Exploring the Complexity of Children’s Math and Vocabulary Learning: The Role of Cognitive, Dispositional, and Parental Factors
Abstract
:1. Introduction
1.1. The Intersection of Personal Attributes, Cognition, and Context
1.2. The Current Study
2. Method
2.1. Participants
2.2. Procedure
2.3. Measures
3. Results
3.1. Descriptive Statistics
3.2. Path Model
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. [Google Scholar] [CrossRef]
- Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The cognitive and behavioral characteristics of children with low working memory. Child Development, 80(2), 606–621. [Google Scholar] [CrossRef]
- Anthony, C. J., & Ogg, J. (2019). Parent involvement, approaches to learning, and student achievement: Examining longitudinal mediation. School Psychology, 34(4), 376–385. [Google Scholar] [CrossRef]
- Baddeley, A. (2007). Working memory, thought, and action (Vol. 45). OuP Oxford. [Google Scholar]
- Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Berger, A., Jones, L., Rothbart, M. K., & Posner, M. I. (2000). Computerized games to study the development of attention in childhood. Behavior Research Methods, Instruments, & Computers, 32(2), 297–303. [Google Scholar]
- Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78(2), 647–663. [Google Scholar] [CrossRef]
- Blums, A., Belsky, J., Grimm, K., & Chen, Z. (2017). Building links between early socioeconomic status, cognitive ability, and math and science achievement. Journal of Cognition and Development, 18(1), 16–40. [Google Scholar] [CrossRef]
- Bronfenbrenner, U. (1979). Contexts of child rearing: Problems and prospects. American Psychologist, 34(10), 844. [Google Scholar] [CrossRef]
- Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Sage. [Google Scholar]
- Burchinal, M. R., Peisner-Feinberg, E., Pianta, R., & Howes, C. (2002). Development of academic skills from preschool through second grade: Family and classroom predictors of developmental trajectories. Journal of School Psychology, 40(5), 415–436. [Google Scholar] [CrossRef]
- Cabell, S. Q., Kim, J. S., White, T. G., Gale, C. J., Edwards, A. A., Hwang, H., Petscher, Y., & Raines, R. M. (2025). Impact of a content-rich literacy curriculum on kindergarteners’ vocabulary, listening comprehension, and content knowledge. Journal of Educational Psychology, 117(2), 153–175. [Google Scholar] [CrossRef]
- Carretti, B., Borella, E., Cornoldi, C., & De Beni, R. (2009). Role of working memory in explaining the performance of individuals with specific reading comprehension difficulties: A meta-analysis. Learning and Individual Differences, 19(2), 246–251. [Google Scholar] [CrossRef]
- Carroll, J. M., Yeager, D. S., Buontempo, J., Hecht, C., Cimpian, A., Mhatre, P., Muller, C., & Crosnoe, R. (2023). Mindset × context: Schools, classrooms, and the unequal translation of expectations into math achievement. Monographs of the Society for Research in Child Development, 88(2), 7–109. [Google Scholar] [CrossRef]
- Christodoulou, A., Tsagkaridis, K., & Malegiannaki, A.-C. (2024). A multifactorial model of intrinsic/environmental motivators, personal traits and their combined influences on math performance in elementary school. European Journal of Psychology of Education, 39(4), 4113–4135. [Google Scholar] [CrossRef]
- Claxton, G., & Carr, M. (2004). A framework for teaching learning: The dynamics of disposition. Early Years, 24(1), 87–97. [Google Scholar] [CrossRef]
- Combs, S., & Higgins, K. N. (2024). The relationship between shared picturebook reading and language development in young children. Early Childhood Education Journal, 52(7), 1725–1735. [Google Scholar] [CrossRef]
- Costa, A., Moreira, D., Casanova, J., Azevedo, Â., Gonçalves, A., Oliveira, Í., Azevedo, R., & Dias, P. C. (2024). Determinants of academic achievement from the middle to secondary school education: A systematic review. Social Psychology of Education, 27(6), 3533–3572. [Google Scholar] [CrossRef]
- Davis-Kean, P. E. (2005). The influence of parent education and family income on child achievement: The indirect role of parental expectations and the home environment. Journal of Family Psychology, 19(2), 294–304. [Google Scholar] [CrossRef]
- Dickinson, D. K., McCabe, A., Anastasopoulos, L., Peisner-Feinberg, E. S., & Poe, M. D. (2003). The comprehensive language approach to early literacy: The interrelationships among vocabulary, phonological sensitivity, and print knowledge among preschool-aged children. Journal of Educational Psychology, 95(3), 465–481. [Google Scholar] [CrossRef]
- Doebel, S., & Müller, U. (2023). The future of research on executive function and its development: An introduction to the special issue. Journal of Cognition and Development, 24(2), 161–171. [Google Scholar] [CrossRef]
- Douglas, A.-A., & Rittle-Johnson, B. (2024). Parental early math support: The role of parental knowledge about early math development. Early Childhood Research Quarterly, 66, 124–134. [Google Scholar] [CrossRef]
- Dunn, L. M., & Dunn, L. M. (1997). Peabody picture vocabulary test--Third edition (PPVT-III) [Database record]. APA PsycTests. [Google Scholar] [CrossRef]
- Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contemporary Educational Psychology, 61, 101859. [Google Scholar] [CrossRef]
- El Nokali, N. E., Bachman, H. J., & Votruba-Drzal, E. (2010). Parent involvement and children’s academic and social development in elementary school. Child Development, 81(3), 988–1005. [Google Scholar] [CrossRef]
- Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23. [Google Scholar] [CrossRef]
- Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347. [Google Scholar] [CrossRef]
- Fantuzzo, J., Tighe, E., & Childs, S. (2000). Family involvement questionnaire: A multivariate assessment of family participation in early childhood education. Journal of Educational Psychology, 92(2), 367. [Google Scholar] [CrossRef]
- Fung, F., Tan, C. Y., & Chen, G. (2018). Student engagement and mathematics achievement: Unraveling main and interactive effects. Psychology in the Schools, 55(7), 815–831. [Google Scholar] [CrossRef]
- Gathercole, S. E., Alloway, T. P., Kirkwood, H. J., Elliott, J. G., Holmes, J., & Hilton, K. A. (2008). Attentional and executive function behaviours in children with poor working memory. Learning and Individual Differences, 18(2), 214–223. [Google Scholar] [CrossRef]
- Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability (3rd ed.). Pro-Ed. [Google Scholar]
- Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229–1241. [Google Scholar] [CrossRef]
- Halle, T. G., Kurtz-Costes, B., & Mahoney, J. L. (1997). Family influences on school achievement in low-income, African American children. Journal of Educational Psychology, 89(3), 527. [Google Scholar] [CrossRef]
- Hart, B., Risley, T. R., & Kirby, J. R. (1995). Meaningful differences in the everyday experience of young American children. Canadian Journal of Education, 22(3), 323. [Google Scholar]
- Hjetland, H. N., Lervåg, A., Lyster, S.-A. H., Hagtvet, B. E., Hulme, C., & Melby-Lervåg, M. (2019). Pathways to reading comprehension: A longitudinal study from 4 to 9 years of age. Journal of Educational Psychology, 111(5), 751–763. [Google Scholar] [CrossRef]
- Hoff, E. (2006). How social contexts support and shape language development. Developmental Review, 26(1), 55–88. [Google Scholar] [CrossRef]
- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. [Google Scholar] [CrossRef]
- Hughes, C. (2023). Executive functions: Going places at pace. Journal of Cognition and Development, 24(2), 296–306. [Google Scholar] [CrossRef]
- Isbell, E., Calkins, S. D., Swingler, M. M., & Leerkes, E. M. (2018). Attentional fluctuations in preschoolers: Direct and indirect relations with task accuracy, academic readiness, and school performance. Journal of Experimental Child Psychology, 167, 388–403. [Google Scholar] [CrossRef]
- Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850–867. [Google Scholar] [CrossRef]
- Kang, D., Zhou, X., Tian, L., Li, Z., & Xu, J. (2014). On the applicability of test of early child mathematics ability (Chinese edition) among 5–6 year-old children in Shanghai. Early Childhood Education (Education Sciences), 2014(6), 39–45. [Google Scholar]
- Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). Guilford Press. [Google Scholar]
- Levine, S. C., Suriyakham, L. W., Rowe, M. L., Huttenlocher, J., & Gunderson, E. A. (2010). What counts in the development of young children’s number knowledge? Developmental Psychology, 46(5), 1309–1319. [Google Scholar] [CrossRef]
- Li, T., Quintero, M., Galvan, M., Shanafelt, S., Hasty, L. M., Spangler, D. P., Lyons, I. M., Mazzocco, M. M. M., Brockmole, J. R., Hart, S. A., & Wang, Z. (2023). The mediating role of attention in the association between math anxiety and math performance: An eye-tracking study. Journal of Educational Psychology, 115(2), 229–240. [Google Scholar] [CrossRef]
- Liu, A. S., Rutherford, T., & Karamarkovich, S. M. (2022). Numeracy, cognitive, and motivational predictors of elementary mathematics achievement. Journal of Educational Psychology, 114(7), 1589–1607. [Google Scholar] [CrossRef]
- Looney, L., Wong, E. H., Rosales, K. P., Bacon, J. M., & Wiest, D. J. (2024). Supporting learning differences: Effects of cognitive training on cognitive abilities in a school-based sample. Education Sciences, 14(1), 89. [Google Scholar] [CrossRef]
- Lu, L., & Liu, H. (1998). Peabody picture vocabulary test-revised. Psychology Press. [Google Scholar]
- Ma, Y. (2022). Profiles of student science attitudes and its associations with gender and science achievement. International Journal of Science Education, 44(11), 1876–1895. [Google Scholar] [CrossRef]
- Mariani, B., Nicoletti, G., Barzon, G., Ortiz Barajas, M. C., Shukla, M., Guevara, R., Suweis, S. S., & Gervain, J. (2023). Prenatal experience with language shapes the brain. Science Advances, 9(47), eadj3524. [Google Scholar] [CrossRef]
- Miller, D. C., & Maricle, D. E. (2019). Essentials of school neuropsychological assessment. John Wiley & Sons. [Google Scholar]
- Montague, M., Krawec, J., Enders, C., & Dietz, S. (2014). The effects of cognitive strategy instruction on math problem solving of middle-school students of varying ability. Journal of Educational Psychology, 106(2), 469–481. [Google Scholar] [CrossRef]
- Mueller, R. O., & Hancock, G. R. (2010). Structural equation modeling. In G. R. Hancock, & R. O. Mueller (Eds.), The reviewer’s guide to quantitative methods in the social sciences (pp. 371–383). Routledge. [Google Scholar]
- Muthén, L. K., & Muthén, B. O. (2011). Mplus user’s guide (6th ed.). Muthén & Muthén. [Google Scholar]
- Nation, K., & Snowling, M. J. (2004). Beyond phonological skills: Broader language skills contribute to the development of reading. Journal of Research in Reading, 27(4), 342–356. [Google Scholar] [CrossRef]
- Niebaum, J. C., & Munakata, Y. (2023). Why doesn’t executive function training improve academic achievement? Rethinking individual differences, relevance, and engagement from a contextual framework. Journal of Cognition and Development, 24(2), 241–259. [Google Scholar] [CrossRef]
- Noël, M.-P. (2009). Counting on working memory when learning to count and to add: A preschool study. Developmental Psychology, 45(6), 1630–1643. [Google Scholar] [CrossRef]
- Odom, S. L., Vitztum, J., Wolery, R., Lieber, J., Sandall, S., Hanson, M. J., Beckman, P., Schwartz, I., & Horn, E. (2004). Preschool inclusion in the United States: A review of research from an ecological systems perspective. Journal of Research in Special Educational Needs, 4(1), 17–49. [Google Scholar] [CrossRef]
- Olaru, G., Robitzsch, A., Hildebrandt, A., & Schroeders, U. (2022). Examining moderators of vocabulary acquisition from kindergarten through elementary school using local structural equation modeling. Learning and Individual Differences, 95, 102136. [Google Scholar] [CrossRef]
- Orbach, L., & Fritz, A. (2022). Patterns of attention and anxiety in predicting arithmetic fluency among school-aged children. Brain Sciences, 12(3), 376. [Google Scholar] [CrossRef]
- Paliwal, V., & Baroody, A. J. (2020). Cardinality principle understanding: The role of focusing on the subitizing ability. ZDM, 52(4), 649–661. [Google Scholar] [CrossRef]
- Peng, P., Barnes, M., Wang, C., Wang, W., Li, S., Swanson, H. L., Dardick, W., & Tao, S. (2018). A meta-analysis on the relation between reading and working memory. Psychological Bulletin, 144(1), 48–76. [Google Scholar] [CrossRef] [PubMed]
- Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455–473. [Google Scholar] [CrossRef]
- Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148–158. [Google Scholar] [CrossRef]
- Rowe, M. L. (2008). Child-directed speech: Relation to socioeconomic status, knowledge of child development and child vocabulary skill. Journal of Child Language, 35(1), 185–205. [Google Scholar] [CrossRef]
- Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42(8), 1029–1040. [Google Scholar] [CrossRef]
- Sakib, N. (2022). The effect of play-based learning on the cognitive development of kindergarten students. Cultural Communication Journal, 10(1), 40–58. [Google Scholar]
- Santelli, J. S., Lowry, R., Brener, N. D., & Robin, L. (2000). The association of sexual behaviors with socioeconomic status, family structure, and race/ethnicity among US adolescents. American Journal of Public Health, 90(10), 1582. [Google Scholar]
- Sánchez-Pérez, N., Fuentes, L. J., Pina, V., López-López, J. A., & González-Salinas, C. (2015). How do different components of Effortful Control contribute to children’s mathematics achievement? Frontiers in Psychology, 6, 1383. [Google Scholar] [CrossRef]
- Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory of genotype→ environment effects. Child Development, 54, 424–435. [Google Scholar]
- Sénéchal, M., & LeFevre, J. (2002). Parental involvement in the development of children’s reading skill: A five-year longitudinal study. Child Development, 73(2), 445–460. [Google Scholar] [CrossRef] [PubMed]
- Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422–445. [Google Scholar] [CrossRef] [PubMed]
- Simone, A. N., Marks, D. J., Bédard, A.-C., & Halperin, J. M. (2018). Low working memory rather than ADHD symptoms predicts poor academic achievement in school-aged children. Journal of Abnormal Child Psychology, 46(2), 277–290. [Google Scholar] [CrossRef]
- Spiegel, J. A., Goodrich, J. M., Morris, B. M., Osborne, C. M., & Lonigan, C. J. (2021). Relations between executive functions and academic outcomes in elementary school children: A meta-analysis. Psychological Bulletin, 147(4), 329–351. [Google Scholar] [CrossRef] [PubMed]
- Stock, P., Desoete, A., & Roeyers, H. (2007). Early markers for arithmetic difficulties. Educational and Child Psychology, 24(2), 28–39. [Google Scholar] [CrossRef]
- Swanson, H. L. (1999). Reading comprehension and working memory in learning-disabled readers: Is the phonological loop more important than the executive system? Journal of Experimental Child Psychology, 72(1), 1–31. [Google Scholar] [CrossRef]
- Tan, C. Y. (2015). The contribution of cultural capital to students’ mathematics achievement in medium and high socioeconomic gradient economies. British Educational Research Journal, 41(6), 1050–1067. [Google Scholar] [CrossRef]
- Topping, K., Dekhinet, R., & Zeedyk, S. (2013). Parent–infant interaction and children’s language development. Educational Psychology, 33(4), 391–426. [Google Scholar] [CrossRef]
- Tsujimoto, K. C., Frijters, J. C., Boada, R., Gottwald, S., Hill, D., Jacobson, L. A., Lovett, M. W., Mark Mahone, E., Willcutt, E. G., Wolf, M., Bosson-Heenan, J., & Gruen, J. R. (2018). Achievement attributions are associated with specific rather than general learning delays. Learning and Individual Differences, 64, 8–21. [Google Scholar] [CrossRef]
- Ursache, A., Blair, C., & Raver, C. C. (2012). The promotion of self-regulation as a means of enhancing school readiness and early achievement in children at risk for school failure. Child Development Perspectives, 6(2), 122–128. [Google Scholar] [CrossRef]
- Viljaranta, J., Aunola, K., & Hirvonen, R. (2016). Motivation and academic performance among first-graders: A person-oriented approach. Learning and Individual Differences, 49, 366–372. [Google Scholar] [CrossRef]
- Walton, G. M., & Yeager, D. S. (2020). Seed and soil: Psychological affordances in contexts help to explain where wise interventions succeed or fail. Current Directions in Psychological Science, 29(3), 219–226. [Google Scholar] [CrossRef]
- Wing-Yin Chow, B., & McBride-Chang, C. (2003). Promoting language and literacy development through parent–child reading in Hong Kong preschoolers. Early Education and Development, 14(2), 233–248. [Google Scholar] [CrossRef]
- Xu, J., Li, Z., & Zhou, X. (2016). The impact of learning qualities on early mathematical abilities in 5–6-year-old children. Early Childhood Education (Educational Science), 1(2), 69–75. [Google Scholar]
- Yarosz, D. J., & Barnett, W. S. (2001). Who reads to young children?: Identifying predictors of family reading activities. Reading Psychology, 22(1), 67–81. [Google Scholar] [CrossRef]
- Zelazo, P. D., & Carlson, S. M. (2020). The neurodevelopment of executive function skills: Implications for academic achievement gaps. Psychology & Neuroscience, 13(3), 273–298. [Google Scholar] [CrossRef]
- Zhang, J., Yang, X., Yu, X., Xu, J., Jiang, J., & Chen, Y. (2024). Longitudinal cognitive correlates of advanced mathematical performance in primary school children. Current Psychology, 43(5), 4155–4167. [Google Scholar] [CrossRef]
- Zheng, X., Swanson, H. L., & Marcoulides, G. A. (2011). Working memory components as predictors of children’s mathematical word problem solving. Journal of Experimental Child Psychology, 110(4), 481–498. [Google Scholar] [CrossRef]
- Zippert, E. L., & Rittle-Johnson, B. (2020). The home math environment: More than numeracy. Early Childhood Research Quarterly, 50, 4–15. [Google Scholar] [CrossRef]
Mean (SD) | N | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|---|
1. Parental Education | 3.99 (1.24) | 149 | - | ||||
2. Attentional Control | 2.90 (3.49) | 149 | −0.217 ** | − | |||
3. Learning Approach | 33.77 (7.15) | 128 | 0.454 ** | −0.196 * | - | ||
4. Math | 38.00 (10.69) | 149 | 0.456 ** | −0.291 ** | 0.821 ** | - | |
5. Vocabulary | 54.24 (18.79) | 149 | 0.375 ** | −0.221 ** | 0.442 ** | 0.502 ** | - |
Unstandardized | 95%CI | |||||
---|---|---|---|---|---|---|
Estimate | SE | p-Value | Lower 2.5% | Upper 2.5% | ||
Direct path | ||||||
Parental education | Math | 0.731 | 0.463 | 0.114 | −0.240 | 1.630 |
Vocabulary | 3.138 | 1.227 | 0.011 | 0.770 | 5.438 | |
Learning approach | 2.694 | 0.436 | 0.000 | 1.849 | 3.583 | |
Attentional control | −0.599 | 0.281 | 0.033 | −1.169 | −0.023 | |
Learning approach | Math | 1.138 | 0.091 | 0.000 | 0.961 | 1.319 |
Vocabulary | 0.860 | 0.236 | 0.000 | 0.407 | 1.337 | |
Attentional control | Math | −0.257 | 0.124 | 0.039 | −0.526 | −0.008 |
Vocabulary | −0.520 | 0.408 | 0.202 | −1.318 | 0.306 | |
Indirect path | ||||||
Parental education—Learning approach | Math | 3.066 | 0.573 | 0.000 | 2.006 | 4.317 |
Vocabulary | 2.318 | 0.730 | 0.002 | 1.165 | 4.092 | |
Parental education—Attentional control | Math | 0.154 | 0.112 | 0.171 | 0.005 | 0.503 |
Vocabulary | 0.312 | 0.298 | 0.295 | −0.096 | 1.178 | |
R-square | ||||||
Math | 0.700 | 0.047 | 0.000 | |||
Vocabulary | 0.249 | 0.058 | 0.000 | |||
Learning approach | 0.214 | 0.060 | 0.000 | |||
Attentional control | 0.045 | 0.046 | 0.319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chen, K.; Rosales, K.P.; Xu, J.; Looney, L.; Zhou, X. Exploring the Complexity of Children’s Math and Vocabulary Learning: The Role of Cognitive, Dispositional, and Parental Factors. Behav. Sci. 2025, 15, 527. https://doi.org/10.3390/bs15040527
Li Z, Chen K, Rosales KP, Xu J, Looney L, Zhou X. Exploring the Complexity of Children’s Math and Vocabulary Learning: The Role of Cognitive, Dispositional, and Parental Factors. Behavioral Sciences. 2025; 15(4):527. https://doi.org/10.3390/bs15040527
Chicago/Turabian StyleLi, Zhengqing, Keting Chen, Kevin P. Rosales, Jingjing Xu, Lisa Looney, and Xin Zhou. 2025. "Exploring the Complexity of Children’s Math and Vocabulary Learning: The Role of Cognitive, Dispositional, and Parental Factors" Behavioral Sciences 15, no. 4: 527. https://doi.org/10.3390/bs15040527
APA StyleLi, Z., Chen, K., Rosales, K. P., Xu, J., Looney, L., & Zhou, X. (2025). Exploring the Complexity of Children’s Math and Vocabulary Learning: The Role of Cognitive, Dispositional, and Parental Factors. Behavioral Sciences, 15(4), 527. https://doi.org/10.3390/bs15040527