Estimating the Minimum Sample Size for Neural Network Model Fitting—A Monte Carlo Simulation Study
Abstract
:1. Introduction
1.1. Neural Network Application in Psychological Studies
1.2. Previous Studies in Neural Network Sample Size Planning
2. Design
2.1. Dataset Simulation Design
2.2. Neural Network Design
2.2.1. Neural Network Shape
2.2.2. Learning Rate
2.2.3. Patience
2.2.4. Batch Size
2.3. Criteria for Adequate Sample Size in Neural Network Model Fitting
2.3.1. The Criterion Based on the Theoretical Maximum Performance
2.3.2. The Criterion Based on Outperforming of the Linear Model
2.4. General Simulation Design
3. Results
3.1. Criterion Based on the Theoretical Maximum Performance
3.2. Criterion Based on the Outperforming of the Linear Model
4. Discussion, Limitations, and Further Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Formula of Simulations
Variable Names | Meaning of the Variables |
---|---|
The simulated continuous IVs, which serves as the true value of IVs, | |
in which i stands for | |
The Likertized IVs from x_i, which serves as the observed value of IVs, | |
in which i stands for | |
theoretical maximum explainable variance | |
explainable variance by NN model |
References
- Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., . . . Zheng, X. (2016). Tensorflow: A system for large-scale machine learning. In 12th usenix symposium on operating systems design and implementation (osdi 16) (pp. 265–283). USENIX Association. [Google Scholar]
- Almeida, J. S. (2002). Predictive non-linear modeling of complex data by artificial neural networks. Current Opinion in Biotechnology, 13(1), 72–76. [Google Scholar] [CrossRef]
- Alwosheel, A., van Cranenburgh, S., & Chorus, C. G. (2018). Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. Journal of Choice Modelling, 28, 167–182. [Google Scholar] [CrossRef]
- Bainter, S. A., McCauley, T. G., Fahmy, M. M., Goodman, Z. T., Kupis, L. B., & Rao, J. S. (2023). Comparing bayesian variable selection to lasso approaches for applications in psychology. Psychometrika, 88(3), 1032–1055. [Google Scholar] [CrossRef]
- Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach’s alpha. BMJ, 314(7080), 572. [Google Scholar] [CrossRef] [PubMed]
- Bonett, D. G., & Wright, T. A. (2015). Cronbach’s alpha reliability: Interval estimation, hypothesis testing, and sample size planning. Journal of Organizational Behavior, 36(1), 3–15. [Google Scholar] [CrossRef]
- Chen, J., Wolfe, C., Li, Z., & Kyrillidis, A. (2022, May 23–27). Demon: Improved neural network training with momentum decay. Icassp 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3958–3962), Singapore. [Google Scholar]
- Cho, J., Lee, K., Shin, E., Choy, G., & Do, S. (2015). How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv, arXiv:1511.06348. [Google Scholar]
- Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. P. (2020). Introduction to machine learning, neural networks, and deep learning. Translational Vision Science & Technology, 9(2), 14. [Google Scholar]
- Chollet, F. (2023). Keras: The python deep learning library. Available online: https://keras.io/ (accessed on 6 February 2025).
- Chua, L. O. (1997). CNN: A vision of complexity. International Journal of Bifurcation and Chaos, 7(10), 2219–2425. [Google Scholar] [CrossRef]
- Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29. [Google Scholar] [CrossRef] [PubMed]
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4), 303–314. [Google Scholar] [CrossRef]
- Daoud, M., & Mayo, M. (2019). A survey of neural network-based cancer prediction models from microarray data. Artificial Intelligence in Medicine, 97, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J. F., & Richter, A. W. (2006). Probing three-way interactions in moderated multiple regression: Development and application of a slope difference test. Journal of Applied Psychology, 91(4), 917. [Google Scholar] [CrossRef] [PubMed]
- Donda, K., Zhu, Y., Merkel, A., Wan, S., & Assouar, B. (2022). Deep learning approach for designing acoustic absorbing metasurfaces with high degrees of freedom. Extreme Mechanics Letters, 56, 101879. [Google Scholar] [CrossRef]
- Doornenbal, B. (2021). Big Five personality as a predictor of health: Shortening the questionnaire through the elastic net. Current Issues in Personality Psychology, 9(2), 159–164. [Google Scholar] [CrossRef] [PubMed]
- Dufour, M.-M., Lanovaz, M. J., & Cardinal, P. (2020). Artificial intelligence for the measurement of vocal stereotypy. Journal of the Experimental Analysis of Behavior, 114(3), 368–380. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91–118. [Google Scholar] [CrossRef]
- Einfeld, S. L., & Tonge, B. J. (1995). The developmental behavior checklist: The development and validation of an instrument to assess behavioral and emotional disturbance in children and adolescents with mental retardation. Journal of Autism and Developmental Disorders, 25(2), 81–104. [Google Scholar] [CrossRef]
- Eng, J. (2003). Sample size estimation: How many individuals should be studied? Radiology, 227(2), 309–313. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, Erten, G., Bozkurt Keser, S., & Yavuz, M. (2021). Grid search optimised artificial neural network for open stope stability prediction. International Journal of Mining, Reclamation and Environment, 35(8), 600–617. [Google Scholar] [CrossRef]
- Florio, T., Einfeld, S., Tonge, B., & Brereton, A. (2009). Providing an independent second opinion for the diagnosis of autism using artificial intelligence over the internet. Couns, Psycho Health Use Technol Mental Health, 5, 232–248. [Google Scholar]
- Franchini, G., Verucchi, M., Catozzi, A., Porta, F., & Prato, M. (2022). Biomedical image classification via dynamically early stopped artificial neural network. Algorithms, 15(10), 386. [Google Scholar] [CrossRef]
- Freedman, L. S., Schatzkin, A., & Wax, Y. (1990). The impact of dietary measurement error on planning sample size required in a cohort study. American Journal of Epidemiology, 132(6), 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Freund, Y. (1998). An introduction to boosting based classification. In Proceedings of the AT&T conference on quantitative analysis (pp. 80–91). Citeseer. [Google Scholar]
- Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18(3), 233–239. [Google Scholar] [CrossRef] [PubMed]
- Guastello, S. J. (2001). Nonlinear dynamics in psychology. Discrete Dynamics in Nature and Society, 6(1), 11–29. [Google Scholar] [CrossRef]
- Haykin, S. (2009). Neural networks and learning machines, 3/e. Pearson Education India. [Google Scholar]
- Hazra, A. (2017). Using the confidence interval confidently. Journal of Thoracic Disease, 9(10), 4125. [Google Scholar] [CrossRef]
- Ho, Y.-W., Rawat, T. S., Yang, Z.-K., Pratik, S., Lai, G.-W., Tu, Y.-L., & Lin, A. (2021). Neuroevolution-based efficient field effect transistor compact device models. IEEE Access, 9, 159048–159058. [Google Scholar] [CrossRef]
- Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67. [Google Scholar] [CrossRef]
- Jaccard, J., Wan, C. K., & Turrisi, R. (1990). The detection and interpretation of interaction effects between continuous variables in multiple regression. Multivariate Behavioral Research, 25(4), 467–478. [Google Scholar] [CrossRef]
- Jacobucci, R., & Grimm, K. J. (2020). Machine learning and psychological research: The unexplored effect of measurement. Perspectives on Psychological Science, 15(3), 809–816. [Google Scholar] [CrossRef] [PubMed]
- Kandel, I., & Castelli, M. (2020). The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT Express, 6(4), 312–315. [Google Scholar] [CrossRef]
- Kavzoglu, T., & Mather, P. M. (2003). The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24(23), 4907–4938. [Google Scholar] [CrossRef]
- Khaldi, R., El Afia, A., Chiheb, R., & Tabik, S. (2023). What is the best RNN-cell structure to forecast each time series behavior? Expert Systems with Applications, 215, 119140. [Google Scholar] [CrossRef]
- Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv, arXiv:1412.6980. [Google Scholar]
- Koul, A., Becchio, C., & Cavallo, A. (2018). Cross-validation approaches for replicability in psychology. Frontiers in Psychology, 9, 1117. [Google Scholar] [CrossRef] [PubMed]
- Kühberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in psychology: A diagnosis based on the correlation between effect size and sample size. PLoS ONE, 9(9), e105825. [Google Scholar] [CrossRef]
- Levin, J. R., & Subkoviak, M. J. (1977). Planning an experiment in the company of measurement error. Applied Psychological Measurement, 1(3), 331–338. [Google Scholar] [CrossRef]
- Li, J. C.-H. (2018). Curvilinear moderation—A more complete examination of moderation effects in Behavioral sciences. Frontiers in Applied Mathematics and Statistics, 4, 7. [Google Scholar] [CrossRef]
- Liddy, E. D. (2001). Natural language processing. Syracuse University. [Google Scholar]
- Liu, L., Preotiuc-Pietro, D., Samani, Z. R., Moghaddam, M. E., & Ungar, L. (2016). Analyzing personality through social media profile picture choice. In Proceedings of the tenth international AAAI conference on web and social media. AAAI Press. [Google Scholar]
- Liu, B., Wei, Y., Zhang, Y., & Yang, Q. (2017). Deep neural networks for high dimension, low sample size data. IJCAI, 2017, 2287–2293. [Google Scholar]
- Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103(3), 391. [Google Scholar] [CrossRef]
- Marshall, D. B., & English, D. J. (2000). Neural network modeling of risk assessment in child protective services. Psychological Methods, 5(1), 102. [Google Scholar] [CrossRef]
- Matel, E., Vahdatikhaki, F., Hosseinyalamdary, S., Evers, T., & Voordijk, H. (2022). An artificial neural network approach for cost estimation of engineering services. International Journal of Construction Management, 22(7), 1274–1287. [Google Scholar] [CrossRef]
- Mathieu, J. E., Aguinis, H., Culpepper, S. A., & Chen, G. (2012). Understanding and estimating the power to detect cross-level interaction effects in multilevel modeling. Journal of Applied Psychology, 97(5), 951. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S. E. (2000). Sample size and multiple regression analysis. Psychological Methods, 5(4), 434. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and accuracy in parameter estimation. Annual Review of Psychology, 59, 537–563. [Google Scholar] [CrossRef] [PubMed]
- Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., & Khudanpur, S. (2011, May 22–27). Extensions of recurrent neural network language model. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5528–5531), Prague, Czech Republic. [Google Scholar]
- Pecher, B., Srba, I., & Bielikova, M. (2024). A survey on stability of learning with limited labelled data and its sensitivity to the effects of randomness. ACM Computing Surveys, 57(1), 1–40. [Google Scholar]
- Peng, C., Xiao, T., Li, Z., Jiang, Y., Zhang, X., Jia, K., Yu, G., & Sun, J. (2018). Megdet: A large mini-batch object detector. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6181–6189). IEEE. [Google Scholar]
- Pilgrim, M., & Willison, S. (2009). Dive into python 3 (Vol. 2). Springer. [Google Scholar]
- Rajput, D., Wang, W.-J., & Chen, C.-C. (2023). Evaluation of a decided sample size in machine learning applications. BMC bioinformatics, 24(1), 48. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, R., Wang, C., David, B., & Xing, E. (2013). An adaptive learning rate for stochastic variational inference. In International conference on machine learning (pp. 298–306). PMLR. [Google Scholar]
- Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation, 29(9), 2352–2449. [Google Scholar] [CrossRef]
- Richardson, J., Paxton, A., & Kuznetsov, N. (2017). Nonlinear methods for understanding complex dynamical phenomena in psychological science. Psychological Science Agenda, 31, 1–9. [Google Scholar]
- Riley, R. D., Snell, K. I., Ensor, J., Burke, D. L., Harrell, F. E., Jr., Moons, K. G., & Collins, G. S. (2019). Minimum sample size for developing a multivariable prediction model: Part I–Continuous outcomes. Statistics in Medicine, 38(7), 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Romanyuk, V. V. (2016). Training data expansion and boosting of convolutional neural networks for reducing the MNIST dataset error rate. Research Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 6, 29–34. [Google Scholar] [CrossRef]
- Rooij, M., & Weeda, W. (2020). Cross-validation: A method every psychologist should know. Advances in Methods and Practices in Psychological Science, 3(2), 248–263. [Google Scholar] [CrossRef]
- Rosenbusch, H., Soldner, F., Evans, A. M., & Zeelenberg, M. (2021). Supervised machine learning methods in psychology: A practical introduction with annotated R code. Social and Personality Psychology Compass, 15(2), e12579. [Google Scholar] [CrossRef]
- Schmidt, F. L., & Hunter, J. E. (1996). Measurement error in psychological research: Lessons from 26 research scenarios. Psychological Methods, 1(2), 199. [Google Scholar] [CrossRef]
- Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47(5), 609–612. [Google Scholar] [CrossRef]
- Terry, J. K., Jayakumar, M., & De Alwis, K. (2021). Statistically significant stopping of neural network training. arXiv, arXiv:2103.01205. [Google Scholar]
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267–288. [Google Scholar] [CrossRef]
- Tripathi, M. (2021). Facial image noise classification and denoising using neural network. Sustainable Engineering and Innovation, 3(2), 102–111. [Google Scholar] [CrossRef]
- Tsamardinos, I., Rakhshani, A., & Lagani, V. (2015). Performance-estimation properties of cross-validation-based protocols with simultaneous hyper-parameter optimization. International Journal on Artificial Intelligence Tools, 24(05), 1540023. [Google Scholar] [CrossRef]
- Wei, M., Heppner, P. P., Mallen, M. J., Ku, T.-Y., Liao, K. Y.-H., & Wu, T.-F. (2007). Acculturative stress, perfectionism, years in the United States, and depression among Chinese international students. Journal of Counseling Psychology, 54(4), 385. [Google Scholar] [CrossRef]
- Witten, I. H., Frank, E., Hall, M. A., Pal, C. J., & DATA, M. (2005). Practical machine learning tools and techniques. In Data mining (Vol. 2). Elsevier. [Google Scholar]
- Wu, Y., Liu, L., Bae, J., Chow, K.-H., Iyengar, A., Pu, C., Wei, W., Yu, L., & Zhang, Q. (2019, December 9–12). Demystifying learning rate policies for high accuracy training of deep neural networks. 2019 IEEE International Conference on Big Data (Big Data) (pp. 1971–1980), Los Angeles, CA, USA. [Google Scholar]
- Xiong, Y., & Schneider, J. B. (1992). Transportation network design using a cumulative genetic algorithm and neural network. Transportation Research Record, 37–44. [Google Scholar]
- Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. [Google Scholar] [CrossRef]
- Yong, H., Huang, J., Meng, D., Hua, X., & Zhang, L. (2020). Momentum batch normalization for deep learning with small batch size. In Computer vision–ECCV 2020: 16th european conference, Glasgow, UK, August 23–28, 2020, proceedings, part XII 16 (pp. 224–240). Springer International Publishing. [Google Scholar]
- Yoo, J. E. (2018). TIMSS 2011 student and teacher predictors for mathematics achievement explored and identified via elastic net. Frontiers in Psychology, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- You, Y., Gitman, I., & Ginsburg, B. (2017). Scaling sgd batch size to 32k for imagenet training. arXiv, arXiv:1708.03888. [Google Scholar]
- Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications. arXiv, arXiv:2003.05689. [Google Scholar]
- Zalake, N., & Naik, G. (2019, January 8). Generative chat bot implementation using deep recurrent neural networks and natural language understanding. Proceedings 2019: Conference on Technologies for Future Cities, Navi Mumbai, India. [Google Scholar]
- Zeinalizadeh, N., Shojaie, A. A., & Shariatmadari, M. (2015). Modeling and analysis of bank customer satisfaction using neural networks approach. International Journal of Bank Marketing, 33(6), 717–732. [Google Scholar] [CrossRef]
- Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., & Daniel, L. (2018). Efficient neural network robustness certification with general activation functions. Advances in Neural Information Processing Systems, 31, 4944–4953. [Google Scholar]
- Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2), 301–320. [Google Scholar] [CrossRef]
Cond | 1 | 19 | 26 | 38 | 98 |
---|---|---|---|---|---|
Lp1000 | 0.9392 | 0.7884 | 0.4269 | 0.9590 | 0.1774 |
Lp2500 | 0.9618 | 0.8928 | 0.6477 | 0.9750 | 0.5197 |
Lp5000 | 0.9726 | 0.9197 | 0.7760 | 0.9815 | 0.6566 |
Lp10000 | 0.9813 | 0.9454 | 0.8486 | 0.9882 | 0.7479 |
lp20000 | 0.9882 | 0.9620 | 0.8885 | 0.9924 | 0.8455 |
Lp25000 | 0.9649 | 0.9023 | 0.8424 | ||
Lp30000 | 0.9667 | 0.9111 | 0.8538 | ||
Lp35000 | 0.9714 | 0.9090 | 0.8593 | ||
Lp40000 | 0.9706 | 0.9258 | 0.8808 | ||
Lp45000 | 0.9748 | 0.9208 | 0.8697 | ||
Lp50000 | 0.9765 | 0.9312 | 0.8761 | ||
Up1000 | 1.0325 | 1.1462 | 1.3220 | 1.0173 | 1.4159 |
Up2500 | 1.0197 | 1.0977 | 1.1837 | 1.0110 | 1.2486 |
Up5000 | 1.0155 | 1.0632 | 1.1413 | 1.0094 | 1.1807 |
Up10000 | 1.0124 | 1.0480 | 1.0929 | 1.0064 | 1.1430 |
Up20000 | 1.0084 | 1.0337 | 1.0710 | 1.0052 | 1.0994 |
Up25000 | 1.0276 | 1.0553 | 1.0679 | ||
Up30000 | 1.0272 | 1.0568 | 1.0578 | ||
Up35000 | 1.0248 | 1.0439 | 1.0480 | ||
Up40000 | 1.0221 | 1.0437 | 1.0488 | ||
Up45000 | 1.0221 | 1.0424 | 1.0457 | ||
Up50000 | 1.0213 | 1.0410 | 1.0463 | ||
Above1000 | 0.6260 | 0.2780 | 0.1710 | 0.5810 | 0.3970 |
Above2500 | 0.8640 | 0.3110 | 0.0880 | 0.8860 | 0.3190 |
Above5000 | 0.9720 | 0.4210 | 0.1250 | 0.9740 | 0.2350 |
Above10000 | 0.9950 | 0.4820 | 0.1830 | 0.9940 | 0.2050 |
Above20000 | 0.9980 | 0.5870 | 0.4050 | 0.9990 | 0.2250 |
Above25000 | 0.7110 | 0.6430 | 0.1660 | ||
Above30000 | 0.7950 | 0.7010 | 0.1460 | ||
Above35000 | 0.8000 | 0.7420 | 0.1500 | ||
Above40000 | 0.8630 | 0.7650 | 0.1400 | ||
Above45000 | 0.8910 | 0.8210 | 0.1670 | ||
Above50000 | 0.9120 | 0.8350 | 0.1540 |
Cond | Complex | Linear | Nonliner | Error | IVnumber | MSSRR | MSSRA | |
---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 3 | 0.7193 | 1000 | 2500 |
2 | 2 | 1 | 1 | 1 | 3 | 0.8335 | 1000 | 5000 |
3 | 3 | 1 | 1 | 1 | 3 | 0.8764 | 1000 | 1000 |
4 | 1 | 1 | 2 | 1 | 3 | 0.8639 | 1000 | 1000 |
5 | 2 | 1 | 2 | 1 | 3 | 0.9009 | 1000 | 1000 |
6 | 3 | 1 | 2 | 1 | 3 | 0.9042 | 1000 | 1000 |
7 | 1 | 2 | 1 | 1 | 3 | 0.8161 | 1000 | 5000 |
8 | 2 | 2 | 1 | 1 | 3 | 0.8546 | 1000 | 5000 |
9 | 3 | 2 | 1 | 1 | 3 | 0.8968 | 1000 | 1000 |
10 | 1 | 2 | 2 | 1 | 3 | 0.8941 | 1000 | 2500 |
11 | 2 | 2 | 2 | 1 | 3 | 0.9052 | 1000 | 2500 |
12 | 3 | 2 | 2 | 1 | 3 | 0.9066 | 1000 | 2500 |
13 | 1 | 1 | 1 | 4 | 3 | 0.2422 | 20,000 | 20,000 |
14 | 2 | 1 | 1 | 4 | 3 | 0.3789 | 10,000 | 20,000 |
15 | 3 | 1 | 1 | 4 | 3 | 0.7144 | 1000 | 1000 |
16 | 1 | 1 | 2 | 4 | 3 | 0.6901 | 1000 | 2500 |
17 | 2 | 1 | 2 | 4 | 3 | 0.7918 | 1000 | 2500 |
18 | 3 | 1 | 2 | 4 | 3 | 0.8792 | 1000 | 1000 |
19 | 1 | 2 | 1 | 4 | 3 | 0.3228 | 10,000 | 40,000 |
20 | 2 | 2 | 1 | 4 | 3 | 0.4658 | 5000 | 20,000 |
21 | 3 | 2 | 1 | 4 | 3 | 0.6600 | 1000 | 5000 |
22 | 1 | 2 | 2 | 4 | 3 | 0.6840 | 1000 | 5000 |
23 | 2 | 2 | 2 | 4 | 3 | 0.8456 | 1000 | 20,000 |
24 | 3 | 2 | 2 | 4 | 3 | 0.8779 | 1000 | 1000 |
25 | 1 | 1 | 1 | 10 | 3 | 0.0273 | X | X |
26 | 2 | 1 | 1 | 10 | 3 | 0.1006 | X | 45,000 |
27 | 3 | 1 | 1 | 10 | 3 | 0.3801 | 10,000 | 5000 |
28 | 1 | 1 | 2 | 10 | 3 | 0.2037 | 20,000 | 20,000 |
29 | 2 | 1 | 2 | 10 | 3 | 0.5920 | 2500 | 5000 |
30 | 3 | 1 | 2 | 10 | 3 | 0.7862 | 1000 | 1000 |
31 | 1 | 2 | 1 | 10 | 3 | 0.0571 | X | X |
32 | 2 | 2 | 1 | 10 | 3 | 0.1021 | X | X |
33 | 3 | 2 | 1 | 10 | 3 | 0.1788 | 20,000 | 35,000 |
34 | 1 | 2 | 2 | 10 | 3 | 0.2720 | 10,000 | 20,000 |
35 | 2 | 2 | 2 | 10 | 3 | 0.4595 | 5000 | 10,000 |
36 | 3 | 2 | 2 | 10 | 3 | 0.7874 | 1000 | 1000 |
37 | 1 | 1 | 1 | 1 | 5 | 0.6414 | 2500 | 10,000 |
38 | 2 | 1 | 1 | 1 | 5 | 0.8140 | 1000 | 2500 |
39 | 3 | 1 | 1 | 1 | 5 | 0.8874 | 1000 | 1000 |
40 | 1 | 1 | 2 | 1 | 5 | 0.8615 | 1000 | 2500 |
41 | 2 | 1 | 2 | 1 | 5 | 0.8997 | 1000 | 2500 |
42 | 3 | 1 | 2 | 1 | 5 | 0.9019 | 1000 | 2500 |
43 | 1 | 2 | 1 | 1 | 5 | 0.7892 | 1000 | 5000 |
44 | 2 | 2 | 1 | 1 | 5 | 0.8416 | 1000 | 10,000 |
45 | 3 | 2 | 1 | 1 | 5 | 0.8809 | 1000 | 2500 |
46 | 1 | 2 | 2 | 1 | 5 | 0.8772 | 1000 | 2500 |
47 | 2 | 2 | 2 | 1 | 5 | 0.8988 | 1000 | 2500 |
48 | 3 | 2 | 2 | 1 | 5 | 0.9034 | 1000 | 1000 |
49 | 1 | 1 | 1 | 4 | 5 | 0.0901 | X | X |
50 | 2 | 1 | 1 | 4 | 5 | 0.2098 | 20,000 | 30,000 |
51 | 3 | 1 | 1 | 4 | 5 | 0.5490 | 5000 | 2500 |
52 | 1 | 1 | 2 | 4 | 5 | 0.5162 | 5000 | 5000 |
53 | 2 | 1 | 2 | 4 | 5 | 0.7472 | 1000 | 2500 |
54 | 3 | 1 | 2 | 4 | 5 | 0.8655 | 1000 | 2500 |
55 | 1 | 2 | 1 | 4 | 5 | 0.1650 | 20,000 | X |
56 | 2 | 2 | 1 | 4 | 5 | 0.4475 | 2500 | 20,000 |
57 | 3 | 2 | 1 | 4 | 5 | 0.5848 | 2500 | 5000 |
58 | 1 | 2 | 2 | 4 | 5 | 0.5867 | 2500 | 10,000 |
59 | 2 | 2 | 2 | 4 | 5 | 0.7823 | 1000 | 2500 |
60 | 3 | 2 | 2 | 4 | 5 | 0.8758 | 1000 | 2500 |
61 | 1 | 1 | 1 | 10 | 5 | 0.0236 | X | X |
62 | 2 | 1 | 1 | 10 | 5 | 0.1009 | 50000 | X |
63 | 3 | 1 | 1 | 10 | 5 | 0.2910 | 10,000 | 10,000 |
64 | 1 | 1 | 2 | 10 | 5 | 0.1678 | 25,000 | 20,000 |
65 | 2 | 1 | 2 | 10 | 5 | 0.4803 | 5000 | 10,000 |
66 | 3 | 1 | 2 | 10 | 5 | 0.7546 | 1000 | 1000 |
67 | 1 | 2 | 1 | 10 | 5 | 0.0450 | X | X |
68 | 2 | 2 | 1 | 10 | 5 | 0.0875 | X | X |
69 | 3 | 2 | 1 | 10 | 5 | 0.2500 | 20,000 | 20,000 |
70 | 1 | 2 | 2 | 10 | 5 | 0.2405 | 20,000 | 20,000 |
71 | 2 | 2 | 2 | 10 | 5 | 0.4895 | 5000 | 10,000 |
72 | 3 | 2 | 2 | 10 | 5 | 0.7649 | 1000 | 2500 |
73 | 1 | 1 | 1 | 1 | 10 | 0.5467 | 2500 | 20,000 |
74 | 2 | 1 | 1 | 1 | 10 | 0.8163 | 1000 | 5000 |
75 | 3 | 1 | 1 | 1 | 10 | 0.8539 | 1000 | 2500 |
76 | 1 | 1 | 2 | 1 | 10 | 0.8735 | 1000 | 2500 |
77 | 2 | 1 | 2 | 1 | 10 | 0.8920 | 1000 | 2500 |
78 | 3 | 1 | 2 | 1 | 10 | 0.9017 | 1000 | 1000 |
79 | 1 | 2 | 1 | 1 | 10 | 0.7371 | 5000 | 50,000 |
80 | 2 | 2 | 1 | 1 | 10 | 0.8356 | 1000 | 10,000 |
81 | 3 | 2 | 1 | 1 | 10 | 0.8652 | 1000 | 5000 |
82 | 1 | 2 | 2 | 1 | 10 | 0.8596 | 1000 | 5000 |
83 | 2 | 2 | 2 | 1 | 10 | 0.8965 | 1000 | 5000 |
84 | 3 | 2 | 2 | 1 | 10 | 0.9039 | 1000 | 1000 |
85 | 1 | 1 | 1 | 4 | 10 | 0.0725 | X | X |
86 | 2 | 1 | 1 | 4 | 10 | 0.3495 | 10,000 | 25,000 |
87 | 3 | 1 | 1 | 4 | 10 | 0.5593 | 5000 | 5000 |
88 | 1 | 1 | 2 | 4 | 10 | 0.4726 | 5000 | 10,000 |
89 | 2 | 1 | 2 | 4 | 10 | 0.7625 | 1000 | 5000 |
90 | 3 | 1 | 2 | 4 | 10 | 0.8517 | 1000 | 2500 |
91 | 1 | 2 | 1 | 4 | 10 | 0.2199 | 20,000 | X |
92 | 2 | 2 | 1 | 4 | 10 | 0.3829 | 10,000 | 40,000 |
93 | 3 | 2 | 1 | 4 | 10 | 0.6038 | 2500 | 10,000 |
94 | 1 | 2 | 2 | 4 | 10 | 0.5092 | 5000 | 20,000 |
95 | 2 | 2 | 2 | 4 | 10 | 0.7743 | 1000 | 10,000 |
96 | 3 | 2 | 2 | 4 | 10 | 0.8759 | 1000 | 2500 |
97 | 1 | 1 | 1 | 10 | 10 | 0.0180 | X | X |
98 | 2 | 1 | 1 | 10 | 10 | 0.0509 | X | X |
99 | 3 | 1 | 1 | 10 | 10 | 0.1588 | 40,000 | X |
100 | 1 | 1 | 2 | 10 | 10 | 0.0970 | 25,000 | X |
101 | 2 | 1 | 2 | 10 | 10 | 0.4152 | 5000 | 20,000 |
102 | 3 | 1 | 2 | 10 | 10 | 0.6640 | 2500 | 2500 |
103 | 1 | 2 | 1 | 10 | 10 | 0.0379 | X | X |
104 | 2 | 2 | 1 | 10 | 10 | 0.1086 | X | X |
105 | 3 | 2 | 1 | 10 | 10 | 0.1574 | 35,000 | X |
106 | 1 | 2 | 2 | 10 | 10 | 0.1875 | 20,000 | X |
107 | 2 | 2 | 2 | 10 | 10 | 0.4790 | 5000 | 10,000 |
108 | 3 | 2 | 2 | 10 | 10 | 0.6319 | 2500 | 5000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Petrides, K.V.; Li, J. Estimating the Minimum Sample Size for Neural Network Model Fitting—A Monte Carlo Simulation Study. Behav. Sci. 2025, 15, 211. https://doi.org/10.3390/bs15020211
Cheng Y, Petrides KV, Li J. Estimating the Minimum Sample Size for Neural Network Model Fitting—A Monte Carlo Simulation Study. Behavioral Sciences. 2025; 15(2):211. https://doi.org/10.3390/bs15020211
Chicago/Turabian StyleCheng, Yongtian, Konstantinos Vassilis Petrides, and Johnson Li. 2025. "Estimating the Minimum Sample Size for Neural Network Model Fitting—A Monte Carlo Simulation Study" Behavioral Sciences 15, no. 2: 211. https://doi.org/10.3390/bs15020211
APA StyleCheng, Y., Petrides, K. V., & Li, J. (2025). Estimating the Minimum Sample Size for Neural Network Model Fitting—A Monte Carlo Simulation Study. Behavioral Sciences, 15(2), 211. https://doi.org/10.3390/bs15020211