Human Cognitive Architecture as an Intelligent Natural Information Processing System
Abstract
:1. Introduction
2. Human Cognition as an Intelligent Natural Information Processing System
2.1. Explicit Intention to Learn Principle as a Determinant of Evolutionary Domains of Operation of Other Principles
2.1.1. Information Processing in Biologically Primary Domains
2.1.2. Information Processing in Biologically Secondary Domains
3. Educational Implications of the Updated Model of Human Cognitive Architecture
Educational Approaches to Strengthening Human Intelligence
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amici, F., Aureli, F., & Call, J. (2008). Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology, 18, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Amici, F., Call, J., Watzek, J., Brosnan, S., & Aureli, F. (2018). Social inhibition and behavioural flexibility when the context changes: A comparison across six primate species. Scientific Reports, 8, 3067. [Google Scholar] [CrossRef] [PubMed]
- Barrouillet, P. (2011). Dual-process theories and cognitive development: Advances and challenges. Developmental Review, 31, 79–85. [Google Scholar] [CrossRef]
- Bjork, R. A., & Bjork, E. L. (2020). Desirable difficulties in theory and practice. Journal of Applied Research in Memory and Cognition, 9(4), 475–479. [Google Scholar] [CrossRef]
- Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and illusions. Annual Review of Psychology, 64, 417–444. [Google Scholar] [CrossRef]
- Bjorklund, D. F., & Bering, J. M. (2003). A note on the development of deferred imitation in enculturated juvenile chimpanzees (Pan troglodytes). Developmental Review, 23(3), 389–412. [Google Scholar] [CrossRef]
- Burgoyne, A. P., & Engle, R. W. (2020). Attention control: A cornerstone of higher-order cognition. Current Directions in Psychological Science, 29(6), 624–630. [Google Scholar] [CrossRef]
- Carruthers, P., & Williams, D. M. (2022). Model-free metacognition. Cognition, 225, 105117. [Google Scholar] [CrossRef]
- Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1–22. [Google Scholar] [CrossRef]
- Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163–183. [Google Scholar] [CrossRef]
- Dick, S. J. (2003). Cultural evolution, the postbiological universe and SETI. International Journal of Astrobiology, 2(1), 65–74. [Google Scholar] [CrossRef]
- Dick, S. J. (2008). The postbiological universe. Acta Astronautica, 62, 499–504. [Google Scholar] [CrossRef]
- Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11, 19–23. [Google Scholar] [CrossRef]
- Ericsson, K. A. (2006). The influence of experience and deliberate practice on the development of superior expert performance. In K. A. Ericsson, N. Charness, P. Feltovich, & R. Hoffman (Eds.), The Cambridge handbook of expertise and expert performance (pp. 683–704). Cambridge University Press. [Google Scholar]
- Evans, J. S. B. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–278. [Google Scholar] [CrossRef]
- Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8(3), 223–241. [Google Scholar] [CrossRef] [PubMed]
- Geary, D. C. (2005). The origin of mind: Evolution of brain, cognition, and general intelligence. American Psychological Association. [Google Scholar]
- Geary, D. C. (2007). Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology. In J. S. Carlson, & J. R. Levin (Eds.), Psychological perspectives on contemporary educational issues (pp. 1–99). Information Age Publishing. [Google Scholar]
- Geary, D. C. (2008). An evolutionarily informed education science. Educational Psychologist, 43, 179–195. [Google Scholar] [CrossRef]
- Gignac, G. E., & Szodorai, E. T. (2024). Defining intelligence: Bridging the gap between human and artificial perspectives. Intelligence, 104, 101832. [Google Scholar] [CrossRef]
- Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24(1), 13–23. [Google Scholar] [CrossRef]
- Hagemann, D., Ihmels, M., Bast, N., Neubauer, A. B., Schankin, A., & Schubert, A. L. (2023). Fluid intelligence is (much) more than working memory capacity: An experimental analysis. Journal of Intelligence, 11(4), 70. [Google Scholar] [CrossRef]
- Henrich, J., & Muthukrishna, M. (2021). The origins and psychology of human cooperation. Annual Review of Psychology, 72, 207–240. [Google Scholar] [CrossRef]
- Kalyuga, S. (2023). Evolutionary perspective on human cognitive architecture in cognitive load theory: A dynamic, emerging-principles approach. Educational Psychology Review, 35, 91. [Google Scholar] [CrossRef]
- Kalyuga, S. (2025). Evolutionary perspective on intelligence in natural and artificial information processing systems. Evolutionary Behavioral Sciences, in press. [Google Scholar]
- Kane, M., & Engle, R. W. (2002). The role of prefrontal cortex in working memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637–671. [Google Scholar]
- Kapur, M. (2008). Productive failure. Cognition and Instruction, 26, 379–424. [Google Scholar] [CrossRef]
- Legg, S., & Hutter, M. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications, 157, 17–24. [Google Scholar]
- Lespiau, F., & Tricot, A. (2022a). Primary vs. secondary knowledge contents in reasoning: Motivated and efficient vs. overburdened. Acta Psyhologica, 277, 103610. [Google Scholar] [CrossRef]
- Lespiau, F., & Tricot, A. (2022b). Using primary knowledge in unpopular statistics exercises. Educational Psychology Review, 34(4), 2297–2322. [Google Scholar] [CrossRef]
- Lind, J., Vinken, V., Jonsson, M., Ghirlanda, S., & Enquist, M. (2023). A test of memory for stimulus sequences in great apes. PLoS ONE, 18(9), e0290546. [Google Scholar] [CrossRef]
- Newell, A., & Simon, H. A. (1972). Human problem solving. Prentice-Hall. [Google Scholar]
- Pachman, M., Sweller, J., & Kalyuga, S. (2014). Effectiveness of combining worked examples and deliberate practice for high school geometry. Applied Cognitive Psychology, 28, 685–692. [Google Scholar] [CrossRef]
- Polya, G. (1945). How to solve it. Princeton University Press. [Google Scholar]
- Read, D. W., Manrique, H. M., & Walker, M. J. (2022). On the working memory of humans and great apes: Strikingly similar or remarkably different? Neuroscience & Biobehavioral Reviews, 134, 104496. [Google Scholar] [CrossRef]
- Sweller, J. (2003). Evolution of human cognitive architecture. In B. Ross (Ed.), The psychology of learning and motivation (Vol. 43, pp. 215–266). Academic Press. [Google Scholar]
- Sweller, J. (2012). Human cognitive architecture: Why some instructional procedures work and others do not. In K. R. Harris, S. Graham, T. Urdan, C. B. McCormick, G. M. Sinatra, & J. Sweller (Eds.), APA educational psychology handbook, Vol. 1. theories, constructs, and critical issues (pp. 295–325). American Psychological Association. [Google Scholar]
- Sweller, J. (2022). The role of evolutionary psychology in our understanding of human cognition: Consequences for cognitive load theory and instructional procedures. Educational Psychology Review, 34, 2229–2241. [Google Scholar] [CrossRef]
- Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer. [Google Scholar]
- Sweller, J., & Sweller, S. (2006). Natural information processing systems. Evolutionary Psychology, 4, 434–458. [Google Scholar] [CrossRef]
- Tegmark, M. (2017). Life 3.0: Being human in the age of artificial intelligence. Alfred A. Knopf. [Google Scholar]
- Tomasello, M. (2023). Social cognition and metacognition in great apes: A theory. Animal Cognition, 26, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, M., & Herrmann, E. (2015). Focusing and shifting attention in human children (Homo sapiens) and chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 129(3), 268–274. [Google Scholar]
- Vlamings, P. H. J. M., Hare, B., & Call, J. (2010). Reaching around barriers: The performance of the great apes and 3–5-year-old children. Animal Cognition, 13, 273–285. [Google Scholar] [CrossRef]
- Whiten, A., & van Schaik, C. P. (2007). The evolution of animal ‘cultures’ and social intelligence. Philosophical Transactions of the Royal Society B (Biological Sciences), 362(1480), 603–620. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalyuga, S. Human Cognitive Architecture as an Intelligent Natural Information Processing System. Behav. Sci. 2025, 15, 332. https://doi.org/10.3390/bs15030332
Kalyuga S. Human Cognitive Architecture as an Intelligent Natural Information Processing System. Behavioral Sciences. 2025; 15(3):332. https://doi.org/10.3390/bs15030332
Chicago/Turabian StyleKalyuga, Slava. 2025. "Human Cognitive Architecture as an Intelligent Natural Information Processing System" Behavioral Sciences 15, no. 3: 332. https://doi.org/10.3390/bs15030332
APA StyleKalyuga, S. (2025). Human Cognitive Architecture as an Intelligent Natural Information Processing System. Behavioral Sciences, 15(3), 332. https://doi.org/10.3390/bs15030332