Unveiling the Layers of Borderline Personality Disorder: A Systematic Review of Clinical Subtypes
Abstract
1. Introduction
1.1. Borderline Heterogeneity: Two Approaches
1.2. Borderline Heterogeneity Through BPD Dimensions
1.3. BPD Theoretical Subtypes
1.4. Subtypes Across Development and Clinical Characteristics
1.4.1. Subtypes in Adolescents
1.4.2. Subtypes in Adults Based on Comorbidity
1.4.3. Subtypes in Adults Based on Severity
1.5. Aim and Scope
2. Methods
2.1. Eligibility Criteria
- used a person-centred, data-driven cluster analysis approach (traditional or probabilistic);
- examined subtypes of BPD defined according to DSM diagnostic criteria;
- included adult samples (mean age ≥18 years);
- enrolled a minimum of 40 participants.
- relied solely on clinical judgment or variable-centred statistical techniques (e.g., factor analysis);
- focused on non-DSM constructs or non-BPD populations (e.g., adolescents, trait-based samples, general personality pathology);
- had sample sizes smaller than 40 participants;
- were review articles, qualitative studies, opinion pieces, or case reports.
2.2. Search Strategy
2.3. Study Quality Assessment
2.4. Classification and Interpretation of Clustering Methods
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Methods Used in Studies of BPD Subtypes
3.4. Basis for Subtyping and Number of Subtypes
3.4.1. Subtyping Based on DSM Criteria
3.4.2. Subtyping Based on Prominent Borderline Traits
4. Discussion
4.1. Summary of Key Findings
4.2. Understanding BPD Subtyping on the Dimensions of Internalization-Externalization and Severity
4.3. Targeted Treatment of BPD Subtypes
4.4. Methodological Considerations
4.5. Synthesis of Objectives and Implications
5. Conclusions
6. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DSM | Diagnostic Statistical Manual of Mental Disorders |
BPD | Borderline Personality Disorder |
HiTOP | Hierarchical Taxonomy of Psychopathology |
ADHD | Attention Deficit/Hyperactivity Disorder |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
LCA | Latent Class Analysis |
LPA | Latent Profile Analysis |
Appendix A
ITEM | (Barrash et al., 1983) | (Leihener et al., 2003) | (Hoermann et al., 2005) | (Ryan & Shean, 2007) | (Critchfield et al., 2008) | (Lenzenweger et al., 2008) | (Digre et al., 2009) | (Newhill et al., 2010) | (Hallquist & Pilkonis, 2012) | (Soloff & Chiappetta, 2012) | (Andión et al., 2013) | (Salzer et al., 2013) | (Wright et al., 2013) | (Frias et al., 2017) | (Jaeger et al., 2017) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clearly stated objectives | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Appropriate study design | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Sample size justification | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
Population clearly defined | N | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Representative sample | N | Y | Y | N | Y | Y | Y | Y | Y | Y | N | Y | N | Y | N |
Proper selection process | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
Address non-responders | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N |
Appropriate measures | Y | Y | Y | Y | Y | Y | D | Y | Y | Y | Y | Y | Y | Y | Y |
Reliable measures | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Precision estimates | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y |
Sufficient methods description | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Data adequately described | N | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y |
Non-responders information | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N |
Results internally consistent | D | Y | Y | D | Y | Y | D | Y | Y | Y | Y | Y | Y | Y | Y |
Comprehensive description of results | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Results justify conclusions | Y | Y | Y | Y | Y | Y | D | Y | Y | Y | Y | Y | Y | Y | Y |
Limitations | N | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | Y |
Conflict of interest | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | Y |
Ethics approval | D | D | D | D | D | D | D | D | D | Y | Y | D | D | D | Y |
ITEM | (Rufino et al., 2017) | (Sleuwaegen et al., 2017) | (Smits et al., 2017) | (Gamache et al., 2018) | (McMain et al., 2018) | (Sleuwaegen et al., 2018) | (Johnson & Levy, 2020) | (Magni et al., 2021) | (Gamache et al., 2021) | (Black et al., 2022) | (Oladottir et al., 2022) | (Aleva et al., 2023) | (Antoine et al., 2023) | (Hanegraaf et al., 2023) | |
Clearly stated objectives | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Appropriate study design | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Sample size justification | N | N | N | N | N | N | N | Y | N | N | N | N | N | Y | |
Population clearly defined | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Representative sample | Y | Y | Y | Y | Y | Y | N | Y | N | Y | Y | Y | Y | N | |
Proper selection process | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
Address non-responders | N | N | N | D | N | N | N | N | N | N | N | N | N | N | |
Appropriate measures | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | D | |
Reliable measures | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Precision estimates | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Sufficient methods description | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Data adequately described | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | |
Non-responders information | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
Results internally consistent | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | D | Y | |
Comprehensive description of results | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Results justify conclusions | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Limitations | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Conflict of interest | N | Y | Y | Y | N | N | N | Y | Y | Y | N | Y | Y | Y | |
Ethics approval | Y | Y | Y | D | D | Y | Y | D | Y | Y | D | Y | Y | Y |
References
- Alden, L. E., Wiggins, J. S., & Pincus, A. L. (1990). Construction of circumplex scales for the Inventory of Interpersonal Problems. Journal of Personality Assessment, 55(3–4), 521–536. [Google Scholar] [CrossRef] [PubMed]
- Aleva, A., Betts, J. K., Cotton, S. M., Laceulle, O. M., Hessels, C. J., van Aken, M. A. G., Nicol, K., & Chanen, A. M. (2023). Emotion dysregulation in young people with borderline personality disorder: One pattern or distinct subgroups? Personality Disorders: Theory, Research, and Treatment, 14(5), 567–578. [Google Scholar] [CrossRef]
- American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed.). American Psychiatric Association. [Google Scholar]
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Association. [Google Scholar] [CrossRef]
- Andión, Ó., Ferrer, M., Calvo, N., Gancedo, B., Barral, C., Di Genova, A., Arbos, M. A., Torrubia, R., & Casas, M. (2013). Exploring the clinical validity of borderline personality disorder components. Comprehensive Psychiatry, 54(1), 34–40. [Google Scholar] [CrossRef] [PubMed]
- Andión, Ó., Ferrer, M., Gancedo, B., Calvo, N., Barral, C., Torrubia, R., & Casas, M. (2011). Confirmatory factor analysis of borderline personality disorder symptoms based on two different interviews: The structured clinical interview for DSM-IV axis II disorder and the revised diagnostic interview for borderlines. Psychiatry Research, 190(2–3), 304–308. [Google Scholar] [CrossRef]
- Andrulonis, P. A., Glueck, B. C., Stroebel, C. F., & Vogel, N. G. (1982). Borderline personality subcategories. The Journal of Nervous and Mental Disease, 170(11), 670–679. [Google Scholar] [CrossRef]
- Antoine, S. M., Fredborg, B. K., Streiner, D., Guimond, T., Dixon-Gordon, K. L., Chapman, A. L., Kuo, J., Links, P., & McMain, S. (2023). Subgroups of borderline personality disorder: A latent class analysis. Psychiatry Research, 323, 115131. [Google Scholar] [CrossRef]
- Asnaani, A., Chelminski, I., Young, D., & Zimmerman, M. (2007). Heterogeneity of borderline personality disorder: Do the number of criteria met make a difference? Journal of Personality Disorders, 21(6), 615–625. [Google Scholar] [CrossRef]
- Auffret, A., Lenoir, P., Gauvreau, C., & Brunault, P. (2017). Trouble de personnalité limite à l’adolescence: Quelle réalité clinique? Neuropsychiatrie de l’Enfance et de l’Adolescence, 65(6), 368–380. [Google Scholar] [CrossRef]
- Bacher, J., Wenzig, K., & Vogler, M. (2004). SPSS two-step cluster–A first evaluation. In Work and discussion paper (pp. 1–30). Department of Sociology, Social Science Institute, Friedrich-Alexander-University. [Google Scholar]
- Barrash, J., Kroll, J., Carey, K., & Sines, L. (1983). Discriminating borderline disorder from other personality disorders: Cluster analysis of the diagnostic interview for borderlines. Archives of General Psychiatry, 40(12), 1297–1302. [Google Scholar] [CrossRef]
- Beck, A. T., Steer, R. A., Ball, R., & Ranieri, W. F. (1996). Comparison of Beck Depression Inventories-IA and-II in psychiatric outpatients. Journal of Personality Assessment, 67(3), 588–597. [Google Scholar] [CrossRef]
- Bernstein, E. M., & Putnam, F. W. (1986). Development, reliability, and validity of a dissociation scale. The Journal of Nervous and Mental Disease, 174(12), 727–735. [Google Scholar] [CrossRef] [PubMed]
- Black, D. W., Blum, N., & Allen, J. (2022). Factor structure of borderline personality disorder and response to systems training for emotional predictability and problem solving. Personality and Mental Health, 16(3), 263–275. [Google Scholar] [CrossRef] [PubMed]
- Blatt, S. J., & Auerbach, J. S. (1988). Differential cognitive disturbances in three types of borderline patients. Journal of Personality Disorders, 2(3), 198–211. [Google Scholar] [CrossRef]
- Blatt, S. J., Ford, R. Q., Berman, W., Cook, B., & Meyer, R. (1988). The assessment of change during the intensive treatment of borderline and schizophrenic young adults. Psychoanalytic Psychology, 5(2), 127–158. [Google Scholar] [CrossRef]
- Bohus, M., Limberger, M. F., Frank, U., Chapman, A. L., Kühler, T., & Stieglitz, R. D. (2007). Psychometric properties of the borderline symptom list (BSL). Psychopathology, 40(2), 126–132. [Google Scholar] [CrossRef]
- Bornovalova, M. A., Levy, R., Gratz, K. L., & Lejuez, C. W. (2010). Understanding the heterogeneity of BPD symptoms through latent class analysis: Initial results and clinical correlates among inner-city substance users. Psychological Assessment, 22(2), 233–245. [Google Scholar] [CrossRef]
- Bradley, R., Zittel Conklin, C., & Westen, D. (2005). The borderline personality diagnosis in adolescents: Gender differences and subtypes. Journal of Child Psychology and Psychiatry, 46(9), 1006–1019. [Google Scholar] [CrossRef]
- Calvo, N., Andión, Ó., Gancedo, B., Ferrer, M., Barral, C., Di Genova, A., Torrubia, R., & Casas, M. (2012). Borderline Personality Disorder (BPD) diagnosis with the self-report Personality Diagnostic Questionnaire–4+(PDQ-4+): Confirmation of the 3-factor structure. Actas Espanolas de Psiquiatria, 40(2), 57–62. [Google Scholar] [PubMed]
- Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal or Personality and Social Psychology, 67(2), 319. [Google Scholar] [CrossRef]
- Cavelti, M., Lerch, S., Ghinea, D., Fischer-Waldschmidt, G., Resch, F., Koenig, J., & Kaess, M. (2021). Heterogeneity of borderline personality disorder symptoms in help-seeking adolescents. Borderline Personality Disorder and Emotion Dysregulation, 8(1), 9. [Google Scholar] [CrossRef]
- Choi-Kain, L. W., Albert, E. B., & Gunderson, J. G. (2016). Evidence-based treatments for borderline personality disorder: Implementation, integration, and stepped care. Harvard Review of Psychiatry, 24(5), 342–356. [Google Scholar] [CrossRef] [PubMed]
- Clarkin, J. F., Foelsch, P. A., & Kernberg, O. F. (2001). The inventory of personality organization. Weill College of Medicine at Cornell University. [Google Scholar]
- Clifton, A., & Pilkonis, P. A. (2007). Evidence for a single latent class of diagnostic and statistical manual of mental disorders borderline personality pathology. Comprehensive Psychiatry, 48(1), 70–78. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C. P., & Sherwood, V. R. (1996). Becoming a constant object in psychotherapy with the borderline patient. Jason Aronson. [Google Scholar]
- Conklin, C. Z., Bradley, R., & Westen, D. (2006). Affect regulation in borderline personality disorder. The Journal of Nervous and Mental Disease, 194(2), 69–77. [Google Scholar] [CrossRef] [PubMed]
- Costa, P. T., & McCrae, R. R. (1985). The NEO personality Inventory manual. Psychological Assessment Resources. [Google Scholar]
- Critchfield, K. L., Clarkin, J. F., Levy, K. N., & Kernberg, O. F. (2008). Organization of co-occurring Axis II features in borderline personality disorder. British Journal of Clinical Psychology, 47(2), 185–200. [Google Scholar] [CrossRef]
- Dalmaijer, E. S., Nord, C. L., & Astle, D. E. (2022). Statistical power for cluster analysis. BMC Bioinformatics, 23(1), 205. [Google Scholar] [CrossRef]
- Dammann, G., Rudaz, M., Benecke, C., Riemenschneider, A., Walter, M., Pfaltz, M. C., Küchenhoff, J., Clarkin, J. F., & Gremaud-Heitz, D. J. (2020). Facial affective behavior in borderline personality disorder indicating two different clusters and their influence on inpatient treatment outcome: A preliminary study. Frontiers in Psychology, 11, 1658. [Google Scholar]
- Dévieux, J. G., Malow, R. M., Rosenberg, R., Nair, M., Samuels, D. M., & McMahon, R. (2009). Borderline personality symptoms and human immunodeficiency virus risk in alcohol and other drug abusing adolescent offenders. American Journal of Infectious Diseases, 5(1), 31–39. [Google Scholar] [CrossRef]
- Digre, E. I., Reece, J., Johnson, A. L., & Thomas, R. A. (2009). Treatment response in subtypes of borderline personality disorder. Personality and Mental Health, 3(1), 56–67. [Google Scholar] [CrossRef]
- Downes, M. J., Brennan, M. L., Williams, H. C., & Dean, R. S. (2016). Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open, 6(12), e011458. [Google Scholar] [CrossRef]
- Dreyße, K., Beller, J., Armbrust, M., & Kröger, C. (2020). A hierarchical analysis of the latent trait of borderline personality disorder and its possible clinical implications. Psychiatry Research, 288, 113023. [Google Scholar] [CrossRef]
- Eaton, N. R., Krueger, R. F., Keyes, K. M., Skodol, A. E., Markon, K. E., Grant, B. F., & Hasin, D. S. (2011). Borderline personality disorder co-morbidity: Relationship to the internalizing–externalizing structure of common mental disorders. Psychological Medicine, 41(5), 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Evans, D. E., & Rothbart, M. K. (2007). Developing a model for adult temperament. Journal of Research in Personality, 41(4), 868–888. [Google Scholar] [CrossRef]
- Ferrer, M., Andión, Ó., Matalí, J., Valero, S., Navarro, J. A., Ramos-Quiroga, J. A., Torrubia, R., & Casas, M. (2010). Comorbid attention-deficit/hyperactivity disorder in borderline patients defines an impulsive subtype of borderline personality disorder. Journal of Personality Disorders, 24(6), 812–822. [Google Scholar] [CrossRef] [PubMed]
- First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1997a). Structured clinical interview for DSM-IV Axis I disorders, clinician version (SCID-I). American Psychiatric Press. [Google Scholar]
- First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1997b). Structured clinical interview for DSM-IV personality disorders, (SCID-II). American Psychiatric Press. [Google Scholar]
- Fossati, A., Maffei, C., Bagnato, M., Donati, D., Namia, C., & Novella, L. (1999). Latent structure analysis of DSM-IV borderline personality disorder criteria. Comprehensive Psychiatry, 40(1), 72–79. [Google Scholar] [CrossRef]
- Freyberger, H. J., Spitzer, C., Stieglitz, R.-D., Kuhn, G., Magdeburg, N., & Bernstein-Carlson, E. (1998). Fragebogen zu dissoziativen Symptomen (FDS). Deutsche Adaptation, Reliabilität und Validität der amerikanischen Dissociative Experience Scale (DES) [The Fragebogen (Questionnaire) zu dissoziativen Symptomen (FDS): German adaptation, reliability, and validity of the American Dissociative Experience Scale (DES)]. PPmP: Psychotherapie Psychosomatik Medizinische Psychologie, 48(6), 223–229. [Google Scholar]
- Frias, A., Navarro, S., Palma, C., Farraiols, N., Alagia, F., & Salvador, A. (2017). Defining subtypes of borderline personality disorder based on underlying dimensional personality traits. Personality and Mental Health, 27, 25–30. [Google Scholar]
- Gamache, D., Savard, C., Leclerc, P., & Côté, A. (2019). Introducing a short self-report for the assessment of DSM–5 level of personality functioning for personality disorders: The self and interpersonal functioning scale. Personality Disorders: Theory, Research, and Treatment, 10(5), 438. [Google Scholar] [CrossRef]
- Gamache, D., Savard, C., Leclerc, P., Payant, M., Côté, A., Faucher, J., Lampron, M., & Tremblay, M. (2021). Latent profiles of patients with borderline pathology based on the alternative DSM-5 model for personality disorders. Borderline Personality Disorder and Emotion Dysregulation, 8(1), 4. [Google Scholar] [CrossRef]
- Gamache, D., Savard, C., Lemelin, S., Côté, A., & Villeneuve, É. (2018). Premature termination of psychotherapy in patients with borderline personality disorder: A cluster-analytic study. The Journal of Nervous and Mental Disease, 206(4), 231–238. [Google Scholar] [CrossRef]
- Gamache, D., Savard, C., Lemelin, S., & Villeneuve, E. (2017). Development and validation of the treatment attrition-retention scale for personality disorders. Journal of Personality Disorders, 31(6), 753–773. [Google Scholar] [CrossRef]
- Goodrich, W., & Fullerton, C. (1984). Which borderline patients in residential treatment will run away? Residential Group Care & Treatment, 2(3), 3–14. [Google Scholar] [CrossRef]
- Gratz, K. L., & Roemer, L. (2004). Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the difficulties in emotion regulation scale. Journal of Psychopathology and Behavioral Assessment, 26, 41–54. [Google Scholar] [CrossRef]
- Gunderson, J. G. (2010). Revising the borderline diagnosis for DSM-V: An alternative proposal. Journal of Personality Disorders, 24(6), 694–708. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, J. G., Kolb, J. E., & Austin, V. (1981). The diagnostic interview for borderline patients. The American Journal of Psychiatry, 138(7), 896–903. [Google Scholar] [CrossRef]
- Gustavsson, J. P., Bergman, H., Edman, G., Ekselius, L., Von Knorring, L., & Linder, J. (2000). Swedish universities Scales of Personality (SSP): Construction, internal consistency and normative data. Acta Psychiatrica Scandinavica, 102(3), 217–225. [Google Scholar] [CrossRef]
- Hallquist, M. N., & Pilkonis, P. A. (2012). Refining the phenotype of borderline personality disorder: Diagnostic criteria and beyond. Personality Disorders: Theory, Research, and Treatment, 3(3), 228–246. [Google Scholar] [CrossRef]
- Hanegraaf, L., Paton, B., Hohwy, J., & Verdejo-Garcia, A. (2023). Combining novel trait and neurocognitive frameworks to parse heterogeneity in borderline personality disorder. Journal of Personality, 91(6), 1344–1363. [Google Scholar] [CrossRef]
- Hart, S., Cox, D., & Hare, R. (1995). Manual for the Psychopathy Checklist: Screening Version (PCL: SV). Multi-Health Systems. [Google Scholar]
- Hoermann, S., Clarkin, J. F., Hull, J. W., & Levy, K. N. (2005). The construct of effortful control: An approach to borderline personality disorder heterogeneity. Psychopathology, 38(2), 82–86. [Google Scholar] [CrossRef]
- Horowitz, L. M., Rosenberg, S. E., Baer, B. A., Ureño, G., & Villaseñor, V. S. (1988). Inventory of interpersonal problems: Psychometric properties and clinical applications. Journal of Consulting and Clinical Psychology, 56(6), 885. [Google Scholar] [CrossRef]
- Howard, R., Hasin, D., & Stohl, M. (2021). Substance use disorders and criminal justice contact among those with co-occurring antisocial and borderline personality disorders: Findings from a nationally representative sample. Personality and Mental Health, 15(1), 40–48. [Google Scholar] [CrossRef]
- Jaeger, S., Steinert, T., Uhlmann, C., Flammer, E., Bichescu-Burian, D., & Tschöke, S. (2017). Dissociation in patients with borderline personality disorder in acute inpatient care—A latent profile analysis. Comprehensive Psychiatry, 78, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B. N., & Levy, K. N. (2020). Identifying unstable and empty phenotypes of borderline personality through factor mixture modeling in a large nonclinical sample. Personality Disorders: Theory, Research, and Treatment, 11(2), 141–150. [Google Scholar] [CrossRef]
- Kalpakci, A., Ha, C., & Sharp, C. (2018). Differential relations of executive functtioning to borderline personality disorder presentations in adolescents. Personality and Mental Health, 12(2), 93–106. [Google Scholar] [CrossRef] [PubMed]
- Kent, P., Jensen, R. K., & Kongsted, A. (2014). A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep cluster analysis, latent gold and SNOB. BMC Medical Research Methodology, 14, 113. [Google Scholar] [CrossRef]
- Kinderman, P., & Bentall, R. P. (1996). Internal, personal, and situational attributions questionnaire (IPSAQ) [Database record]. APA PsycTests. [Google Scholar] [CrossRef]
- Kotov, R., Ruggero, C. J., Krueger, R. F., Watson, D., Yuan, Q., & Zimmerman, M. (2011). New dimensions in the quantitative classification of mental illness. Archives of General Psychiatry, 68(10), 1003–1011. [Google Scholar] [CrossRef]
- Krueger, R. F. (1999). The structure of common mental disorders. Archives of General Psychiatry, 56(10), 921–926. [Google Scholar] [CrossRef]
- Krueger, R. F., Hobbs, K. A., Conway, C. C., Dick, D. M., Dretsch, M. N., Eaton, N. R., Forbes, M. K., Forbush, K. T., Keyes, K. M., Latzman, R. D., Michelini, G., Patrick, C. J., Sellbom, M., Slade, T., South, S. C., Sunderland, M., Tackett, J., Waldman, I., Waszczuk, M. A., … HiTOP Utility Workgroup. (2021). Validity and utility of hierarchical taxonomy of psychopathology (HiTOP): II. Externalizing superspectrum. World Psychiatry, 20(2), 171–193. [Google Scholar]
- Landau, S., Leese, M., Stahl, D., & Everitt, B. S. (2011). Cluster analysis. John Wiley & Sons. [Google Scholar] [CrossRef]
- Layden, M. A., Newman, C. F., Freeman, A., & Morse, S. B. (1993). Cognitive therapy of borderline personality disorder. Allyn & Bacon. [Google Scholar]
- Leihener, G., Wagner, A., Haaf, B., Schmidt, C., Lieb, K., Stieglitz, R., & Bohus, M. (2003). Subtype differentiation of patients with borderline personality disorder using a circumplex model of interpersonal behavior. The Jouranl of Nervous and Mental Disease, 191(4), 248–254. [Google Scholar] [CrossRef]
- Lenzenweger, M. F., Clarkin, J. F., Yeomans, F. E., Kernberg, O. F., & Levy, K. N. (2008). Refining the borderline personality disorder phenotype through finite mixture modeling: Implications for classification. Journal of Personality Disorders, 22(4), 313–331. [Google Scholar] [CrossRef]
- Lewis, K., Caputi, P., & Grenyer, B. F. (2012). Borderline personality disorder subtypes: A factor analysis of the DSM-IV criteria. Personality and Mental Health, 6(3), 196–206. [Google Scholar] [CrossRef]
- Lieb, K., Zanarini, M. C., Schmahl, C., Linehan, M. M., & Bohus, M. (2004). Borderline personality disorder. The Lancet, 364(9432), 453–461. [Google Scholar] [CrossRef]
- Linehan, M. M. (1993). Cognitive-behavioral treatment of borderline personality disorder. Guilford Press. [Google Scholar]
- Linehan, M. M., Comtois, K. A., Brown, M. Z., Heard, H. L., & Wagner, A. (2006). Suicide attempt self-injury interview (SASII): Development, reliability, and validity of a scale to assess suicide attempts and intentional self-injury. Psychological Assessment, 18(3), 303. [Google Scholar] [CrossRef] [PubMed]
- Linehan, M. M., Heard, H. L., & Wagner, A. (1989). Parasuicide history interview: Complete assessment of parasuicide behavior. University of Washington. [Google Scholar]
- Livesley, W. J., & Schroeder, M. L. (1991). Dimensions of personality disorder: The DSM-III—R cluster B diagnoses. Journal of Nervous and Mental Disease, 179(6), 317–328. [Google Scholar] [PubMed]
- Loranger, A. W. (1995). International personality disorder examination (IPDE) manual. Cornell Medical Center. [Google Scholar]
- Magni, L. R., Ferrari, C., Barlati, S., Ridolfi, M. E., Prunetti, E., Vanni, G., Bateni, M., Diaferia, G., Macis, A., Meloni, S., Perna, G., Occhialini, G., Vita, A., Rossi, G., & Rossi, R. (2021). Psychopharmacological treatment in borderline personality disorder: A pilot observational study in a real-world setting. Psychiatry Research, 295, 113556. [Google Scholar] [CrossRef]
- Maples, J. L., Carter, N. T., Few, L. R., Crego, C., Gore, W. L., Samuel, D. B., Williamson, R. L., Lynam, D. R., Widiger, T. A., Markon, K. E., Krueger, R. F., & Miller, J. D. (2015). Testing whether the DSM-5 personality disorder trait model can be measured with a reduced set of items: An item response theory investigation of the personality inventory for DSM-5. Psychological Assessment, 27(4), 1195–1210. [Google Scholar] [CrossRef]
- Marziali, E., Munroe-Blum, H., & Links, P. (1994). Severity as a diagnostic dimension of borderline personality disorder. The Canadian Journal of Psychiatry, 39(9), 540–544. [Google Scholar] [CrossRef]
- McMain, S. F., Fitzpatrick, S., Boritz, T., Barnhart, R., Links, P., & Streiner, D. L. (2018). Outcome trajectories and prognostic factors for suicide and self-harm behaviors in patients with borderline personality disorder following one year of outpatient psychotherapy. Journal of Personality Disorders, 32(4), 497–512. [Google Scholar] [CrossRef]
- Millon, T., Millon, C. M., Meagher, S. E., Grossman, S. D., & Ramnath, R. (2012). Personality disorders in modern life. John Wiley & Sons. [Google Scholar]
- Mneimne, M., Emery, L., Furr, R. M., & Fleeson, W. (2021). Symptoms as rapidly fluctuating over time: Revealing the close psychological interconnections among borderline personality disorder symptoms via within-person structures. Journal of Abnormal Psychology, 130(3), 260–272. [Google Scholar] [CrossRef]
- Nestadt, G., Hsu, F. C., Samuels, J., Bienvenu, O. J., Reti, I., Costa, P. T., Jr., & Eaton, W. W. (2006). Latent structure of the diagnostic and statistical manual of mental disorders, personality disorder criteria. Comprehensive Psychiatry, 47(1), 54–62. [Google Scholar] [CrossRef]
- Newhill, C. E., Vaughn, M. G., & DeLisi, M. (2010). Psychopathy scores reveal heterogeneity among patients with borderline personality disorder. The Journal of Forensic Psychiatry & Psychology, 21(2), 202–220. [Google Scholar] [CrossRef]
- Oladottir, K., Wolf-Arehult, M., Ramklint, M., & Isaksson, M. (2022). Cluster analysis of personality traits in psychiatric patients with borderline personality disorder. Borderline Personality Disorder and Emotion Dysregulation, 9(1), 7. [Google Scholar] [CrossRef] [PubMed]
- Oldham, J. M. (2006). Borderline personality disorder and suicidality. American Journal of Psychiatry, 163(1), 20–26. [Google Scholar] [CrossRef] [PubMed]
- Oquendo, M. A., Halberstam, B., & Mann, J. J. (2003). Risk factors for suicidal behavior: The utility and limitations of research in clinical practice. In M. B. First (Ed.), Standardized evaluation in clinical practice (pp. 103–131). Americal Psychiatric Publishing. [Google Scholar]
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., & Chou, R. (2021). The PRISMA 2020 statemment: An updated guideline for reporting systamatic reviews. bmj, 372. [Google Scholar] [CrossRef]
- Peters, J. R., Crowe, M. L., Morgan, T., Zimmerman, M., Sharp, C., Grilo, C. M., & Yen, S. (2022). Borderline personality disorder symptom networks across adolescent and adult clinical samples: Examining symptom centrality and replicability. Psychological Medicine, 53(7), 2946–2953. [Google Scholar] [CrossRef]
- Pfohl, B. N. M. D., Blum, N., Zimmerman, M., & Stangl, D. (1989). Structured interview for DSM-III-R personality (SIDP-R). Author. [Google Scholar]
- Prada, P., Hasler, R., Baud, P., Bednarz, G., Ardu, S., Krejci, I., Nicastro, R., Aubry, J., & Perroud, N. (2014). Distinguishing borderline personality disorder from adult attention deficit/hyperactivity disorder: A clinical and dimensional perspective. Psychiatry Research, 217(1–2), 107–114. [Google Scholar] [CrossRef]
- Ramos, V., Canta, G., de Castro, F., & Leal, I. (2014). Discrete subgroups of adolescents diagnosed with borderline personality disorder: A latent class analysis of personality features. Journal of Personality Disorders, 28(4), 463–482. [Google Scholar] [CrossRef]
- Rebok, F., Teti, G. L., Fantini, A. P., Cárdenas-Delgado, C., Rojas, S. M., Derito, M. N., & Daray, F. M. (2015). Types of borderline personality disorder (BPD) in patients admitted for suicide-related behavior. Psychiatric Quarterly, 86(1), 49–60. [Google Scholar] [CrossRef]
- Rosenberger, P. H., & Miller, G. A. (1989). Comparing borderline definitions: DSM-III borderline and schizotypal personality disorders. Journal of Abnormal Psychology, 98(2), 161–169. [Google Scholar] [CrossRef]
- Rufino, K. A., Ellis, T. E., Clapp, J., Pearte, C., & Fowler, J. C. (2017). Variations of emotion dysregulation in borderline personality disorder: A latent profile analysis approach with adult psychiatric inpatients. Borderline Personality Disorder and Emotion Dysregulation, 4(1), 17. [Google Scholar] [CrossRef]
- Rusch, K. M., Guastello, S. J., & Mason, P. T. (1992). Differentiating symptom clusters of borderline personality disorder. Journal of Clinical Psychology, 48(6), 730–738. [Google Scholar] [CrossRef]
- Ryan, K., & Shean, G. (2007). Patterns of interpersonal behaviors and borderline personality characteristics. Personality and Individual Differences, 42(2), 193–200. [Google Scholar] [CrossRef]
- Salzer, S., Streeck, U., Jaeger, U., Masuhr, O., Warwas, J., Leichsenring, F., & Leibing, E. (2013). Patterns of interpersonal problems in borderline personality disorder. The Journal of Nervous and Mental Disease, 201(2), 94–98. [Google Scholar] [CrossRef] [PubMed]
- Sanislow, C. A., Grilo, C. M., & McGlashan, T. H. (2000). Factor analysis of the DSM-III-R borderline personality disorder criteria in psychiatric inpatients. American Journal of Psychiatry, 157(10), 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Sanislow, C. A., Grilo, C. M., Morey, L. C., Bender, D. S., Skodol, A. E., Gunderson, J. G., Shea, M. T., Stout, R. L., Zanarini, M. C., & McGlashan, T. H. (2002). Confirmatory factor analysis of DSM-IV criteria for borderline personality disorder: Findings from the collaborative longitudinal personality disorders study. American Journal of Psychiatry, 159(2), 284–290. [Google Scholar] [CrossRef]
- Sharp, C., Wright, A. G., Fowler, J. C., Frueh, B. C., Allen, J. G., Oldham, J., & Clark, L. A. (2015). The structure of personality pathology: Both general (‘g’) and specific (‘s’) factors? Journal of Abnormal Psychology, 124(2), 387–398. [Google Scholar] [CrossRef]
- Shevlin, M., Dorahy, M., Adamson, G., & Murphy, J. (2007). Subtypes of borderline personality disorder, associated clinical disorders and stressful life-events: A latent class analysis based on the British psychiatric morbidity survey. British Journal of Clinical Psychology, 46(3), 273–281. [Google Scholar] [CrossRef]
- Sleuwaegen, E., Claes, L., Luyckx, K., Berens, A., Vogels, C., & Sabbe, B. (2017). Subtypes in borderline patients based on reactive and regulative temperament. Personality and Individual Differences, 108, 14–19. [Google Scholar] [CrossRef]
- Sleuwaegen, E., Claes, L., Luyckx, K., Wilderjans, T., Berens, A., & Sabbe, B. (2018). Do treatment outcomes differ after 3 months DBT inpatient treatment based on borderline personality disorder subtypes? Personality and Mental Health, 12(4), 321–333. [Google Scholar] [CrossRef]
- Smits, M. L., Feenstra, D. J., Bales, D. L., de Vos, J., Lucas, Z., Verheul, R., & Luyten, P. (2017). Subtypes of borderline personality disorder patients: A cluster-analytic approach. Borderline Personality Disorder and Emotion Dysregulation, 4(1), 16. [Google Scholar] [CrossRef]
- Soloff, P. H., & Chiappetta, L. (2012). Subtyping borderline personality disorder by suicidal behavior. Journal of Personality Disorders, 26(3), 468–480. [Google Scholar] [CrossRef]
- Spitzer, R. L., Gibbon, M., Williams, J. B., & Endicott, J. A. (1996). Global assessment of functioning (GAF) scale. In L. I. Sederer, & B. Dickey (Eds.), Outcome assessment in clinical practice (pp. 76–78). Williams & Wilkins. [Google Scholar]
- Thatcher, D. L., Cornelius, J. R., & Clark, D. B. (2005). Adolescent alcohol use disorders predict adult borderline personality. Addictive Behaviors, 30(9), 1709–1724. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, A., Konstantakopoulos, G., Stefanatou, P., Giannoulis, E., & Malogiannis, I. (2025). Underlying dimensions of borderline personality disorder: A systematic review of factor analytic studies. Psychiatric Quarterly, 1–35. [Google Scholar] [CrossRef]
- Van Reekum, R., Conway, C. A., Gansler, D., White, R., & Bachman, D. L. (1993). Neurobehavioral study of borderline personality disorder. Journal of Psychiatry and Neuroscience, 18(3), 121–129. [Google Scholar] [PubMed]
- Vitaliano, P. P., Russo, J., Carr, J. E., Maiuro, R. D., & Becker, J. (1985). The ways of coping checklist: Revision and psychometric properties. Multivariate Behavioral Research, 20(1), 3–26. [Google Scholar] [CrossRef]
- Whewell, P., Ryman, A., Bonanno, D., & Heather, N. (2000). Does the ICD 10 classification accurately describe subtypes of borderline personality disorder? British Journal of Medical Psychology, 73(4), 483–494. [Google Scholar] [CrossRef]
- Wright, A. G., Hallquist, M. N., Morse, J. Q., Scott, L. N., Stepp, S. D., Nolf, K. A., & Pilkonis, P. A. (2013). Clarifying interpersonal heterogeneity in borderline personality disorder using latent mixture modeling. Journal of Personality Disorders, 27(2), 125–143. [Google Scholar] [CrossRef]
- Zanarini, M. C. (2003). Zanarini rating scale for borderline personality disorder (ZAN-BPD): A continuous measure of DSM-IV borderline psychopathology. Journal of Personality Disorders, 17(3), 233–242. [Google Scholar] [CrossRef]
- Zanarini, M. C. (Ed.). (2005). Borderline personality disorder (1st ed.). CRC Press. [Google Scholar]
- Zanarini, M. C., Vujanovic, A. A., Parachini, E. A., Boulanger, J. L., Frankenburg, F. R., & Hennen, J. (2003). A screening measure for BPD: The McLean screening instrument for borderline personality disorder (MSI-BPD). Journal of Personality Disorders, 17(6), 568–573. [Google Scholar] [CrossRef]
- Zehl, S., Sachsse, U., Dulz, B., Overkamp, B., & Sack, M. (2013). Internalisierung und Externalisierung als Ausprägungen einer gemeinsamen Störungsdimension bei traumatisierten Patienten. PPmP-Psychotherapie· Psychosomatik· Medizinische Psychologie, 63(11), 429–438. [Google Scholar] [CrossRef]
Author(s)/ Year/ Country/ Title | Participants and Setting | Subtyping Basis, Method and Data Collection | Principal Findings |
---|---|---|---|
Barrash et al. (1983), USA Discriminating borderline disorder from other personality disorders: Cluster analysis of the Diagnostic Interview for Borderlines | A total of 252 hospitalised patients, of whom 18 with BPD (DSM-III) No gender and age information | K-means cluster analysis of DIB answers | A total of 8 clusters of which 2 consisted of BPD subtypes (5 individuals with BPD were not included in either of the clusters) 1. Borderline type 1-schizotypal (n = 50% of BPD patients): unsociable, isolated, more psychotic experiences, lower work-related functionality 2. Borderline type 2- borderline (n = 22.2% of BPD patients): loneliness intolerance, disturbed relationships, impulsivity Similar percentages of suicidal/self-harm behaviours among groups |
Leihener et al. (2003), GermanySubtype differentiation of patients with borderline personality disorder using a circumplex model of interpersonal behavior. | A total of 95 females with BPD (DSM-IV), (mean age = 27.1) | Interpersonal profile. Hierarchical cluster analysis of IIP-D data | Two subgroups: 1. Autonomous type (n = 27.3%): cold/distant, non-complaisant, non-submissive, difficulties with intimacy 2. Dependent subtype (n = 72.6%): low scores on dominance and arrogance, overly accommodating, submissive, self-sacrificing. Conflict avoidance, overly friendly No significant differences in BPD severity |
Hoermann et al. (2005), USA The construct of effortful control: An approach to borderline personality disorder heterogeneity | A total of 47 individuals with BPD (DSM-IV) (87.2% female, mean age = 28.9) | Effortful control. k-means cluster analysis of ATQ data | Three subgroups: 1. The 1st cluster (n = 36.2%): high effortful control, low anxiety, low psychoticism and isolation, low identity disturbance, low usage of immature defences 2. The 2nd cluster (n = 23.4%): high activation control, low inhibitory and attentional control, low anxiety, medium psychoticism, low alienation, medium identity disturbance 3. The 3rd cluster (n = 40.4%): low effortful control, high anxiety, high psychoticism, high alienation, high identity diffusion and primitive defences |
Ryan and Shean (2007), USA Patterns of interpersonal behaviours and borderline personality characteristics | A total of 49 students with BPD (DSM-IV) No gender or age information | Interpersonal problems. Hierarchical cluster analysis of IIP data | Leihener et al. (2003) findings confirmed by Ryan and Shean (2007) 1. Autonomous subtype (n = 24.5%): domineering, controlling, overly assertive, vindictive, distant, self-centred 2. Dependent subtype (n = 75.5%): overly accommodating, submissive, difficulties conveying needs, low confidence It is noted that no clusters were formed in the control group |
Critchfield et al. (2008), USA Organization of co-occurring Axis II features in borderline personality disorder | A total of 90 outpatients with BPD (DSM-IV) (92.2% female, mean age = 30.9) | Comorbidity with other PDs. 1. Q-matrix factor analysis with PCA using IPDE data on PD criteria. | 1. Three factors accounting for 75% of the variance. 27% of patients unclassified: a. Narcissistic/histrionic profile (n = 31.1%) b. Avoidant/obsessive compulsive profile (n = 25.6%) c. Paranoid/schizotypal profile (n = 11.1%) |
Lenzenweger et al. (2008), USA Refining the borderline personality disorder phenotype through finite mixture modelling: Implications for classification | A total of 90 outpatients with BPD (DSM-IV) (92.2% female, mean age = 30.9) | Paranoid, antisocial, and aggressive features. Finite mixture modelling with normal components to the data of IPDE, IPO, and SCID | Three components model: 1. nonaggressive/nonparanoid/non-antisocial (40%): higher functionality, lower negative emotionality 2. paranoid/nonaggressive/non-antisocial (27.8%): lower social closeness, more experiences of sexual abuse 3. aggressive/antisocial/nonparanoid (32.2%): lower self-constraint, more impulsivity, severe identity diffusion, more psychopathic characteristics |
Digre et al. (2009), Australia Treatment response in subtypes of borderline personality disorder | A total of 77 individuals (96% with DSM-IV BPD, 96.1% female, mean age = 34) treated in a specialized centre | Contribution style. Two-step cluster analysis of the data of PHI, SCID I, SCID-II BDI-II, DES, WCCL, IPSAQ. | Three clusters including 76 out of 77 participants. 1. withdrawn–internalizing (n = 29.9%): internal contributions, fewer Axis I disorders, did not seek social support 2. Severely disturbed–internalizing (n = 24.7%): internal attributions, grave psychological impairment and psychopathology, dysfunctional defences 3. anxious–externalizing (n = 44.2%): External attributions, seeking social support, more anxiety disorders Treatment response: reduction in dissociative experiences in withdrawn–internalizing type. Reduction of depressive symptoms in anxious–externalizing type. Severely disturbed–internalizing not improved by any measurement. |
Newhill et al. (2010), USA Psychopathy scores reveal heterogeneity among patients with borderline personality disorder | A total of 221 hospitalized patients with BPD (DSM-III-R) (53.4% female, mean age = 29.24) | Psychopathic characteristics. Latent profile analysis of PCL-SV data | A 4-class solution (entropy = 0.80). 1. Impulsive/antisocial (38%) 2. Low psychopathy (24%) 3. Manipulative/narcissistic (20%) 4. High psychopathy/antisociality (18%) |
Hallquist and Pilkonis (2012), USA Refining the phenotype of borderline personality disorder: Diagnostic criteria and beyond | A total of 100 individuals with BPD (DSM-IV), (85% female, mean age = 27.38) | Abandonment avoidance, identity disturbance, inappropriate anger, mistrust, aggressiveness, antisocial and paranoid tendencies. Finite mixture modelling of SCID-II PDs data and IIP. | BLRT favoured a 4-class solution (entropy = 0.83) 1. angry/mistrustful (n = 28%): high interpersonal sensitivity 2. low identity/low anger (n = 27%): more self-mutilating behaviours 3. prototypical (n = 23%): low levels of mistrustfulness, aggressiveness, antisocial behaviour, identity disturbance, abandonment avoidance, moderate levels of anger 4. angry/aggressive (n = 20%): high abandonment avoidance, interpersonal ambivalence, antisocial behaviour, disinhibition |
Soloff and Chiappetta (2012) USA Subtyping borderline personality disorder by suicidal behaviour | A total of 137 repeat suicide attempters with BPD No gender or mean age information | Suicidal behaviour. Trajectory analysis on data of LRS | Two-group solution. 1. Low lethality group (n = 51.1%): more negativism, more substance-use disorders, more antisocial and/or histrionic comorbidity 2. High Lethality group (n = 48.9%): more severe BPD, older age, poorer psychosocial functioning |
Andión et al. (2013), Spain Exploring the clinical validity of borderline personality disorder components | A total of 365 individuals referred to a specialized in BPD treatment centre (63.8% with DSM-IV BPD, 74% female, mean age = 27.4) | DSM-IV criteria. Κ-means cluster analysis to assign participants to criteria factors previously detected (Andión et al., 2011) (disturbed relatedness, affective dysregulation, behavioural dysregulation) | Five clusters: 1. All low (n = 17.3%) 2. All high (n = 40.9%) 3. Disturbed relationships cluster (n = 14.8%): more avoidant and obsessive-compulsive personality features, more Axis I disorders. Meeting identity disturbance, emptiness, unstable relationships, stress-related paranoia criteria 4. Affective dysregulation cluster (n = 15.1%): more Cluster B PDs. Meeting anger, affective instability, abandonment avoidance criteria 5. Behavioural dysregulation cluster (n = 12.1%): more Cluster B disorders, less affective disorders, more substance use disorders. Meeting impulsivity, suicidal/self-harm criteria |
Salzer et al. (2013), Germany Patterns of interpersonal problems in borderline personality disorder | A total of 228 hospitalized patients with BPD (92.6% female, mean age = 31.3) | Interpersonal profile. Hierarchical cluster analysis using two IIP circumplex axes (dominance and nurturance). | A 5-cluster solution selected using the Ward method. 1. Vindictive (n = 18.9%) 2. Moderate submissive (n = 32.5%) 3. Non-assertive (n = 26.3%): higher interpersonal dysphoria, higher symptom index 4. Exploitable (n = 13.6%) 5. Socially Avoidant (n = 8.8%): higher symptomatology |
Wright et al. (2013), USA Clarifying Interpersonal Heterogeneity in Borderline Personality Disorder Using Latent Mixture Modeling | Mixed clinical and community sample of 255 meeting 3 or more DSM-III-R BPD criteria (91% psychiatric patients, 75% female) No mean age information | Interpersonal problems. Structural summary method followed by latent class analysis based on IIP-C octant scales | A 6-class solution was selected (entropy = 0.86) 1. Non-assertive (8.6%) 2. Vindictive (22.3%) 3. Avoidant (19.6%) 4. Highly exploitable (6.7%) 5. Intrusive (8.6%) 6. Exploitable (31.3%) |
Frias et al. (2017), Spain Defining subtypes of borderline personality disorder based on underlying dimensional personality traits | A total of 100 diagnosed with BPD (DSM-V) in community mental health centre No gender or mean age information retrieved | Dimensional personality traits. Hierarchical cluster analysis followed by k-means analysis based on NEO-PI-R | A 4-cluster solution supported. 1. Hostile BPD (12%): average–high scores in all scales with the exception of agreeableness 2. Self-sufficient BPD (34%): lower neuroticism, individualism 3. Dependent BPD (25%): average neuroticism, openness to experience and agreeableness, average to high scores in consciousness and extraversion, higher suicidal ideation, more substance abuse 4. Suspicious BPD (29%): average–high scores in most scales, with the exception of agreeableness and lower quality of life |
Jaeger et al. (2017), Germany Dissociation in patients with borderline personality disorder in acute inpatient care—a latent profile analysis | A total of 103 inpatients with personality disorders (81% with emotionally unstable disorder, 82.5% female, mean age 28.6) | Borderline characteristics and dissociation. Latent profile analysis using BSL-95 and FDS | A 3-class solution best fitted the data. 1. Class 1 (n = 17.5%): high symptomatology, pronounced absorption and derealization/depersonalization, all female 2. Class 2 (51.5%): severe borderline symptoms, less frequent dissociative symptoms than class 1 3. Class 3 (n = 31%): lower psychopathology |
Rufino et al. (2017), USA Variations of emotion dysregulation in borderline personality disorder: a latent profile analysis approach with adult psychiatric inpatients | A total of 156 hospitalized patients with BPD (DSM-IV) (61.8% female, mean age = 29.4) | Emotion dysregulation. Latent profile analysis based on DERS | A 3-class solution best fitted the sample. 1. Emotionally aware group (29.5%): emotional awareness did not lead to emotional regulation during periods of anxiety 2. Global dysfunction group (44.2%): more severe suicidal ideation, low acceptance of emotions, significant interference of emotions with functionality, emotion related impulsivity 3. Low impairment group (26.3%): lack of interference of emotions with functioning and goal achievement |
Sleuwaegen et al. (2017), Belgium Subtypes in borderline patients based on reactive and regulative temperament | A total of 150 hospitalized in specialized DBT clinic with BPD (DSM-IV) (85.6% female, mean age = 29.3) | Reactive and regulative temperament. Two step cluster analysis based on BIS/BAS and Effortful Control scale of ATQ. | A 4-cluster solution accounting for 53%, 68%, and 59% of the variance in BIS, BAS, and EC scores, respectively. 1. Low anxiety subtype (21%): higher comorbidity with AsPD, higher emotional expression and reactivity 2. Inhibited subtype (24%): more Cluster C features, less hostility, more internalisation 3. High self-control subtype (10%): adaptive defences, less psychopathology 4. Emotional/disinhibited subtype (45%): more Cluster B features, interpersonal sensitivity, high anxiety |
Smits et al. (2017), Netherlands Subtypes of borderline personality disorder patients: a cluster-analytic approach | A total of 187 individuals with BPD (DSM-IV) referred to MBT treatment to specialized centre (88% female, mean age = 29.1) | Other PD features. Hierarchical cluster analysis followed by k-means cluster analysis based on SCID-II | Three clusters accounting for 97.3% of the variance. 1. Core BPD (76%): only BPD features, higher psychopathology 2. Extravert/externalizing (14%): more antisocial, histrionic, narcissistic features, less Axis I psychopathology, more men than in core BPD 3. Schizotypal/paranoid (8%) |
Gamache et al. (2018), Canada Premature termination of psychotherapy in patients with borderline personality disorder: a cluster-analytic study. | A total of 56 files of patients with BPD (DIB-R) that dropped-out of therapy (60.7% females, mean age = 35.79) | Treatment prognosis. Hierarchical cluster analysis and two-step cluster analysis based on TARS-PD data and GAF. | A 4-class solution retained. 1. Higher functioning (n = 39.3%): better treatment prognosis 2. Narcissistic features/entitlement (n = 39.3%): low occupation rate 3. Pseudo-normality (n = 12.5%): comorbid antisocial PD with high level of functioning, high employment 4. Highly dysfunctional (n = 8.9%): suspiciousness and social isolation |
McMain et al. (2018), Canada Outcome Trajectories and Prognostic Factors for Suicide and Self-Harm Behaviors in Patients With Borderline Personality Disorder Following One Year of Outpatient Psychotherapy | A total of 180 individuals with BPD (female = 86.1%, mean age = 30.4) | Treatment (DBT or GPM) outcome. Growth mixture modelling using SASII data. | A model with three classes best fitted the data. 1. Rapid and recovered (n = 84.7%): lowest suicide/self-harm behaviours at baseline, best outcomes 2. Slow and recovered (n = 8.6%): high rate of suicide/self-harm behaviours at baseline 3. Recovered and relapsed (n = 6.8%): highest rate of suicide/self-harm behaviours at baseline, higher depression, emergency department visits, unemployment |
Sleuwaegen et al. (2018), Belgium Do treatment outcomes differ after 3 months DBT inpatient treatment based on borderline personality disorder subtypes? | A total of 145 hospitalized in DBT treatment centre with BPD diagnosis (DSM-IV) (88.3% female, mean age at baseline = 29.7) | Reactive and regulative temperament-duplication of Sleuwaegen et al. (2017). Two step cluster analysis based on BIS/BAS and Effortful Control scale of ATQ. | Better fit for the 3-cluster solution. 1. Emotional/disinhibited (15%): high behavioural activation, low effortful control 2. Low anxiety subtype (41%): low behavioural inhibition, low behavioural activation, neutral effortful control 3. Inhibited subtype (44%): high behavioural inhibition, average effortful control Treatment outcomes: No significant differences at drop-out rates. Low anxiety group showed no significant improvement. |
Johnson and Levy (2020), USA Identifying unstable and empty phenotypes of borderline personality through factor mixture modeling in a large nonclinical sample | A sample of 20,010 undergraduates (63.86% female, mean age = 18.8) | DSM-V BPD criteria. 1. Latent class analysis based on MSI-BPD 2. Factor mixture modelling based on MSI-BPD | 1. A 4-class solution. a. 1st class: asymptomatic (65.2%): b. 2nd class (19.6%): emotional/impulsive c. 3rd class (7.1%): identity disturbed/chronic feelings of emptiness/dissociative d. 4th class (8.1%): “BPD class”, all symptoms except unstable relationships and self-mutilating behaviours had a possibility of appearance > 0.70 2. 1-factor, 3-classes model. a. Asymptomatic (70%) b. Unstable group (18.8%): BPD features excluding emptiness and identity disturbance. More frequent self-mutilation, more anger, impulsivity, and maladaptive defences c. Emptiness Group (11.3%): BPD features including emptiness and identity disturbance. More negative emotionality and avoidant attachment Noted that Unstable group exhibited more externalizing symptoms and Empty group exhibited more internalizing symptoms |
Magni et al. (2021), Italy Psychopharmacological treatment in borderline personality disorder: A pilot observational study in a real-world setting | A total of 75 inpatients and outpatients with BPD (76% female, mean age = 36.7. | Clinical features. Hierarchical cluster analysis followed by k-means cluster analysis | Two clusters: 1. Cluster 1 (70.7%): higher severity, more inpatients, more psychopathology 2. Cluster 2 (29.3%): lower BPD severity, more outpatients, less psychopathology No significant associations between severity cluster and drugs assumption |
Gamache et al. (2021), Canada Latent profiles of patients with borderline pathology based on the alternative DSM-5 model for personality disorders | A total of 221 external patients (60.2% female, mean age = 33.7), from a specialized PD program with at least moderate BPD pathology | Alternative model for PDs (DSM-V). Latent profile analysis based on SIFS and PID-5. | A 4-profile solution: a. Borderline traits (18%, BPD = 0%) b. Moderate pathology with impulsivity (n = 21.3%, 40% with BPD): lower negative emotionality and borderline psychopathology, higher aggressivity c. Moderate pathology with identity problems and depressivity (n = 24.2%, 45.1% with BPD): higher dysphoria and psychopathology d. Severe pathology (n = 36.5%%, 90.1% with BPD) Noted that the impulsivity group has more externalizing features and the identity/depressivity group has more internalizing features |
Black et al. (2022) USA Factor structure of borderline personality disorder and response to Systems Training for Emotional Predictability and Problem Solving | A total of 164 participants with BPD (85% female, mean age = 31.0) | Axis I and Axis II psychopathology, BPD criteria. Latent class analysis using SIDP-IV, SCID, ZAN-BPD data. | A 4-class model selected by BIC and AIC. 1. High severity group (n = 26%): high comorbidity with Axis II and Axis I disorder, high disturbed relationships, abandonment fears, anger 2. Low severity group (n = 30%): lower BPD symptom severity, rates of personality and mood disorders moderately high, low rates of anxiety disorders 3. Empty/dissociation/identity disturbance group (n = 27%), relatively high rates of suicide/self-harm, high rates of avoidant and obsessive–compulsive PD features and major depressive disorder, low rates of substance use disorders. 4. Affective instability/substance abuse group (n = 16%): anger, emptiness, high rates of bipolar disorder, panic disorder, agoraphobia, bulimia nervosa Treatment outcomes (STEPPS): greater improvement for the high severity group, followed by the affective instability/substance use disorders group and empty/dissociation/identity disturbance group. Low severity group benefitted the least. |
Oladottir et al. (2022), Sweden Cluster analysis of personality traits in psychiatric patients with borderline personality disorder | A total of 141 individuals diagnosed with BPD treated in a DBT clinic (88.7% female) No mean age information | Personality traits. Hierarchical cluster analysis based on SSP | Three clusters: 1. Lower psychopathology cluster (n = 47.5%): less disturbed emotional regulation, fewer dissociative experiences, lower bitterness, petulance, mistrustfulness, aggression 2. Externalizing cluster (n = 19.9%): higher impulsivity, adventure-seeking, aggression 3. Internalizing cluster (n = 32.6%): greater psychic anxiety, stress susceptibility, lack of assertiveness, lower adventure seeking |
Aleva et al. (2023), Australia Emotion dysregulation in young people with borderline personality disorder: One pattern or distinct subgroups? | A total of 137 individuals diagnosed with BPD (81% female, mean age = 19.1) | Emotion dysregulation. Latent profile analysis based on DERS data. | Three subgroups: 1. Moderate and accepting (n = 43.1%): high emotional acceptance, moderate emotion dysregulation 2. High and aware (n = 40.9%): high emotion dysregulation, high emotional awareness 3. Low and unaware (n = 16.1%): low emotion dysregulation, high emotional unawareness. |
Antoine et al. (2023) Canada Subgroups of borderline personality disorder: A latent class analysis | A total of 504 research participants from three studies with BPD (DSM IV), (female 81.3%, mean age = 29.0) | BPD criteria excluding common to all participants criterion 5. Latent class analysis using IPDE data. | A 3-class solution: 1. Non-labile type (n = 10.5%): lack of affective instability and dissociation, impulsiveness 2. Dissociative/paranoid type (n = 55.4%): Low efforts to avoid abandonment, low identity disturbance, emotionally and sexually traumatized 3. Interpersonally unstable type (n = 34.1%): efforts to avoid abandonment, aggressive behaviour |
Hanegraaf et al. (2023), Australia Combining novel trait and neurocognitive frameworks to parse heterogeneity in borderline personality disorder | A total of 100 recruited online participants with BPD or sub threshold BPD (79% female) No mean age information | Personality characteristics. K-means cluster analysis using PID-5 data. | A 4-cluster model was chosen, with two internalizing and one externalizing subgroup: 1. Negative affectivity (n = 26%) 2. Detached (n = 35%): impaired psychosocial functioning, higher depression 3. Externalizing (n = 12%): higher antagonism, disinhibition, psychoticism, higher self-harm 4. Low psychopathology (27%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafyllou, A.; Stefanatou, P.; Konstantakopoulos, G.; Giannoulis, E.; Malogiannis, I. Unveiling the Layers of Borderline Personality Disorder: A Systematic Review of Clinical Subtypes. Behav. Sci. 2025, 15, 928. https://doi.org/10.3390/bs15070928
Triantafyllou A, Stefanatou P, Konstantakopoulos G, Giannoulis E, Malogiannis I. Unveiling the Layers of Borderline Personality Disorder: A Systematic Review of Clinical Subtypes. Behavioral Sciences. 2025; 15(7):928. https://doi.org/10.3390/bs15070928
Chicago/Turabian StyleTriantafyllou, Alexandra, Pentagiotissa Stefanatou, George Konstantakopoulos, Eleni Giannoulis, and Ioannis Malogiannis. 2025. "Unveiling the Layers of Borderline Personality Disorder: A Systematic Review of Clinical Subtypes" Behavioral Sciences 15, no. 7: 928. https://doi.org/10.3390/bs15070928
APA StyleTriantafyllou, A., Stefanatou, P., Konstantakopoulos, G., Giannoulis, E., & Malogiannis, I. (2025). Unveiling the Layers of Borderline Personality Disorder: A Systematic Review of Clinical Subtypes. Behavioral Sciences, 15(7), 928. https://doi.org/10.3390/bs15070928