The Effect of Concurrent Auditory Working Memory Task in Auditory Category Learning
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Materials
2.3. Procedures
2.4. Data Analysis
2.4.1. Drift-Diffusion Model Analysis
2.4.2. Categorization Strategies Analysis
3. Results
3.1. Categorization Strategies Revealed by the Model Analysis
3.2. Accuracy
3.3. Reaction Time
3.4. The Impact of Concurrent Working Memory on Rule-Based Strategy
3.5. Drift-Diffusion Model Parameters
3.6. Results in Working Memory Task
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashby, F. G., Alfonso-Reese, T. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481. [Google Scholar] [PubMed]
- Ashby, F. G., & Ell, S. W. (2001). The neurobiology of human category learning. Trends in Cognitive Sciences, 5, 204–210. [Google Scholar] [PubMed]
- Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annuual Review Psychology, 56, 149–178. [Google Scholar] [CrossRef]
- Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0. Annals of the New York Academy of Science, 1224, 147–161. [Google Scholar] [CrossRef]
- Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559. [Google Scholar] [CrossRef] [PubMed]
- Barnes, K. A., Howard, J. H., Jr., Howard, D. V., Gilotty, L., Kenworthy, L., Gaillard, W. D., & Vaidya, C. J. (2008). Intact implicit learning of spatial context and temporal sequences in childhood autism spectrum disorder. Neuropsychology, 22(5), 563–570. [Google Scholar] [CrossRef]
- Bo, J., Jennett, S., & Seidler, R. D. (2011). Working memory capacity correlates with implicit serial reaction time task performance. Experiment Brain Research, 214(1), 73–81. [Google Scholar] [CrossRef]
- Bo, J., Jennett, S., & Seidler, R. D. (2012). Differential working memory correlates for implicit sequence performance in young and older adults. Experiment Brain Research, 221(4), 467–477. [Google Scholar] [CrossRef]
- Brown, J., Aczel, B., Jimenez, L., Kaufman, S. B., & Grant, K. P. (2010). Intact implicit learning in autism spectrum conditions. Quarterly Journal of Experiment Psychology (Hove), 63(9), 1789–1812. [Google Scholar] [CrossRef]
- Carpenter, K. L., Wills, A. J., Benattayallah, A., & Milton, F. (2016). A Comparison of the neural correlates that underlie rule-based and information-integration category learning. Humman Brain Mapping, 37(10), 3557–3574. [Google Scholar] [CrossRef]
- Craig, S., & Lewandowsky, S. (2012). Whichever way you choose to categorize, working memory helps you learn. Quarterly Journal of Experiment Psychology (Hove), 65(3), 439–464. [Google Scholar] [CrossRef]
- Curran, T., & Keele, S. W. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(1), 189–202. [Google Scholar] [CrossRef]
- Derawi, H., Roark, C. L., & Gabay, Y. (2023). Procedural auditory category learning is selectively disrupted in developmental language disorder. Psychonomic Bulletin & Review, 31(3), 1181–1192. [Google Scholar] [CrossRef]
- Feldman, J., Kerr, B., & Streisscuth, A. P. (1995). Correlational analyses of procedural and declarative learning performance. Intelligence, 20, 87–114. [Google Scholar]
- Frensch, P. A., Lin, J., & Buchner, A. (1998). Learning versus behavioral expression of the learned: The effects of a secondary tone-counting task on implicit learning in the serial reaction time task. Psychological Research, 61(1), 119–133. [Google Scholar]
- Gabay, Y., Roark, C. L., & Holt, L. L. (2023). Impaired and Spared auditory category learning in developmental dyslexia. Psychology Science, 34(4), 468–480. [Google Scholar] [CrossRef]
- Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory: Correlated or complicated? Cortex, 49(8), 2001–2006. [Google Scholar] [CrossRef]
- Jiménez, L., & Méndez, C. (2001). Implicit sequence learning with competing explicit cues. Quarterly Journal of Experimental Psychology Section A, 54(2), 345–369. [Google Scholar] [CrossRef]
- Jiménez, L., & Vázquez, G. A. (2005). Sequence learning under dual-task conditions: Alternatives to a resource-based account. Psychological Research Psychologische Forschung, 69(5–6), 352–368. [Google Scholar] [CrossRef]
- Kaufman, S. B., Deyoung, C. G., Gray, J. R., Jimenez, L., Brown, J., & Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116(3), 321–340. [Google Scholar] [CrossRef] [PubMed]
- Koenig, P., Smith, E. E., Glosser, G., DeVita, C., Moore, P., McMillan, C., Gee, J., & Grossman, M. (2005). The neural basis for novel semantic categorization. Neuroimage, 24(2), 369–383. [Google Scholar] [CrossRef]
- Lewandowsky, S., Yang, L. X., Newell, B. R., & Kalish, M. L. (2012). Working memory does not dissociate between different perceptual categorization tasks. Journal of Experiment Psychology: Learning, Memory, and Cognition, 38(4), 881–904. [Google Scholar] [CrossRef]
- Li, W., Yin, J., Wang, X., & Yuan, B. (2023). The role of cross-situational stimulus generalization in the formation of trust towards face: A perspective based on direct and observational learning. Acta Psychologica Sinica, 55(7), 199. [Google Scholar] [CrossRef]
- Little, D. R., Nosofsky, R., & Denton, S. E. (2011). Response-time tests of logical-rule models of categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1–27. [Google Scholar]
- Lloyd, K., Sanborn, A., Leslie, D., & Lewandowsky, S. (2019). Why Higher working memory capacity may help you learn: Sampling, search, and degrees of approximation. Cognitive Science, 43(12), e12805. [Google Scholar] [CrossRef]
- Maddox, W. T., Chandrasekaran, B., Smayda, K., & Yi, H. G. (2013). Dual systems of speech category learning across the lifespan. Psychology and Aging, 28(4), 1042–1056. [Google Scholar] [CrossRef]
- Maddox, W. T., Chandrasekaran, B., Smayda, K., Yi, H. G., Koslov, S., & Beevers, C. G. (2014). Elevated depressive symptoms enhance reflexive but not reflective auditory category learning. Cortex, 58, 186–198. [Google Scholar] [CrossRef]
- Maddox, W. T., Davia Ing, A., & Lauritzen, J. S. (2006). Stimulus modality interacts with category structure in perceptual category learning. Perceptual Psychophys, 68(7), 1176–1190. [Google Scholar]
- McHaney, J. R., Tessmer, R., Roark, C. L., & Chandrasekaran, B. (2021). Working memory relates to individual differences in speech category learning: Insights from computational modeling and pupillometry. Brain and Language, 222, 105010. [Google Scholar] [CrossRef] [PubMed]
- Miles, S. J., & Minda, J. P. (2011). The effects of concurrent verbal and visual tasks on category learning. Journal of Experiment Psychology: Learning, Memory and Cognition, 37(3), 588–607. [Google Scholar] [CrossRef]
- Milton, F., Wills, A. J., & Hodgson, T. L. (2009). The neural basis of overall similarity and single-dimension sorting. Neuroimage, 46(1), 319–326. [Google Scholar] [CrossRef]
- Nemeth, D., Csabi, E., Janacsek, K., Varszegi, M., & Mari, Z. (2012). Intact implicit probabilistic sequence learning in obstructive sleep apnea. Journal of Sleep Research, 21(4), 396–401. [Google Scholar] [CrossRef] [PubMed]
- Nomura, E. M., Maddox, W. T., Filoteo, J. V., Ing, A. D., Gitelman, D. R., Parrish, T. B., Mesulam, M.-M., & Reber, P. J. (2007). Neural correlates of rule-based and information-integration visual category learning. Cerebral Cortex, 17(1), 37–43. [Google Scholar] [CrossRef] [PubMed]
- Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception model of classification learning. Psychological Review, 101(1), 53–79. [Google Scholar]
- Paulon, G., Llanos, F., Chandrasekaran, B., & Sarkar, A. (2020). Bayesian Semiparametric longitudinal drift-diffusion mixed models for tone learning in adults. Jorunal of the American Statistical Association, 116(535), 1114–1127. [Google Scholar]
- Rabi, R., Miles, S. J., & Minda, J. M. (2015). Learning categories via rules and similarity: Comparing adults and children. Journal of Experimental Child Psychology, 131, 149–169. [Google Scholar] [CrossRef]
- Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108. [Google Scholar]
- Ratcliff, R., & Mckoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922. [Google Scholar]
- Roark, C. L., Thakkar, V., Chandrasekaran, B., & Centanni, T. M. (2024). Auditory category learning in children with dyslexia. Journal of Speech, Language, and Hearing Research, 67(3), 974–988. [Google Scholar] [CrossRef] [PubMed]
- Sefcsik, T., Nemeth, D., Janacsek, K., Hoffmann, I., Scialabba, J., Klivenyi, P., Ambrus, G. G., Haden, G., & Vecsei, L. (2009). The role of the putamen in cognitive functions—A case study. Learning & Perception, 1(2), 215–227. [Google Scholar] [CrossRef]
- Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual Review of Neuroscience, 33, 203–219. [Google Scholar] [CrossRef]
- Smith, J. D., Johnston, J. J., Musgrave, R. D., Zakrzewski, A. C., Boomer, J., Church, B. A., & Ashby, F. G. (2014). Cross-modal information integration in category learning. Attention Perception Psychophys, 76(5), 1473–1484. [Google Scholar] [CrossRef]
- Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(6), 1411–1436. [Google Scholar]
- Souza, A. S., Roark, C. L., Paulon, G., Rebaudo, G., McHaney, J. R., Sarkar, A., & Chandrasekaran, B. (2024). Individual differences in working memory impact the trajectory of non-native speech category learning. PLoS ONE, 19(6), e0297917. [Google Scholar] [CrossRef]
- Unsworth, N., & Engle, R. W. (2005). Individual differences in working memory capacity and learning Evidence from the serial reaction time task. Memory & Cognition, 33(2), 213–220. [Google Scholar]
- Verguts, V., & Fias, W. (2009). Similarity and rules united: Similarity- and rule-based processing in a single neural network. Cognitive Science, 33, 243–259. [Google Scholar]
- Vicari, S., Verucci, L., & Carlesimo, G. A. (2007). Implicit memory is independent from IQ and age but not from etiology: Evidence from down and williams syndromes. Journal of Intellectual Disability Research, 51(12), 932–941. [Google Scholar] [CrossRef]
- Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7, 14. [Google Scholar] [CrossRef]
- Wu, J., & Fu, Q. (2021). The role of working memory and visual processing in prototype category learning. Consciousness and Cognition, 94, 103176. [Google Scholar] [CrossRef]
- Wu, J., Fu, Q., & Rose, M. (2020). Stimulus modality influences the acquisition and use of the rule-based strategy and the similarity-based strategy in category learning. Neurobiology of Learning and Memory, 168, 107152. [Google Scholar] [CrossRef]
- Wu, J., Fu, Q., Zhou, X., & Sun, X. (2018). The effect of presenting mode of different features on the acquisition of rule-based and similarity-based knowledge in category learning. Psychological Science, 41(5), 1031–1038. [Google Scholar] [CrossRef]
- Zeithamova, D., & Maddox, W. T. (2006). Dual-task interference in perceptual category learning. Memory & Cognition, 34, 387–398. [Google Scholar]
- Zeithamova, D., & Maddox, W. T. (2007). The role of visuospatial and verbal working memory in perceptual category learning. Memory & Cognition, 35(6), 1380–1398. [Google Scholar]
Category | M1 | M2 | S1 | S2 | r |
---|---|---|---|---|---|
Rule-based | |||||
A | 200 ms | 800 Hz | 30 | 30 | 0 |
B | 900 ms | 800 Hz | 30 | 30 | 0 |
Information-integration | |||||
A1 | 100 ms | 623 Hz | 30 | 30 | 0 |
A2 | 300 ms | 829 Hz | 30 | 30 | 0 |
A3 | 500 ms | 1115 Hz | 30 | 30 | 0 |
A4 | 700 ms | 1361 Hz | 30 | 30 | 0 |
B1 | 200 ms | 426 Hz | 30 | 30 | 0 |
B2 | 400 ms | 692 Hz | 30 | 30 | 0 |
B3 | 600 ms | 938 Hz | 30 | 30 | 0 |
B4 | 800 ms | 1180 Hz | 30 | 30 | 0 |
Model | UD | CJ | II | RAN | ||||
---|---|---|---|---|---|---|---|---|
PoP | ACC | PoP | ACC | PoP | ACC | PoP | ACC | |
RB Control | 0.92 | 0.93 | 0.08 | 0.98 | - | - | - | - |
RB Dual Task | 0.59 | 0.88 | 0.41 | 0.80 | - | - | - | - |
II Control | 0.45 | 0.67 | 0.23 | 0.59 | 0.32 | 0.60 | - | - |
II Dual Task | 0.68 | 0.53 | 0.32 | 0.53 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Lu, J.; Che, Z.; Li, S. The Effect of Concurrent Auditory Working Memory Task in Auditory Category Learning. Behav. Sci. 2025, 15, 440. https://doi.org/10.3390/bs15040440
Wu J, Lu J, Che Z, Li S. The Effect of Concurrent Auditory Working Memory Task in Auditory Category Learning. Behavioral Sciences. 2025; 15(4):440. https://doi.org/10.3390/bs15040440
Chicago/Turabian StyleWu, Jie, Jianghong Lu, Zixuan Che, and Siying Li. 2025. "The Effect of Concurrent Auditory Working Memory Task in Auditory Category Learning" Behavioral Sciences 15, no. 4: 440. https://doi.org/10.3390/bs15040440
APA StyleWu, J., Lu, J., Che, Z., & Li, S. (2025). The Effect of Concurrent Auditory Working Memory Task in Auditory Category Learning. Behavioral Sciences, 15(4), 440. https://doi.org/10.3390/bs15040440