Post-Pandemic Surges in Public Trust in the United Kingdom
Abstract
1. Introduction
1.1. Background and Rationale
1.1.1. Construct of Trust
1.1.2. Public Trust
1.1.3. Trust in Civic Institutions
1.1.4. Trust in AI
1.2. Objectives
2. Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Variables
2.5. Data Sources and Measurement
2.6. Bias
2.7. Study Size
2.8. Quantitative Variables
2.9. Statistical Methods
2.9.1. Principal Component Analysis
2.9.2. Structural Equation Modeling and Measurement Invariance Testing
2.9.3. Latent Profile Analysis
3. Results
3.1. Participants
3.2. Descriptive Data
3.3. Outcome Data
3.4. Main Results
3.4.1. Principal Component Analysis
3.4.2. Structural Equation Modeling and Measurement Invariance Testing
3.4.3. Latent Profile Analysis
4. Discussion
4.1. Key Results
4.2. Limitations
4.3. Interpretation
4.4. Generalizability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
BLRT | Bootstrapped likelihood ratio test |
CDEI | Centre for Data Ethics and Innovation |
CFI | Comparative Fit Index |
LPA | Latent profile analysis |
MIMIC | Multiple Indicators Multiple Causes |
PCA | Principal component analysis |
PT | Public trust |
RMSEA | Root Mean Square Error of Approximation |
SEM | Structural equation model |
SRMR | Standard Root Means Square Residual |
UK | United Kingdom |
References
- Aassve, A., Capezzone, T., Cavalli, N., Conzo, P., & Peng, C. (2024). Social and political trust diverge during a crisis. Scientific Reports, 14(1), 331. [Google Scholar] [CrossRef]
- Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433–459. [Google Scholar] [CrossRef]
- Ainsworth, M. D. S., & Bell, S. M. (1970). Attachment, exploration, and separation: Illustrated by the behavior of one-year-olds in a strange situation. Child Development, 41(1), 49. [Google Scholar] [CrossRef]
- Akaike, H. (1987). Factor analysis and AIC. Springer. [Google Scholar]
- Aoki, N. (2020). An experimental study of public trust in AI chatbots in the public sector. Government Information Quarterly, 37(4), 101490. [Google Scholar] [CrossRef]
- Barton, Y. A., & Miller, L. (2015). Spirituality and positive psychology go hand in hand: An investigation of multiple empirically derived profiles and related protective benefits. Journal of Religion and Health, 54(3), 829–843. [Google Scholar] [CrossRef] [PubMed]
- Bosio, E. (2023, October 25). Trust in public institutions. World Bank Blogs. Available online: https://blogs.worldbank.org/en/governance/trust-public-institutions (accessed on 7 June 2024).
- Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). The Guilford Press. [Google Scholar]
- Bullock, J. B., Pauketat, J. V. T., Huang, H., Wang, Y.-F., & Anthis, J. R. (2025). Public opinion and the rise of digital minds: Perceived risk, trust, and regulation support. Public Performance & Management Review, 1–32. [Google Scholar] [CrossRef]
- Busemeyer, M. R. (2022). The welfare state in really hard times: Political trust and satisfaction with the German healthcare system during the COVID-19 pandemic. Journal of European Social Policy, 32(4), 393–406. [Google Scholar] [CrossRef]
- Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105(3), 456–466. [Google Scholar] [CrossRef]
- Catterberg, G. (2006). The individual bases of political trust: Trends in new and established democracies. International Journal of Public Opinion Research, 18(1), 31–48. [Google Scholar] [CrossRef]
- Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. [Google Scholar] [CrossRef]
- Chen, Y.-N. K., & Wen, C.-H. R. (2021). Impacts of attitudes toward government and corporations on public trust in artificial intelligence. Communication Studies, 72(1), 115–131. [Google Scholar] [CrossRef]
- Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233–255. [Google Scholar] [CrossRef]
- Coombs, W. T. (2007). Protecting organization reputations during a crisis: The development and application of situational crisis communication theory. Corporate Reputation Review, 10(3), 163–176. [Google Scholar] [CrossRef]
- Correia, T. (2024). Trust building in public health approaches: The importance of a “people-centered” concept in crisis response. Risk Management and Healthcare Policy, 17, 1903–1908. [Google Scholar] [CrossRef]
- Davies, B., Lalot, F., Peitz, L., Heering, M. S., Ozkececi, H., Babaian, J., Davies Hayon, K., Broadwood, J., & Abrams, D. (2021). Changes in political trust in Britain during the COVID-19 pandemic in 2020: Integrated public opinion evidence and implications. Humanities and Social Sciences Communications, 8(1), 166. [Google Scholar] [CrossRef]
- De Souza Marcovski, F. C., & Miller, L. J. (2023). A latent profile analysis of the five facets of mindfulness in a U.S. adult sample: Spiritual and psychological differences among four profiles. Current Psychology, 42(17), 14223–14236. [Google Scholar] [CrossRef]
- Devine, D., Gaskell, J., Jennings, W., & Stoker, G. (2021). Trust and the coronavirus pandemic: What are the consequences of and for trust? An early review of the literature. Political Studies Review, 19(2), 274–285. [Google Scholar] [CrossRef]
- Enria, L., Waterlow, N., Rogers, N. T., Brindle, H., Lal, S., Eggo, R. M., Lees, S., & Roberts, C. H. (2021). Trust and transparency in times of crisis: Results from an online survey during the first wave (April 2020) of the COVID-19 epidemic in the UK. PLoS ONE, 16(2), e0239247. [Google Scholar] [CrossRef]
- Erikson, E. H. (1993). Childhood and society. Norton. [Google Scholar]
- European Union. (2016). Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data (general data protection regulation), 1. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04 (accessed on 6 August 2025).
- Fancourt, D., Steptoe, A., & Wright, L. (2020). The cummings effect: Politics, trust, and behaviours during the COVID-19 pandemic. The Lancet, 396(10249), 464–465. [Google Scholar] [CrossRef] [PubMed]
- Farrell, H., Gopnik, A., Shalizi, C., & Evans, J. (2025). Large AI models are cultural and social technologies. Science, 387(6739), 1153–1156. [Google Scholar] [CrossRef]
- Ford, T., Lipson, J., & Miller, L. (2023). Spiritually grounded character: A latent profile analysis. Frontiers in Psychology, 13, 1061416. [Google Scholar] [CrossRef]
- Freitag, M., & Bauer, P. C. (2016). Personality traits and the propensity to trust friends and strangers. The Social Science Journal, 53(4), 467–476. [Google Scholar] [CrossRef]
- Grassini, S. (2023). Development and validation of the AI attitude scale (AIAS-4): A brief measure of general attitude toward artificial intelligence. Frontiers in Psychology, 14, 1191628. [Google Scholar] [CrossRef] [PubMed]
- Griffith, E., & Metz, C. (2023, July 1). A new area of A.I. booms, even amid the tech gloom. The New York Times. [Google Scholar]
- Hallett, B. (2024, July 18). Module 1 report: The resilience and preparedness of the United Kingdom. UK COVID-19 Inquiry. Available online: https://covid19.public-inquiry.uk/reports/module-1-report-the-resilience-and-preparedness-of-the-united-kingdom/ (accessed on 13 August 2025).
- Hitlin, P. (2024, October 17). 5 ways to rebuild trust in government. Pew Trend Magazine. Available online: https://pew.org/480ACSm (accessed on 7 August 2025).
- HM Government. (2022). UK government resilience framework. Available online: https://www.gov.uk//government/publications/the-uk-government-resilience-framework (accessed on 13 August 2025).
- Howard, M. C. (2016). A review of exploratory factor analysis decisions and overview of current practices: What we are doing and how can we improve? International Journal of Human-Computer Interaction, 32(1), 51–62. [Google Scholar] [CrossRef]
- Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. [Google Scholar] [CrossRef]
- Hudson, J. (2006). Institutional trust and subjective well-being across the EU. Kyklos, 59(1), 43–62. [Google Scholar] [CrossRef]
- IBM Corp. (2022). IBM SPSS statistics for windows (Version 29.0) [Computer software]. IBM Corp. [Google Scholar]
- Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. [Google Scholar] [CrossRef]
- Kaasa, A., & Andriani, L. (2022). Determinants of institutional trust: The role of cultural context. Journal of Institutional Economics, 18(1), 45–65. [Google Scholar] [CrossRef]
- Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151. [Google Scholar] [CrossRef]
- Kirka, D., & Hui, S. (2023, June 15). Scathing report finds Boris Johnson deliberately misled UK Parliament over “partygate”. AP News. Available online: https://apnews.com/article/boris-johnson-partygate-parliament-lockdown-report-84e0990fa7e58bcb488efbf6c6a5d141# (accessed on 8 June 2024).
- Kleitman, S., Fullerton, D. J., Zhang, L. M., Blanchard, M. D., Lee, J., Stankov, L., & Thompson, V. (2021). To comply or not comply? A latent profile analysis of behaviours and attitudes during the COVID-19 pandemic. PLoS ONE, 16(7), e0255268. [Google Scholar] [CrossRef]
- Kline, R. B. (2010). Principles and practice of structural equation modeling (3rd ed.). Guilford Press. [Google Scholar]
- Knowles, B., & Richards, J. T. (2021). The sanction of authority: Promoting public trust in AI (Version 1). arXiv. [Google Scholar] [CrossRef]
- Kotsila, P., & Saravanan, V. S. (2017). Biopolitics gone to shit? State narratives versus everyday realities of water and sanitation in the mekong delta. World Development, 93, 374–388. [Google Scholar] [CrossRef]
- Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 46(1), 50–80. [Google Scholar] [CrossRef]
- Legislation.gov.uk. (2018). Data protection act 2018: Elizabeth II. chapter 12. Available online: https://www.legislation.gov.uk/ukpga/2018/12/contents (accessed on 6 August 2025).
- Levi, M., & Stoker, L. (2000). Political trust and trustworthiness. Annual Review of Political Science, 3(1), 475–507. [Google Scholar] [CrossRef]
- Liu, P. Z., & Nusslock, R. (2018). Exercise-mediated neurogenesis in the hippocampus via BDNF. Frontiers in Neuroscience, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10(1), 21–39. [Google Scholar] [CrossRef] [PubMed]
- Marozzi, M. (2015). Measuring trust in European public institutions. Social Indicators Research, 123(3), 879–895. [Google Scholar] [CrossRef]
- McClintock, C. H., Lau, E., & Miller, L. (2016). Phenotypic dimensions of spirituality: Implications for mental health in China, India, and the United States. Frontiers in Psychology, 7, 1600. [Google Scholar] [CrossRef] [PubMed]
- McKnight, D. H., & Chervany, N. L. (2000, August 10–13). What is trust? A conceptual analysis and an interdisciplinary model. Americas Conference on Information Systems 2000 Proceedings, Long Beach, CA, USA. [Google Scholar]
- Mellinger, G. D. (1956). Interpersonal trust as a factor in communication. The Journal of Abnormal and Social Psychology, 52(3), 304–309. [Google Scholar] [CrossRef]
- Mishler, W., & Rose, R. (2001). What are the origins of political trust?: Testing institutional and cultural theories in post-communist societies. Comparative Political Studies, 34(1), 30–62. [Google Scholar] [CrossRef]
- Montag, C., Klugah-Brown, B., Zhou, X., Wernicke, J., Liu, C., Kou, J., Chen, Y., Haas, B. W., & Becker, B. (2023). Trust toward humans and trust toward artificial intelligence are not associated: Initial insights from self-report and neurostructural brain imaging. Personality Neuroscience, 6, e3. [Google Scholar] [CrossRef]
- Newton, K. (2001). Trust, social capital, civil society, and democracy. International Political Science Review, 22(2), 201–214. [Google Scholar] [CrossRef]
- Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A monte carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535–569. [Google Scholar] [CrossRef]
- Ojeda, C. (2016). The effect of 9/11 on the heritability of political trust. Political Psychology, 37(1), 73–88. [Google Scholar] [CrossRef] [PubMed]
- Olagoke, A. A., Olagoke, O. O., & Hughes, A. M. (2020). Psychological pathways linking public trust during the coronavirus pandemic to mental and physical well-being. Frontiers in Psychology, 11, 570216. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, P., Rainford, J., & Thompson, A. (2009). Transparency during public health emergencies: From rhetoric to reality. Bulletin of the World Health Organization, 87(8), 614–618. [Google Scholar] [CrossRef]
- Omrani, N., Rivieccio, G., Fiore, U., Schiavone, F., & Agreda, S. G. (2022). To trust or not to trust? An assessment of trust in AI-based systems: Concerns, ethics and contexts. Technological Forecasting and Social Change, 181, 121763. [Google Scholar] [CrossRef]
- Pagliaro, S., Sacchi, S., Pacilli, M. G., Brambilla, M., Lionetti, F., Bettache, K., Bianchi, M., Biella, M., Bonnot, V., Boza, M., Butera, F., Ceylan-Batur, S., Chong, K., Chopova, T., Crimston, C. R., Álvarez, B., Cuadrado, I., Ellemers, N., Formanowicz, M., … Zubieta, E. (2021). Trust predicts COVID-19 prescribed and discretionary behavioral intentions in 23 countries. PLoS ONE, 16(3), e0248334. [Google Scholar] [CrossRef] [PubMed]
- Pastor, D. A., Barron, K. E., Miller, B. J., & Davis, S. L. (2007). A latent profile analysis of college students’ achievement goal orientation. Contemporary Educational Psychology, 32(1), 8–47. [Google Scholar] [CrossRef]
- Putnam, R. D. (2001). Bowling alone: The collapse and revival of American community (1. Touchstone ed). Simon & Schuster [u.a.]. [Google Scholar]
- Reid, J. C., Brown, S. J., & Dmello, J. (2024). COVID-19, diffuse anxiety, and public (Mis)trust in government: Empirical insights and implications for crime and justice. Criminal Justice Review, 49(2), 117–134. [Google Scholar] [CrossRef]
- Riedl, R. (2022). Is trust in artificial intelligence systems related to user personality? Review of empirical evidence and future research directions. Electronic Markets, 32(4), 2021–2051. [Google Scholar] [CrossRef]
- Rosenberg, J. M. (2021). Software approach to carrying out LPA: Interface to mclust (and to MPlus) (Version 1.1) [Computer software]. Comprehensive R Archive Network (CRAN). Available online: https://cran.r-project.org/web/packages/tidyLPA/vignettes/Introduction_to_tidyLPA.html (accessed on 28 May 2024).
- Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. [Google Scholar] [CrossRef]
- Rotter, J. B. (1967). A new scale for the measurement of interpersonal trust1. Journal of Personality, 35(4), 651–665. [Google Scholar] [CrossRef]
- Rotter, J. B. (1980). Interpersonal trust, trustworthiness, and gullibility. American Psychologist, 35, 1–7. [Google Scholar] [CrossRef]
- Saaranen, A. (2024). Social trust during the pandemic: Longitudinal evidence from three waves of the Swiss household panel study. Journal of Trust Research, 14(2), 188–212. [Google Scholar] [CrossRef]
- Schilpzand, A. (2023). The impact of natural disasters on social capital: An analysis of ingroup and outgroup trust. International Journal of Disaster Risk Reduction, 95, 103860. [Google Scholar] [CrossRef]
- Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. [Google Scholar] [CrossRef]
- Soto, C. J., & John, O. P. (2017). The next big five inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. Journal of Personality and Social Psychology, 113(1), 117–143. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, G., Gangl, K., Van Prooijen, J.-W., Van Lange, P. A. M., & Mosso, C. O. (2020). Enhancing feelings of security: How institutional trust promotes interpersonal trust. PLoS ONE, 15(9), e0237934. [Google Scholar] [CrossRef] [PubMed]
- Spearman, C. (1961). “General intelligence” objectively determined and measured. Appleton-Century-Crofts. [Google Scholar]
- Stokel-Walker, C., & Van Noorden, R. (2023). What ChatGPT and generative AI mean for science. Nature, 614, 214–216. [Google Scholar] [CrossRef]
- Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Pearson Education. [Google Scholar]
- Thanetsunthorn, N., & Wuthisatian, R. (2019). Understanding trust across cultures: An empirical investigation. Review of International Business and Strategy, 29(4), 286–314. [Google Scholar] [CrossRef]
- The Week. (2022, October 19). UK’s COVID timeline: Key dates in the pandemic. The Week. Available online: https://theweek.com/uk-news/107044/uk-coronavirus-timeline (accessed on 8 June 2024).
- Tyler, T. R. (1990). Why people obey the law. Yale University Press. [Google Scholar]
- Ulmer, R. R., Sellnow, T. L., & Seeger, M. W. (2015). Effective crisis communication: Moving from crisis to opportunity (3rd ed.). SAGE. [Google Scholar]
- Uslaner, E. M. (2002). The Moral Foundations of Trust. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Verboord, M. (2024). Trust repertoires and the reception of institutional responses to the COVID-19 crisis in Europe: A latent class analysis. International Journal of Comparative Sociology, 65(6), 711–730. [Google Scholar] [CrossRef]
- Weinberg, J. (2022). Trust, governance, and the COVID-19 pandemic: An explainer using longitudinal data from the United Kingdom. The Political Quarterly, 93(2), 316–325. [Google Scholar] [CrossRef]
- Yamagishi, T., & Yamagishi, M. (1994). Trust and commitment in the United States and Japan. Motivation and Emotion, 18(2), 129–166. [Google Scholar] [CrossRef]
- Züger, T., & Asghari, H. (2023). AI for the public. How public interest theory shifts the discourse on AI. AI & SOCIETY, 38(2), 815–828. [Google Scholar] [CrossRef]
Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | |||||||
---|---|---|---|---|---|---|---|---|---|
Component | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % |
1 | 4.137 | 31.825 | 31.825 | 4.137 | 31.825 | 31.825 | 2.832 | 21.788 | 21.788 |
2 | 1.779 | 13.685 | 45.510 | 1.779 | 13.685 | 45.510 | 2.317 | 17.820 | 39.608 |
3 | 1.307 | 10.051 | 55.561 | 1.307 | 10.051 | 55.561 | 2.074 | 15.954 | 55.562 |
4 | 0.855 | 6.578 | 62.139 | ||||||
5 | 0.705 | 5.423 | 67.562 | ||||||
6 | 0.644 | 4.956 | 72.518 | ||||||
7 | 0.595 | 4.575 | 77.093 | ||||||
8 | 0.559 | 4.303 | 81.396 | ||||||
9 | 0.554 | 4.264 | 85.660 | ||||||
10 | 0.514 | 3.958 | 89.618 | ||||||
11 | 0.487 | 3.747 | 93.365 | ||||||
12 | 0.446 | 3.431 | 96.796 | ||||||
13 | 0.417 | 3.204 | 100.000 |
Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | |||||||
---|---|---|---|---|---|---|---|---|---|
Component | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % |
1 | 4.093 | 31.483 | 31.483 | 4.093 | 31.483 | 31.483 | 2.817 | 21.666 | 21.666 |
2 | 1.814 | 13.955 | 45.438 | 1.814 | 13.955 | 45.438 | 2.308 | 17.754 | 39.420 |
3 | 1.264 | 9.723 | 55.161 | 1.264 | 9.723 | 55.161 | 2.046 | 15.741 | 55.161 |
4 | 0.830 | 6.381 | 61.542 | ||||||
5 | 0.704 | 5.412 | 66.954 | ||||||
6 | 0.672 | 5.171 | 72.125 | ||||||
7 | 0.641 | 4.933 | 77.058 | ||||||
8 | 0.576 | 4.430 | 81.488 | ||||||
9 | 0.537 | 4.128 | 85.616 | ||||||
10 | 0.518 | 3.986 | 89.602 | ||||||
11 | 0.491 | 3.773 | 93.375 | ||||||
12 | 0.436 | 3.355 | 96.730 | ||||||
13 | 0.425 | 3.270 | 100.000 |
2022 Components | 2023 Components | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | |
NHS trust | 0.071 | 0.038 | 0.720 | 0.020 | 0.089 | 0.670 |
Government trust | 0.089 | 0.632 | 0.149 | 0.150 | 0.628 | 0.170 |
Academics trust | 0.125 | 0.081 | 0.747 | 0.133 | 0.030 | 0.743 |
Social media companies trust | 0.152 | 0.724 | −0.008 | 0.136 | 0.729 | 0.008 |
Big technology companies trust | 0.132 | 0.721 | 0.229 | 0.103 | 0.661 | 0.295 |
Utility providers trust | 0.121 | 0.690 | 0.187 | 0.115 | 0.708 | 0.228 |
Regulators trust | 0.120 | 0.389 | 0.546 | 0.083 | 0.333 | 0.598 |
Pharmaceutical researchers trust | 0.104 | 0.282 | 0.683 | 0.107 | 0.277 | 0.624 |
AI’s overall impact | 0.728 | 0.193 | 0.089 | 0.748 | 0.197 | 0.088 |
AI’s impact on fair treatment | 0.748 | 0.249 | 0.014 | 0.728 | 0.313 | −0.018 |
AI’s impact on daily tasks | 0.735 | −0.029 | 0.229 | 0.752 | −0.041 | 0.233 |
AI’s impact on job opportunities | 0.721 | 0.240 | −0.051 | 0.687 | 0.332 | −0.121 |
AI’s impact on healthcare | 0.758 | 0.001 | 0.246 | 0.768 | −0.025 | 0.233 |
Item | Latent Factor | 2022 Loading | 2023 Loading |
---|---|---|---|
AI’s overall impact | AI_TRUST | 0.372 | 0.415 |
AI’s impact on fair treatment | AI_TRUST | 0.723 | 0.756 |
AI’s impact on daily tasks | AI_TRUST | 0.787 | 0.760 |
AI’s impact on job opportunities | AI_TRUST | 0.693 | 0.692 |
AI’s impact on healthcare | AI_TRUST | 0.739 | 0.732 |
Government trust | CIVIC_TRUST | 0.479 | 0.499 |
Social media companies trust | CIVIC_TRUST | 0.591 | 0.577 |
Big technology companies trust | CIVIC_TRUST | 0.717 | 0.698 |
Utility providers trust | CIVIC_TRUST | 0.644 | 0.639 |
NHS trust | HEALTH_TRUST | 0.620 | 0.535 |
Academics trust | HEALTH_TRUST | 0.023 | 0.535 |
Regulators trust | HEALTH_TRUST | 0.020 | 0.598 |
Pharmaceutical researchers trust | HEALTH_TRUST | 0.036 | 0.612 |
Latent Variable | Group 2023 vs. 2022 Estimate | SE | Z | p-Value | 95% CI | Interpretation |
---|---|---|---|---|---|---|
AI_TRUST | −0.246 | 0.626 | −0.393 | 0.695 | [−1.472, 0.981] | No significant difference |
CIVIC_TRUST | 0.493 | 0.053 | 9.254 | <0.001 | [0.389, 0.598] | Significantly higher in 2023 |
HEALTH_TRUST | 0.618 | 0.06 | 10.366 | <0.001 | [0.501, 0.735] | Significantly higher in 2023 |
2022 | 2023 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Classes | AIC | BIC | Entropy | Smallest n | BLRT (p) | AIC | BIC | Entropy | Smallest n | BLRT (p) |
Model A (equal variances; covariances fixed to zero) | 1 | 27,448.43 | 27,484.90 | 1.00 | 1.00 | - | 30,011.04 | 30,048.04 | 1.00 | 1.00 | - |
2 | 24,512.17 | 24,572.95 | 0.77 | 0.35 | 0.01 | 26,878.39 | 26,940.06 | 0.77 | 0.37 | 0.01 | |
3 | 23,264.53 | 23,349.62 | 0.77 | 0.16 | 0.01 | 25,606.16 | 25,692.51 | 0.77 | 0.22 | 0.01 | |
4 | 22,671.98 | 22,781.38 | 0.79 | 0.07 | 0.01 | 24,899.05 | 25,010.06 | 0.81 | 0.06 | 0.01 | |
5 | 22,390.78 | 22,524.49 | 0.77 | 0.04 | 0.01 | 24,608.32 | 24,744.00 | 0.78 | 0.04 | 0.01 | |
6 | 22,309.87 | 22,467.90 | 0.74 | 0.03 | 0.01 | 24,433.38 | 24,593.73 | 0.76 | 0.04 | 0.01 | |
Model B (varying variances; covariances fixed to zero) | 1 | 27,448.43 | 27,484.90 | 1.00 | 1.00 | - | 30,011.04 | 30,048.04 | 1.00 | 1.00 | - |
2 | 24,279.79 | 24,358.81 | 0.76 | 0.38 | 0.01 | 26,589.41 | 26,669.59 | 0.76 | 0.41 | 0.01 | |
3 | 22,951.40 | 23,072.97 | 0.76 | 0.23 | 0.01 | 25,175.97 | 25,299.32 | 0.79 | 0.19 | 0.01 | |
4 | 22,458.00 | 22,622.10 | 0.76 | 0.12 | 0.01 | 24,609.03 | 24,775.55 | 0.82 | 0.05 | 0.01 | |
5 | 22,202.32 | 22,408.98 | 0.77 | 0.04 | 0.01 | 24,262.79 | 24,472.48 | 0.81 | 0.04 | 0.01 | |
6 | 22,119.79 | 22,368.99 | 0.73 | 0.02 | 0.01 | 24,216.01 | 24,468.88 | 0.76 | 0.04 | 0.01 | |
Model C (equal variances; equal covariances) | 1 | 22,451.13 | 22,505.84 | 1.00 | 1.00 | - | 24,751.81 | 24,807.32 | 1.00 | 1.00 | - |
2 | 22,221.30 | 22,300.32 | 0.82 | 0.07 | 0.01 | 24,317.35 | 24,397.53 | 0.80 | 0.14 | 0.01 | |
3 | 22,216.77 | 22,320.10 | 0.52 | 0.07 | 0.01 | 24,231.12 | 24,335.97 | 0.63 | 0.11 | 0.01 | |
4 | 22,062.20 | 22,189.84 | 0.59 | 0.04 | 0.01 | 24,162.08 | 24,291.59 | 0.64 | 0.06 | 0.01 | |
5 | 21,987.52 | 22,139.47 | 0.59 | 0.03 | 0.01 | 24,049.89 | 24,204.07 | 0.67 | 0.04 | 0.01 | |
6 | 21,991.30 | 22,167.56 | 0.54 | 0.02 | 0.01 | 24,092.08 | 24,270.93 | 0.62 | 0.05 | 0.26 | |
Model D (varying variances; varying covariances) | 1 | 22,451.13 | 22,505.84 | 1.00 | 1.00 | - | 24,751.81 | 24,807.32 | 1.00 | 1.00 | - |
2 | 22,024.65 | 22,140.13 | 0.48 | 0.20 | 0.01 | 24,150.16 | 24,267.34 | 0.46 | 0.36 | 0.01 | |
3 | 21,990.05 | 22,166.31 | 0.49 | 0.22 | 0.01 | 24,005.88 | 24,184.73 | 0.55 | 0.29 | 0.01 | |
4 | 21,689.14 | 21,926.19 | 0.55 | 0.02 | 0.03 | 23,988.85 | 24,229.38 | 0.43 | 0.16 | 0.01 | |
5 | 21,964.35 | 22,262.18 | 0.45 | 0.13 | 0.01 | 23,889.73 | 24,191.93 | 0.51 | 0.13 | 0.01 | |
6 | 21,909.02 | 22,267.63 | 0.51 | 0.06 | 0.01 | 23,844.33 | 24,208.20 | 0.58 | 0.08 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rose, J.; Reid, J.; Morton, L.; Stomberg-Firestein, S.; Miller, L. Post-Pandemic Surges in Public Trust in the United Kingdom. Behav. Sci. 2025, 15, 1193. https://doi.org/10.3390/bs15091193
Rose J, Reid J, Morton L, Stomberg-Firestein S, Miller L. Post-Pandemic Surges in Public Trust in the United Kingdom. Behavioral Sciences. 2025; 15(9):1193. https://doi.org/10.3390/bs15091193
Chicago/Turabian StyleRose, John, Jason Reid, Lisa Morton, Sasha Stomberg-Firestein, and Lisa Miller. 2025. "Post-Pandemic Surges in Public Trust in the United Kingdom" Behavioral Sciences 15, no. 9: 1193. https://doi.org/10.3390/bs15091193
APA StyleRose, J., Reid, J., Morton, L., Stomberg-Firestein, S., & Miller, L. (2025). Post-Pandemic Surges in Public Trust in the United Kingdom. Behavioral Sciences, 15(9), 1193. https://doi.org/10.3390/bs15091193