Losing Track of Time on TikTok? An Experimental Study of Short Video Users’ Time Distortion
Abstract
1. Introduction
2. Literature Review
2.1. Problematic Short Video Watching
2.2. Time Perception and Time Distortion
2.3. Problematic Short Video Watching and Time Distortion
2.4. The Present Study
- (1)
- How do short video users estimate time for experimental tasks (short video watching and article reading) with long and short durations, as well as weekly short video use?
- (2)
- What is the relationship between PSVW and time distortion in experimental tasks (short video watching and article reading) and weekly short video use?
- (3)
- What is the relationship between weekly short video use and time distortion in experimental tasks (short video watching and article reading) and weekly short video use?
3. Method
3.1. Participants
3.2. Experimental Design
3.3. Data Collection
3.4. Measures
3.4.1. Estimated-to-Actual Time Ratio (TE/TA) for Experimental Tasks
3.4.2. Estimated-to-Actual Time Ratio (TE/TA) for Weekly Short Video Use
3.4.3. Problematic Short Video Usage Assessment Questionnaire for Adolescents
3.5. Data Analysis
4. Results
4.1. Descriptives and Correlations
4.2. Time Distortion in Experimental Tasks and Weekly Short Video Use
4.3. Relationship Between PSVW and Time Distortion
4.4. Relationship Between Weekly Short Video Use and Time Distortion
5. Discussion
5.1. Summary of the Findings
5.2. Theoretical and Practical Implications
5.3. Limitations
5.4. Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allman, M. J., Teki, S., Griffiths, T. D., & Meck, W. H. (2014). Properties of the internal clock: First- and second-order principles of subjective time. Annual Review of Psychology, 65, 743–771. [Google Scholar] [CrossRef]
- Bisson, N., Tobin, S., & Grondin, S. (2009). Remembering the duration of joyful and sad musical excerpts: Assessment with three estimation methods. NeuroQuantology, 7, 46–57. [Google Scholar] [CrossRef]
- Block, R. A. (1990). Models of psychological time. In R. A. Block (Ed.), Cognitive models of psychological time (pp. 1–35). Lawrence Erlbaum Associates. [Google Scholar]
- Block, R. A., Hancock, P. A., & Zakay, D. (2010). How cognitive load affects duration judgments: A meta-analytic review. Acta Psychologica, 134(3), 330–343. [Google Scholar] [CrossRef] [PubMed]
- Brand, M., Wegmann, E., Stark, R., Müller, A., Wölfling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience & Biobehavioral Reviews, 104, 1–10. [Google Scholar] [CrossRef]
- Brown, S. W. (2008). Time and attention: Review of the literature. In S. Grondin (Ed.), Psychology of time (pp. 111–138). Emerald Group Publishing Limited. [Google Scholar]
- Brown, S. W., & Boltz, M. G. (2002). Attentional processes in time perception: Effects of mental workload and event structure. Journal of Experimental Psychology: Human Perception and Performance, 28(3), 600–615. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, G., & Macdonald, R. (2010). The effects of music on time perception and performance of a driving game. Scandinavian Journal of Psychology, 51(6), 455–464. [Google Scholar] [CrossRef]
- Cervigón-Carrasco, V., Ballester-Arnal, R., Billieux, J., Gil-Juliá, B., Giménez-García, C., & Castro-Calvo, J. (2023). Distortions in time perception related to videogames, pornography, and TV series exposure: An experimental study in three independent samples. Journal of Behavioral Addictions, 12(4), 938–952. [Google Scholar] [CrossRef]
- Chen, Y., Li, M., Guo, F., & Wang, X. (2023). The effect of short video addiction on users’ attention. Behaviour & Information Technology, 42(16), 2893–2910. [Google Scholar] [CrossRef]
- Chinchanachokchai, S., Duff, B. R. L., & Sar, S. (2015). The effect of multitasking on time perception, enjoyment, and ad evaluation. Computers in Human Behavior, 45, 185–191. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper & Row. [Google Scholar]
- Cui, X., Tian, Y., Zhang, L., Chen, Y., Bai, Y., Li, D., Liu, J., Gable, P., & Yin, H. (2023). The role of valence, arousal, stimulus type, and temporal paradigm in the effect of emotion on time perception: A meta-analysis. Psychonomic Bulletin & Review, 30(1), 1–21. [Google Scholar]
- Davis, R. A. (2001). A cognitive-behavioral model of pathological internet use. Computers in Human Behavior, 17(2), 187–195. [Google Scholar] [CrossRef]
- Flayelle, M., Brevers, D., King, D. L., Maurage, P., Perales, J. C., & Billieux, J. (2023). A taxonomy of technology design features that promote potentially addictive online behaviours. Nature Reviews Psychology, 2(3), 136–150. [Google Scholar] [CrossRef]
- Forte, G., Favieri, F., Tedeschi, D., & Casagrande, M. (2021). Binge-watching: Development and validation of the binge-watching addiction questionnaire. Behavioral Sciences, 11(2), 27. [Google Scholar] [CrossRef]
- Fraisse, P. (1984). Perception and estimation of time. Annual Review of Psychology, 35(1), 1–36. [Google Scholar] [CrossRef]
- Graham, R. J. (1981). The role of perception of time in consumer research. Journal of Consumer Research, 7(4), 335–342. [Google Scholar] [CrossRef]
- Griffiths, M. D. (2009). A ‘componets’ model of addiction within a biopsychosocial framework. Journal of Substance Use, 10, 191–197. [Google Scholar] [CrossRef]
- Grondin, S., & Plourde, M. (2007). Judging multi-minute intervals retrospectively. Quarterly Journal of Experimental Psychology, 60, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Huang, X. T., Deng, L., & Zhang, Y. H. (2004). Experimental research on retrospective time memory. Studies of Psychology and Behavior, 2(4), 561–566. [Google Scholar]
- Jiang, Y. Z. (2018). Development of problematic mobile social media usage assessment questionnaire for adolescents. Psychology: Techniques and Applications, 6(10), 613–621. [Google Scholar] [CrossRef]
- Kircaburun, K., Yurdagül, C., Kuss, D., Emirtekin, E., & Griffiths, M. D. (2021). Problematic mukbang watching and its relationship to disordered eating and internet addiction: A pilot study among emerging adult mukbang watchers. International Journal of Mental Health and Addiction, 19, 2160–2169. [Google Scholar] [CrossRef]
- Koole, S., & Spijker, M. (2000). Overcoming the planning fallacy through willpower: Effects of implementation intentions on actual and predicted task-completion times. European Journal of Social Psychology, 30, 873–888. [Google Scholar] [CrossRef]
- Liu, J., & Li, H. (2020). How individuals perceive time in an anxious state: The mediating effect of attentional bias. Emotion, 20(5), 761–772. [Google Scholar] [CrossRef] [PubMed]
- Meissner, K., & Wittmann, M. (2011). Body signals, cardiac awareness, and the perception of time. Biological Psychology, 86, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Meteier, Q., Délèze, A., Chappuis, S., Witowska, J., Wittmann, M., Ogden, R., & Martin-Sölch, C. (2025). Effect of task nature during short digital deprivation on time perception and psychophysiological state. Scientific Reports, 15(1), 10469. [Google Scholar] [CrossRef]
- Mou, X., Xu, F., & Du, J. T. (2021). Examining the factors influencing college students’ continuance intention to use short-form video APP. Aslib Journal of Information Management, 73(6), 992–1013. [Google Scholar] [CrossRef]
- Nuyens, F. M., Kuss, D. J., Lopez-Fernandez, O., & Griffiths, M. D. (2020). The potential interaction between time perception and gaming: A narrative review. International Journal of Mental Health and Addiction, 18, 1226–1246. [Google Scholar] [CrossRef]
- Ornstein, R. E. (1969). On the experience of time. Penguin. [Google Scholar]
- Paasche, C., Weibel, S., Wittmann, M., & Lalanne, L. (2019). Time perception and impulsivity: A proposed relationship in addictive disorders. Neuroscience & Biobehavioral Reviews, 106, 182–201. [Google Scholar] [CrossRef]
- Pezzo, M. V., Litman, J. A., & Pezzo, S. P. (2006). On the distinc-tion between yuppies and hippies: Individual differences in prediction biases for planning future tasks. Personality and In-dividual Differences, 41, 1359–1371. [Google Scholar] [CrossRef]
- Poynter, W. D. (1983). Duration judgment and the segmentation of experience. Memory & Cognition, 11(1), 77–82. [Google Scholar] [CrossRef]
- Qin, Y., Omar, B., & Musetti, A. (2022). The addiction behavior of short video app TikTok: The information quality and system quality perspective. Frontiers in Psychology, 13, 932805. [Google Scholar] [CrossRef]
- Rau, P. L. P., Peng, S. Y., & Yang, C. C. (2006). Time distortion for expert and novice online game players. CyberPsychology & Behavior, 9(4), 396–403. [Google Scholar]
- Rivero, T. S., Covre, P., Reyes, M. B., & Bueno, O. F. A. (2013). Effects of chronic video game use on time perception: Differences between sub- and multi-second intervals. Cyberpsychology, Behavior, and Social Networking, 16(2), 140–144. [Google Scholar] [CrossRef] [PubMed]
- Roy, M. M., & Christenfeld, N. J. S. (2007). Bias in memory predicts bias in estimation of future task duration. Memory & Cognition, 35, 557–564. [Google Scholar]
- Sucala, M., Scheckner, B., & David, D. (2011). Psychological time: Interval length judgments and subjective passage of time judgments. Current Psychology Letters Behaviour Brain & Cognition, 26(2), 1–9. [Google Scholar] [CrossRef]
- Thomas, E. A. C., & Weaver, W. B. (1975). Cognitive processing and time perception. Perception & Psychophysics, 17(4), 363–367. [Google Scholar]
- Tobin, S., Bisson, N., & Grondin, S. (2010). An ecological approach to prospective and retrospective timing of long durations: A study involving gamers. PLoS ONE, 5(2), e9271. [Google Scholar] [CrossRef]
- Tobin, S., & Grondin, S. (2009). Video games and the perception of very long durations by adolescents. Computers in Human Behavior, 25(2), 554–559. [Google Scholar] [CrossRef]
- Turel, O., Brevers, D., & Bechara, A. (2018). Time distortion when users at-risk for social media addiction engage in non-social media tasks. Journal of Psychiatric Research, 97, 84–88. [Google Scholar] [CrossRef]
- Watt, J. D. (1991). Effect of boredom proneness on time perception. Psychological Reports, 69(1), 323–327. [Google Scholar] [CrossRef]
- Wearden, J. H. (2005). The wrong tree: Time perception and time experience in the elderly. Measuring the Mind: Speed, Age, and Control, 6, 137–158. [Google Scholar]
- Wearden, J. H., Williams, E. A., & Jones, L. A. (2017). What speeds up the internal clock? Effects of clicks and flicker on duration judgements and reaction time. Quarterly Journal of Experimental Psychology, 70(3), 488–503. [Google Scholar] [CrossRef] [PubMed]
- Wood, R. T. A., & Griffiths, M. D. (2007). Time loss whilst playing video games: Is there a relationship to addictive behaviors? International Journal of Mental Health and Addiction, 5(2), 141–149. [Google Scholar] [CrossRef]
- Wood, R. T. A., Griffiths, M. D., & Parke, A. (2007). Experience of time loss among videogame players: An empirical study. Cyberpsychology & Behavior, 10(1), 38–44. [Google Scholar] [CrossRef]
- Xu, S., & David, P. (2018). Distortions in time perceptions during task switching. Computers in Human Behavior, 80, 362–369. [Google Scholar] [CrossRef]
- Yan, Z., Yang, Z., & Griffiths, M. D. (2023). “Danmu” preference, problematic online video watching, loneliness and personality: An eye-tracking study and survey study. BMC Psychiatry, 23, 523. [Google Scholar] [CrossRef]
- Yang, Y., Liu, R. D., Ding, Y., Lin, J., Ding, Z., & Yang, X. (2024). Time distortion for short video users. Computers in Human Behavior, 151, 108009. [Google Scholar] [CrossRef]
- Yang, Z., Griffiths, M. D., Yan, Z., & Xu, W. (2021). Can watching online videos be addictive? A qualitative exploration of online video watching among Chinese young adults. International Journal of Environmental Research and Public Health, 18(14), 7247. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. H., Wu, Y. T., Wu, Y. F., Chen, M. Y., & Ye, J. N. (2022). Effects of short video addiction on the motivation and well-being of Chinese vocational college students. Frontiers in Public Health, 10, 847672. [Google Scholar] [CrossRef]
- Young, K. S. (1998). Internet addiction: The emergence of a new clinical disorder. Cyberpsychology & Behavior, 1(3), 237–244. [Google Scholar] [CrossRef]
- Zakay, D. (1989). Subjective time and attentional resource allocation: An integrated model of time estimation. Advances in Psychology, 59, 365–397. [Google Scholar] [CrossRef]
- Zakay, D. (2014). Psychological time as information: The case of boredom. Frontiers in Psychology, 5, 917. [Google Scholar] [CrossRef] [PubMed]
- Zakay, D., & Block, R. A. (1995). An attentional-gate model of prospective time estimation. In M. Richelle, V. D. Keyser, G. d’Ydewalle, & A. Vandierendonck (Eds.), Time and the dynamic control of behavior (pp. 167–178). Universite Liège. [Google Scholar]
- Zhang, X., Wu, Y., & Liu, S. (2019). Exploring short video application addiction: Socio-technical and attachment perspectives. Telematics and Informatics, 42, 101243. [Google Scholar] [CrossRef]
M | SD | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
Problematic short video usage | 64.946 | 10.788 | 1 | |||||
TE/TA (short video) | 1.091 | 0.402 | −0.038 | 1 | ||||
TE/TA (reading) | 1.019 | 0.456 | −0.005 | 0.395 ** | 1 | |||
Estimated weekly use (in minutes) | 937.16 | 677.202 | −0.087 | −0.055 | 0.26 | 1 | ||
Actual weekly use (in minutes) | 778.55 | 553.849 | 0.106 | −0.102 | 0.091 | 0.596 ** | 1 | |
TE/TA (weekly use) | 1.535 | 1.212 | −0.114 | 0.091 | 0.034 | 0.201 | −0.398 ** | 1 |
Task Type | Time Duration | TE/TA (M ± SD) | t | p | 95% CI |
---|---|---|---|---|---|
Short video | 5 min 23 s | 1.206 ± 0.443 | 2.458 | 0.021 * | [0.034, 0.377] |
Short video | 16 min 9 s | 0.977 ± 0.326 | −0.377 | 0.709 | [−0.150, 0.103] |
Reading | 5 min 23 s | 1.144± 0.514 | 1.487 | 0.149 | [−0.055, 0.344] |
Reading | 16 min 9 s | 0.893 ± 0.357 | −1.587 | 0.124 | [−0.246, 0.031] |
Weekly use | - | 1.535 ± 1.212 | 3.301 | 0.002 ** | [0.210, 0.859] |
Construct | Group | TE/TA (M ± SD) | t | p | 95% CI |
---|---|---|---|---|---|
Estimated weekly use | High-frequency group | 1.804 ± 0.874 | 3.562 | 0.003 ** | [0.320, 1.288] |
Moderate-frequency group | 1.692 ± 1.534 | 2.300 | 0.030 * | [0.072, 1.312] | |
Low-frequency group | 0.993 ± 0.606 | −0.047 | 0.963 | [−0.343, 0.328] | |
Actual weekly use | High-frequency group | 0.971 ± 0.502 | −0.227 | 0.823 | [−0.308, 0.249] |
Moderate-frequency group | 1.233 ± 0.692 | 1.720 | 0.098 | [−0.461, 0.512] | |
Low-frequency group | 2.621 ± 1.701 | 3.693 | 0.002 ** | [0.680, 2.563] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Yan, Z.; Yang, Z. Losing Track of Time on TikTok? An Experimental Study of Short Video Users’ Time Distortion. Behav. Sci. 2025, 15, 930. https://doi.org/10.3390/bs15070930
Jiang Y, Yan Z, Yang Z. Losing Track of Time on TikTok? An Experimental Study of Short Video Users’ Time Distortion. Behavioral Sciences. 2025; 15(7):930. https://doi.org/10.3390/bs15070930
Chicago/Turabian StyleJiang, Yaqi, Zhihao Yan, and Zeyang Yang. 2025. "Losing Track of Time on TikTok? An Experimental Study of Short Video Users’ Time Distortion" Behavioral Sciences 15, no. 7: 930. https://doi.org/10.3390/bs15070930
APA StyleJiang, Y., Yan, Z., & Yang, Z. (2025). Losing Track of Time on TikTok? An Experimental Study of Short Video Users’ Time Distortion. Behavioral Sciences, 15(7), 930. https://doi.org/10.3390/bs15070930