann Arbor, MI, USA, 2010. [Google Scholar]
- Cattell, R.B.; Cattell, A.K.S. Handbook for the Culture Fair Intelligence Test: A measure of “g”, Scale 3, Forms A and B; Institute for Personality and Ability Testing: Champaign, IL, USA, 1959. [Google Scholar]
- Conway, A.R.A.; Cowan, N.; Bunting, M.F.; Therriault, D.J.; Minkoff, S.R.B. A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence 2002, 30, 163–183. [Google Scholar] [CrossRef]
- Gray, J.R.; Chabris, C.F.; Braver, T.S. Neural mechanisms of general fluid intelligence. Nat. Neurosci. 2003, 6, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Halford, G.S.; Cowan, N.; Andrews, G. Separating cognitive capacity from knowledge: A new hypothesis. Trends Cogn. Sci. (Regul. Ed.) 2007, 11, 236–242. [Google Scholar]
- Owen, A.M.; McMillan, K.M.; Laird, A.R.; Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Glascher, J.; Rudrauf, D.; Colom, R.; Paul, L.K.; Tranel, D.; Damasio, H.; Adolphs, R. Distributed neural system for general intelligence revealed by lesion mapping. Proc. Natl. Acad. Sci. USA 2010, 107, 4705–4709. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Shah, P.; Jonides, J. The role of individual differences in cognitive training and transfer. Mem. Cognit. 2013, 42, 464–480. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Jonides, J.; Shah, P. Short- and long-term benefits of cognitive training. Proc. Natl. Acad. Sci. USA 2011, 108, 10081–10086. [Google Scholar] [PubMed]
- Jaeggi, S.M.; Studer-Luethi, B.; Buschkuehl, M.; Su, Y.; Jonides, J.; Perrig, W.J. The relationship between n-back performance and matrix reasoning-implications for training and transfer. Intelligence 2010, 38, 625–635. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Jonides, J.; Perrig, W.J. Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. USA 2008, 105, 6829–6833. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, C.L.; Halpern, D.F. Improved matrix reasoning is limited to training on tasks with a visuospatial component. Intelligence 2013, 41, 341–357. [Google Scholar] [CrossRef]
- Rudebeck, S.R.; Bor, D.; Ormond, A.; O’Reilly, J.X.; Lee, A.C. A Potential Spatial Working Memory Training Task to Improve Both Episodic Memory and Fluid Intelligence. PLoS One 2012, 7, e50431. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, S.; Hampshire, A.; Dalgleish, T. Extending Brain-Training to the Affective Domain: Increasing Cognitive and Affective Executive Control through Emotional Working Memory Training. PLoS One 2011, 6, e24372. [Google Scholar] [CrossRef] [PubMed]
- Lumos Labs Inc. “Memory Lane”. Available online: http://www.lumosity.com (accessed on 21 August 2014).
- Brain Workshop. Brain Workshop—a Dual N-back Game. Available online: http://www.brainworkshop.net/ (accessed on 21 August 2014).
- Redick, T.S.; Shipstead, Z.; Harrison, T.L.; Hicks, K.L.; Fried, D.E.; Hambrick, D.Z.; Kane, M.J.; Engle, R.W. No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. J. Exp. Psychol. Gen. 2012, 142, 359–379. [Google Scholar] [CrossRef]
- Thompson, T.W.; Waskom, M.L.; Garel, K.A.; Cardenas-Iniguez, C.; Reynolds, G.O.; Winter, R.; Chang, P.; Pollard, K.; Lala, N.; Alvarez, G.A.; et al. Failure of working memory training to enhance cognition or intelligence. PLoS One 2013, 8, e63614. [Google Scholar] [CrossRef] [PubMed]
- Chooi, W.; Thompson, L.A. Working memory training does not improve intelligence in healthy young adults. Intelligence 2012, 40, 531–542. [Google Scholar] [CrossRef]
- Scholz, J.; Klein, M.C.; Behrens, T.E.; Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 2009, 12, 1370–1371. [Google Scholar] [CrossRef] [PubMed]
- Ilg, R.; Wohlschlager, A.M.; Gaser, C.; Liebau, Y.; Dauner, R.; Woller, A.; Zimmer, C.; Zihl, J.; Muhlau, M. Gray matter increase induced by practice correlates with task-specific activation: A combined functional and morphometric magnetic resonance imaging study. J. Neurosci. 2008, 28, 4210–4215. [Google Scholar] [CrossRef] [PubMed]
- Driemeyer, J.; Boyke, J.; Gaser, C.; Büchel, C.; May, A. Changes in gray matter induced by learning—Revisited. PLoS One 2008, 3, e2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyke, J.; Driemeyer, J.; Gaser, C.; Buchel, C.; May, A. Training-induced brain structure changes in the elderly. J. Neurosci. 2008, 28, 7031–7035. [Google Scholar] [CrossRef] [PubMed]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Neuroplasticity: Changes in grey matter induced by training. Nature 2004, 427, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Draganski, B.; Gaser, C.; Kempermann, G.; Kuhn, H.G.; Winkler, J.; Buchel, C.; May, A. Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 2006, 26, 6314–6317. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Taki, Y.; Sassa, Y.; Hashizume, H.; Sekiguchi, A.; Fukushima, A.; Kawashima, R. Working Memory Training Using Mental Calculation Impacts Regional Gray Matter of the Frontal and Parietal Regions. PLoS One 2011, 6, e23175. [Google Scholar] [CrossRef] [PubMed]
- Barbey, A.K.; Koenigs, M.; Grafman, J. Orbitofrontal contributions to human working memory. Cereb. Cortex 2011, 21, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Barbey, A.K.; Koenigs, M.; Grafman, J. Dorsolateral prefrontal contributions to human working memory. Cortex 2013, 49, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, T. Training and plasticity of working memory. Trends Cogn. Sci. (Regul. Ed.) 2010, 14, 317–324. [Google Scholar]
- Buschkuehl, M.; Jaeggi, S.M.; Jonides, J. Neuronal effects following working memory training. Dev. Cogn. Neurosci. 2011, 2, S167–S179. [Google Scholar] [CrossRef] [PubMed]
- Hempel, A.; Giesel, F.L.; Caraballo, N.M.G.; Amann, M.; Meyer, H.; Wustenberg, T.; Essig, M.; Schroder, J. Plasticity of cortical activation related to working memory during training. Am. J. Psychiatry 2004, 161, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, E.; Neely, A.S.; Larsson, A.; Backman, L.; Nyberg, L. Transfer of learning after updating training mediated by the striatum. Science 2008, 320, 1510–1512. [Google Scholar] [CrossRef] [PubMed]
- Hubacher, M.; Weiland, M.; Calabrese, P.; Stoppe, G.; Stöcklin, M.; Fischer-Barnicol, D.; Opwis, K.; Penner, I. Working Memory Training in Patients with Chronic Schizophrenia: A Pilot Study. Psychiatry J. 2013, 2013. [Google Scholar] [CrossRef]
- Fisher, M.; Holland, C.; Merzenich, M.; Vinogradov, S. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. Am. J. Psychiatry 2009, 166, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.; Holland, C.; Subramaniam, K.; Vinogradov, S. Neuroplasticity-based cognitive training in schizophrenia: An interim report on the effects 6 months later. Schizophr. Bull. 2010, 36, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Glahn, D.C.; Ragland, J.D.; Abramoff, A.; Barrett, J.; Laird, A.R.; Bearden, C.E.; Velligan, D.I. Beyond hypofrontality: A quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum. Brain Mapp. 2005, 25, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, K.; Luks, T.L.; Fisher, M.; Simpson, G.V.; Nagarajan, S.; Vinogradov, S. Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia. Neuron 2012, 73, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, K.; Luks, T.; Garrett, C.; Chung, C.; Fisher, M.; Nagarajan, S.; Vinogradov, S. Intensive cognitive training in schizophrenia enhances working memory and associated prefrontal cortical efficiency in a manner that drives long-term functional gains. Neuroimage 2014, 99, 281–292. [Google Scholar]
- Haut, K.M.; Lim, K.O.; MacDonald, A. Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: Effects of practice, generalization, and specificity. Neuropsychopharmacology 2010, 35, 1850–1859. [Google Scholar] [CrossRef] [PubMed]
- Wexler, B.E.; Anderson, M.; Fulbright, R.K.; Gore, J.C. Preliminary evidence of improved verbal working memory performance and normalization of task-related frontal lobe activation in schizophrenia following cognitive exercises. Am. J. Psychiatry 2000, 157, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.; Edwards, J.D.; Ross, L.A. The impact of speed of processing training on cognitive and everyday functions. J. Gerontol. Ser. B: Psychol. Sci. Soc. Sci. 2007, 62, 19–31. [Google Scholar]
- Richmond, L.L.; Morrison, A.B.; Chein, J.M.; Olson, I.R. Working memory training and transfer in older adults. Psychol. Aging. 2011, 26, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, K.I. Effects of working memory training on reading in children with special needs. Read. Writ. 2011, 24, 479–491. [Google Scholar] [CrossRef]
- Holmes, J.; Gathercole, S.E.; Dunning, D.L. Adaptive training leads to sustained enhancement of poor working memory in children. Dev. Sci. 2009, 12, F9–F15. [Google Scholar] [CrossRef] [PubMed]
- Savage, L. Near and Far Transfer of Working Memory Training Related Gains in Healthy Adults. Master Thesis, University of Calgary, Calgary, AB, Canada, 2013. [Google Scholar]
- Shipstead, Z.; Redick, T.S.; Engle, R.W. Is working memory training effective? Psychol. Bull. 2012, 138, 628–654. [Google Scholar]
- Nielsen, R.E. Cognition in schizophrenia–a systematic review. Drug Discov. Today: Ther. Strateg. 2011, 8, 43–48. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lawlor-Savage, L.; Goghari, V.M. Working Memory Training in Schizophrenia and Healthy Populations. Behav. Sci. 2014, 4, 301-319. https://doi.org/10.3390/bs4030301
Lawlor-Savage L, Goghari VM. Working Memory Training in Schizophrenia and Healthy Populations. Behavioral Sciences. 2014; 4(3):301-319. https://doi.org/10.3390/bs4030301
Chicago/Turabian StyleLawlor-Savage, Linette, and Vina M. Goghari. 2014. "Working Memory Training in Schizophrenia and Healthy Populations" Behavioral Sciences 4, no. 3: 301-319. https://doi.org/10.3390/bs4030301
APA StyleLawlor-Savage, L., & Goghari, V. M. (2014). Working Memory Training in Schizophrenia and Healthy Populations. Behavioral Sciences, 4(3), 301-319. https://doi.org/10.3390/bs4030301