Working Differently, Performing Similarly: Systems Intelligence and Job Crafting as Predictors of Job Performance in a Three-Wave Longitudinal Study
Abstract
1. Introduction
1.1. Literature Review and Hypothesis Development
1.1.1. Systems Intelligence and Job Performance
1.1.2. Systems Intelligence and Job Crafting
1.1.3. Systems Intelligence, Job Crafting and Job Performance
2. Method
2.1. Sample
2.2. Measures
2.2.1. Systems Intelligence Inventory
2.2.2. Perceived Job Performance
2.2.3. Job Crafting
2.3. Procedure
2.4. Data Analysis
Common Method Bias Test
3. Results
4. Discussion
4.1. Theoretical Implications
4.2. Practical Implications
4.3. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akram, H., & Siddiqui, D. A. (2019). Impact of emotional intelligence on individual work performance of employees with the mediating role of decision-making styles: Evidence from Pakistan. SSRN Electronic Journal, 1–50. [Google Scholar] [CrossRef]
- Avanzi, L., Perinelli, E., Bressan, M., Balducci, C., Lombardi, L., Fraccaroli, F., & Van Dick, R. (2021). The mediational effect of social support between organizational identification and employees’ health: A three-wave study on the social cure model. Anxiety, Stress, & Coping, 34(4), 465–478. [Google Scholar] [CrossRef]
- Bakker, A. B., & Demerouti, E. (2007). The job demands-resources model: State of the art. Journal of Managerial Psychology, 22(3), 309–328. [Google Scholar] [CrossRef]
- Bakker, A. B., & Demerouti, E. (2014). Job demands-resources theory. In C. L. Cooper (Ed.), Wellbeing (pp. 1–28). John Wiley & Sons, Ltd. [Google Scholar] [CrossRef]
- Bakker, A. B., & Demerouti, E. (2017). Job demands–resources theory: Taking stock and looking forward. Journal of Occupational Health Psychology, 22(3), 273–285. [Google Scholar] [CrossRef]
- Bakker, A. B., Tims, M., & Derks, D. (2012). Proactive personality and job performance: The role of job crafting and work engagement. Human Relations, 65(10), 1359–1378. [Google Scholar] [CrossRef]
- Balducci, C., Baillien, E., Broeck, A. V. D., Toderi, S., & Fraccaroli, F. (2020). Job demand, job control, and impaired mental health in the experience of workplace bullying behavior: A two-wave study. International Journal of Environmental Research and Public Health, 17(4), 1358. [Google Scholar] [CrossRef] [PubMed]
- Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. [Google Scholar] [CrossRef]
- Boomsma, A. (2013). Reporting monte Carlo studies in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 20(3), 518–540. [Google Scholar] [CrossRef]
- Cenciotti, R., Alessandri, G., & Borgogni, L. (2017). Psychological capital and career success over time: The mediating role of job crafting. Journal of Leadership & Organizational Studies, 24(3), 372–384. [Google Scholar] [CrossRef]
- Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98–101. [Google Scholar] [CrossRef]
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. [Google Scholar] [CrossRef]
- Demerouti, E., & Bakker, A. B. (2023). Job demands-resources theory in times of crises: New propositions. Organizational Psychology Review, 13(3), 209–236. [Google Scholar] [CrossRef]
- Demerouti, E., Bakker, A. B., & Gevers, J. M. P. (2015). Job crafting and extra-role behavior: The role of work engagement and flourishing. Journal of Vocational Behavior, 91, 87–96. [Google Scholar] [CrossRef]
- Demerouti, E., Bakker, A. B., Nachreiner, F., & Schaufeli, W. B. (2001). The job demands-resources model of burnout. The Journal of Applied Psychology, 86(3), 499–512. [Google Scholar] [CrossRef]
- Deng, J., Liu, J., Guo, Y., Gao, Y., Wu, Z., & Yang, T. (2021). How does social support affect public service motivation of healthcare workers in China: The mediating effect of job stress. BMC Public Health, 21, 1076. [Google Scholar] [CrossRef]
- Drigas, A., Papoutsi, C., & Skianis, C. (2023). Being an emotionally intelligent leader through the nine-layer model of emotional intelligence—The supporting role of new technologies. Sustainability, 15(10), 8103. [Google Scholar] [CrossRef]
- Duncan, S. C., Duncan, T. E., & Strycker, L. A. (2006). Alcohol use from ages 9 to 16: A cohort-sequential latent growth model. Drug and Alcohol Dependence, 81(1), 71–81. [Google Scholar] [CrossRef] [PubMed]
- Fazal, S., Masood, S., Nazir, F., & Majoka, M. I. (2022). Individual and organizational strategies for promoting work–life balance for sustainable workforce: A systematic literature review from Pakistan. Sustainability, 14(18), 11552. [Google Scholar] [CrossRef]
- Fröhlich, P., Radaca, E., & Diestel, S. (2025). When happiness strengthens engagement and performance: The role of happiness at work as a resource for experienced employees and newcomers. Frontiers in Psychology, 16, 1560010. [Google Scholar] [CrossRef]
- Galanakis, M. D., & Tsitouri, E. (2022). Positive psychology in the working environment. Job demands-resources theory, work engagement and burnout: A systematic literature review. Frontiers in Psychology, 13, 1022102. [Google Scholar] [CrossRef]
- Gonzalez-Mulé, E., Kim, M. M., & Ryu, J. W. (2021). A meta-analytic test of multiplicative and additive models of job demands, resources, and stress. Journal of Applied Psychology, 106(9), 1391–1411. [Google Scholar] [CrossRef]
- Gordon, H. J., Demerouti, E., Le Blanc, P. M., & Bipp, T. (2015). Job crafting and performance of Dutch and American health care professionals. Journal of Personnel Psychology, 14(4), 192–202. [Google Scholar] [CrossRef]
- Haider, S., Fatima, N., & Pablos-Heredero, C. D. (2020). A three-wave longitudinal study of moderated mediation between perceptions of politics and employee turnover intentions: The role of job anxiety and political skills. Revista de Psicología Del Trabajo y de Las Organizaciones, 36(1), 1–14. [Google Scholar] [CrossRef]
- Hair, J. F. (Ed.). (2010). Multivariate data analysis: A global perspective (7th ed., Global ed.). Pearson. [Google Scholar]
- Hämäläinen, R. P., & Saarinen, E. (2006). Systems intelligence: A key competence in human action and organisational life. Reflections: The SoL Journal, 7(4), 191–201. [Google Scholar]
- Hamalainen, R. P., Saarinen, E., & Tormanen, J. (2018, December 4–7). Systems intelligence: A core competence for next-generation engineers? 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 641–644), Wollongong, NSW, Australia. [Google Scholar] [CrossRef]
- Hobfoll, S. E., Halbesleben, J., Neveu, J.-P., & Westman, M. (2018). Conservation of resources in the organizational context: The reality of resources and their consequences. Annual Review of Organizational Psychology and Organizational Behavior, 5(1), 103–128. [Google Scholar] [CrossRef]
- Hobfoll, S. E., Johnson, R. J., Ennis, N., & Jackson, A. P. (2003). ‘Resource loss, resource gain, and emotional outcomes among inner city women’: Correction to Hobfoll et al. (2003). Journal of Personality and Social Psychology, 85(2), 248. [Google Scholar] [CrossRef]
- Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. [Google Scholar] [CrossRef]
- Jumisko-Pyykko, S., Törmänen, J., Vanni, K., Hämäläinen, R., & Saarinen, E. (2022). Systems intelligence, perceived performance and wellbeing. In V. Salminen (Ed.), Human factors, business management and society (Vol. 56). AHFE International. [Google Scholar] [CrossRef]
- Koltai, J., & Schieman, S. (2015). Job pressure and SES-contingent buffering: Resource reinforcement, substitution, or the stress of higher status? Journal of Health and Social Behavior, 56(2), 180–198. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, L., Bernaards, C., Hildebrandt, V., Van Buuren, S., Van Der Beek, A. J., & De Vet, H. C. W. (2012). Development of an individual work performance questionnaire. International Journal of Productivity and Performance Management, 62(1), 6–28. [Google Scholar] [CrossRef]
- Koopmans, L., Bernaards, C. M., Hildebrandt, V. H., Lerner, D., De Vet, H. C. W., & Van Der Beek, A. J. (2016). Cross-cultural adaptation of the individual work performance questionnaire. Work, 53(3), 609–619. [Google Scholar] [CrossRef]
- Liaquat, S., & Escartín, J. (2025). Systems intelligence and job autonomy in managing stressors and performance: A time-lagged study in multinational firms. Sustainability, 17(7), 3125. [Google Scholar] [CrossRef]
- Lu, C., Wang, H., Lu, J., Du, D., & Bakker, A. B. (2014). Does work engagement increase person–job fit? The role of job crafting and job insecurity. Journal of Vocational Behavior, 84(2), 142–152. [Google Scholar] [CrossRef]
- Mazzetti, G., Robledo, E., Vignoli, M., Topa, G., Guglielmi, D., & Schaufeli, W. B. (2023). Work engagement: A meta-analysis using the job demands-resources model. Psychological Reports, 126(3), 1069–1107. [Google Scholar] [CrossRef]
- Miao, R., Yu, J., Bozionelos, N., & Bozionelos, G. (2023). Organizational career growth and high-performance work systems: The roles of Job Crafting and organizational innovation climate. Journal of Vocational Behavior, 143, 103879. [Google Scholar] [CrossRef]
- Miraglia, M., Cenciotti, R., Alessandri, G., & Borgogni, L. (2017). Translating self-efficacy in job performance over time: The role of job crafting. Human Performance, 30(5), 254–271. [Google Scholar] [CrossRef]
- Muthén, L. K., & Muthén, B. (2017). Mplus user’s guide (8th ed.). Muthén & Muthén. [Google Scholar]
- Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9(4), 599–620. [Google Scholar] [CrossRef]
- Neuber, L., Englitz, C., Schulte, N., Forthmann, B., & Holling, H. (2021). How work engagement relates to performance and absenteeism: A meta-analysis. European Journal of Work and Organizational Psychology, 31(2), 292–315. [Google Scholar] [CrossRef]
- Park, S., & Ha, Y. (2025). The relationship between positive psychological capital and work engagement in clinical nurses: Mediation effect of job crafting. BMC Nursing, 24(1), 117. [Google Scholar] [CrossRef]
- Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. [Google Scholar] [CrossRef] [PubMed]
- Qin, X. (2024). Sample size and power calculations for causal mediation analysis: A tutorial and Shiny app. Behavior Research Methods, 56, 1738–1769. [Google Scholar] [CrossRef]
- Robledo, D., Vázquez-Delfín, E., Freile-Pelegrín, Y., Vásquez-Elizondo, R. M., Qui-Minet, Z. N., & Salazar-Garibay, A. (2021). Challenges and opportunities in relation to sargassum events along the Caribbean Sea. Frontiers in Marine Science, 8, 699664. [Google Scholar] [CrossRef]
- Robledo, E., Zappalà, S., & Topa, G. (2019). Job crafting as a mediator between work engagement and wellbeing outcomes: A time-lagged study. International Journal of Environmental Research and Public Health, 16(8), 1376. [Google Scholar] [CrossRef] [PubMed]
- Rofcanin, Y., Bakker, A. B., Berber, A., Gölgeci, I., & Las Heras, M. (2019). Relational job crafting: Exploring the role of employee motives with a weekly diary study. Human Relations, 72(4), 859–886. [Google Scholar] [CrossRef]
- Ross, C. E., & Mirowsky, J. (2010). Gender and the health benefits of education. The Sociological Quarterly, 51(1), 1–19. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, C. W., Katz, I. M., Lavigne, K. N., & Zacher, H. (2017). Job crafting: A meta-analysis of relationships with individual differences, job characteristics, and work outcomes. Journal of Vocational Behavior, 102, 112–138. [Google Scholar] [CrossRef]
- Saarinen, E., & Hämäläinen, R. P. (2004). Systems intelligence: Connecting engineering thinking with human sensitivity. In Systems intelligence—Discovering a hidden competence in human action and organizational life (pp. 1–29). Helsinki University of Technology. [Google Scholar]
- Sasaki, Y. (2017). A note on systems intelligence in knowledge management. The Learning Organization, 24(4), 236–244. [Google Scholar] [CrossRef]
- Scharp, Y. S., Bakker, A. B., & Breevaart, K. (2022). Playful work design and employee work engagement: A self-determination perspective. Journal of Vocational Behavior, 134, 103693. [Google Scholar] [CrossRef]
- Schaufeli, W. B., & Taris, T. W. (2014). A critical review of the job demands-resources model: Implications for Improving work and health. In G. F. Bauer, & O. Hämmig (Eds.), Bridging occupational, organizational and public health (pp. 43–68). Springer Netherlands. [Google Scholar] [CrossRef]
- Sekiguchi, T., Li, J., & Hosomi, M. (2017). Predicting job crafting from the socially embedded perspective: The interactive effect of job autonomy, social skill, and employee status. The Journal of Applied Behavioral Science, 53(4), 470–497. [Google Scholar] [CrossRef]
- Senge, P. M. (1990). The fifth discipline: The Art and Practice of the Learning Organization. Doubleday. [Google Scholar]
- Tang, H., An, S., Zhang, L., Xiao, Y., & Li, X. (2024). The antecedents and outcomes of public service motivation: A meta-analysis using the job demands–resources model. Behavioral Sciences, 14(10), 861. [Google Scholar] [CrossRef]
- Tims, M., Bakker, A. B., & Derks, D. (2012). Development and validation of the job crafting scale. Journal of Vocational Behavior, 80(1), 173–186. [Google Scholar] [CrossRef]
- Tims, M., Bakker, A. B., & Derks, D. (2013). The impact of job crafting on job demands, job resources, and well-being. Journal of Occupational Health Psychology, 18(2), 230–240. [Google Scholar] [CrossRef]
- Tims, M., Bakker, A. B., & Derks, D. (2015). Job crafting and job performance: A longitudinal study. European Journal of Work and Organizational Psychology, 24(6), 914–928. [Google Scholar] [CrossRef]
- Törmänen, J., Hämäläinen, R. P., & Saarinen, E. (2016). Systems intelligence inventory. The Learning Organization, 23(4), 218–231. [Google Scholar] [CrossRef]
- Törmänen, J., Hämäläinen, R. P., & Saarinen, E. (2021). Perceived systems intelligence and performance in organizations. The Learning Organization, 29(2), 100–115. [Google Scholar] [CrossRef]
- Törmänen, J., Hämäläinen, R. P., & Saarinen, E. (2022). On the systems intelligence of a learning organization: Introducing a new measure. Human Resource Development Quarterly, 33(3), 249–272. [Google Scholar] [CrossRef]
- Van Wingerden, J., Derks, D., & Bakker, A. B. (2017). The impact of personal resources and job crafting interventions on work engagement and performance. Human Resource Management, 56(1), 51–67. [Google Scholar] [CrossRef]
- Van Wingerden, J., & Poell, R. F. (2019). Antecedents of job crafting behavior within organizations: The role of personal resources, job resources and perceived opportunities to craft in employees proactive behavior. International Journal of Human Resource Studies, 9(3), 135. [Google Scholar] [CrossRef]
- Wang, L., & Xie, T. (2023). Double-edged sword effect of flexible work arrangements on employee innovation performance: From the demands–resources–individual effects perspective. Sustainability, 15(13), 10159. [Google Scholar] [CrossRef]
- Wang, M., Beal, D. J., Chan, D., Newman, D. A., Vancouver, J. B., & Vandenberg, R. J. (2017). Longitudinal research: A panel discussion on conceptual issues, research design, and Statistical Techniques. Work, Aging and Retirement, 3(1), e1. [Google Scholar] [CrossRef]
- Wang, Y. A., & Rhemtulla, M. (2021). Power analysis for parameter estimation in structural equation modeling: A discussion and tutorial. Advances in Methods and Practices in Psychological Science, 4(1), 2515245920918253. [Google Scholar] [CrossRef]
- Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 73(6), 913–934. [Google Scholar] [CrossRef]
- Wrzesniewski, A., & Dutton, J. E. (2001). Crafting a job: Revisioning employees as active crafters of their work. The Academy of Management Review, 26(2), 179. [Google Scholar] [CrossRef]
- Xanthopoulou, D., Bakker, A. B., Demerouti, E., & Schaufeli, W. B. (2007). The role of personal resources in the job demands-resources model. International Journal of Stress Management, 14(2), 121–141. [Google Scholar] [CrossRef]
- Xanthopoulou, D., Bakker, A. B., Demerouti, E., & Schaufeli, W. B. (2009a). Reciprocal relationships between job resources, personal resources, and work engagement. Journal of Vocational Behavior, 74(3), 235–244. [Google Scholar] [CrossRef]
- Xanthopoulou, D., Bakker, A. B., Demerouti, E., & Schaufeli, W. B. (2009b). Work engagement and financial returns: A diary study on the role of job and personal resources. Journal of Occupational and Organizational Psychology, 82(1), 183–200. [Google Scholar] [CrossRef]
Age Groups | N | % | Gender | N | % | |
---|---|---|---|---|---|---|
T1 | 20–30 | 169 | 56 | Male | 182 | 60% |
30–40 | 108 | 36 | Female | 121 | 40% | |
40–50 | 19 | 6 | ||||
50–60 | 7 | 2 | ||||
Total | 303 | 100 | 303 | |||
T2 | 20–30 | 114 | 54 | Male | 131 | 62% |
30–40 | 81 | 37 | Female | 81 | 38% | |
40–50 | 11 | 6 | ||||
50–60 | 6 | 3 | ||||
Total | 212 | 100 | 212 | |||
T3 | 20–30 | 51 | 52 | Male | 51 | 51% |
30–40 | 41 | 41 | Female | 48 | 49% | |
40–50 | 4 | 4 | ||||
50–60 | 3 | 3 | ||||
Total | 99 | 100 | 99 |
(a) | ||||||||
Variables | N | M | SD | F | t | df | p | |
Gender | Participation | 99 | 1.43 | 0.498 | 4.819 | 1.284 | 301 | 0.029 |
Drop out | 204 | 1.36 | 0.481 | |||||
Age | Participation | 99 | 1.59 | 0.714 | 0.104 | 0.587 | 301 | 0.748 |
Drop out | 204 | 1.53 | 0.718 | |||||
T1SI | Participation | 99 | 128.43 | 25.27 | 0.095 | 2.432 | 301 | 0.758 |
Drop out | 204 | 120.41 | 27.67 | |||||
T1JC | Participation | 99 | 47.95 | 9.48 | 0.051 | 2.014 | 301 | 0.821 |
Drop out | 204 | 45.74 | 8.74 | |||||
T1JP | Participation | 99 | 51.54 | 10.89 | 1.212 | 0.714 | 301 | 0.272 |
Drop out | 204 | 50.51 | 12.11 | |||||
(b) | ||||||||
Variable | Participation | Dropout | N | χ2 | df | p | ||
Age | 20–30 | 51 | 118 | 169 | 3.349 | 3 | 0.341 | |
30–40 | 41 | 67 | 108 | |||||
40–50 | 4 | 15 | 19 | |||||
50–60 | 3 | 4 | 7 | |||||
Total | 99 | 204 | 303 | |||||
Gender | Male | 56 | 131 | 182 | 1.651 | 1 | 0.210 | |
Female | 43 | 73 | 121 | |||||
Total | 99 | 204 | 303 |
N | M | SD | Items | α | T1SI | T1JC | T1JP | T2SI | T2JC | T2JP | T3SI | T3JC | T3JP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1SI | 303 | 29.28 | 11.13 | 32 | 0.92 | 1 | 0.201 ** | 0.108 | 0.338 ** | 0.134 | 0.138 * | 0.203 * | −0.004 | 0.194 |
T1JC | 303 | 46.46 | 9.04 | 9 | 0.86 | 1 | 0.018 | 0.157 * | 0.578 ** | −0.012 | 0.169 | 0.076 | 0.208 * | |
T1JP | 303 | 50.85 | 11.72 | 18 | 0.84 | 1 | −0.020 | 0.012 | 0.475 ** | −0.080 | 0.026 | 0.959 ** | ||
T2SI | 212 | 31.37 | 11.50 | 32 | 0.94 | 1 | 0.326 ** | 0.052 | 0.853 ** | −0.102 | −0.046 | |||
T2JC | 212 | 48.40 | 9.20 | 9 | 0.85 | 1 | 0.079 | 0.208 * | 0.146 | 0.228 * | ||||
T2JP | 212 | 53.39 | 10.81 | 18 | 0.80 | 1 | −0.021 | 0.010 | 0.644 ** | |||||
T3SI | 99 | 30.46 | 11.66 | 32 | 0.92 | 1 | −0.097 | −0.065 | ||||||
T3JC | 99 | 49.94 | 7.98 | 9 | 0.86 | 1 | 0.075 | |||||||
T3JP | 99 | 51.74 | 11.09 | 18 | 0.81 | 1 |
Directional Paths | Estimates | SE | p |
---|---|---|---|
T1SI → T1JC | 0.42 | 0.047 | 0.000 *** |
T1S1 → T1JP | 0.51 | 0.042 | 0.000 *** |
T1SI → T2JC | −0.02 | 0.043 | 0.61 |
T1SI → T2JP | 0.06 | 0.055 | 0.30 |
T1SI → T3JC | 0.09 | 0.050 | 0.07 |
T1SI → T3JP | 0.17 | 0.067 | 0.01 * |
T2SI → T2JC | 0.17 | 0.056 | 0.002 ** |
T2SI → T2JP | 0.07 | 0.057 | 0.22 |
T2SI → T3JC | 0.00 | 0.044 | 0.91 |
T2SI → T3JP | 0.24 | 0.059 | 0.000 *** |
T3SI → T3JC | 0.19 | 0.057 | 0.06 |
T3SI → T3JP | −0.06 | 0.057 | 0.25 |
T1JC → T1SI | 0.42 | 0.047 | 0.000 *** |
T1JC → T1JP | 0.56 | 0.040 | 0.000 *** |
T1JC → T2JC | 0.49 | 0.042 | 0.000 *** |
T1JC → T2SI | 0.13 | 0.051 | 0.000 *** |
T1JC → T2JP | 0.15 | 0.056 | 0.008 ** |
T1JC → T3JC | 0.11 | 0.054 | 0.03 * |
T1JC → T3SI | −0.06 | 0.148 | 0.68 |
T1JC → T3JP | −0.18 | 0.072 | 0.01 * |
T2JC → T2SI | 0.17 | 0.056 | 0.000 *** |
T2JC → T2JP | 0.06 | 0.057 | 0.25 |
T2JC → T3JC | 0.57 | 0.042 | 0.000 *** |
T2JC → T3SI | 0.50 | 0.052 | 0.000 *** |
T2JC → T3JP | 0.21 | 0.062 | 0.001 ** |
T3JC → T3SI | 0.19 | 0.057 | 0.06 |
T3JC → T3JP | 0.09 | 0.057 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaquat, S.; Escartín, J.; Coyle-Shapiro, J. Working Differently, Performing Similarly: Systems Intelligence and Job Crafting as Predictors of Job Performance in a Three-Wave Longitudinal Study. Behav. Sci. 2025, 15, 1255. https://doi.org/10.3390/bs15091255
Liaquat S, Escartín J, Coyle-Shapiro J. Working Differently, Performing Similarly: Systems Intelligence and Job Crafting as Predictors of Job Performance in a Three-Wave Longitudinal Study. Behavioral Sciences. 2025; 15(9):1255. https://doi.org/10.3390/bs15091255
Chicago/Turabian StyleLiaquat, Sidra, Jordi Escartín, and Jacqueline Coyle-Shapiro. 2025. "Working Differently, Performing Similarly: Systems Intelligence and Job Crafting as Predictors of Job Performance in a Three-Wave Longitudinal Study" Behavioral Sciences 15, no. 9: 1255. https://doi.org/10.3390/bs15091255
APA StyleLiaquat, S., Escartín, J., & Coyle-Shapiro, J. (2025). Working Differently, Performing Similarly: Systems Intelligence and Job Crafting as Predictors of Job Performance in a Three-Wave Longitudinal Study. Behavioral Sciences, 15(9), 1255. https://doi.org/10.3390/bs15091255