Identifying Important Factors for Depressive Symptom Dynamics in Chinese Middle-Aged and Older Adults Using a Multi-State Transition Model with Feature Selection
Abstract
1. Introduction
2. Methods
2.1. Study Participants
2.2. Assessment of Depressive States
2.3. Measurement of Covariates
2.4. Multi-State Model with Feature Selection
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, S., Wang, J., Liu, J., Miao, Y., Zhang, A., & Zhang, Z. (2024). Analysis of depression incidence and influence factors among middle-aged and elderly diabetic patients in China: Based on CHARLS data. BMC Psychiatry, 24, 146. [Google Scholar] [CrossRef] [PubMed]
- Boey, K. W. (1999). Cross-validation of a short form of the CES-D in Chinese elderly. International Journal of Geriatric Psychiatry, 14(8), 608–617. [Google Scholar] [CrossRef]
- Chen, C., Chow, A. Y. M., & Tang, S. (2020). Trajectories of depression symptoms in Chinese elderly during widowhood: A secondary analysis. Aging & Mental Health, 24, 1254–1262. [Google Scholar] [CrossRef]
- Chen, H., & Mui, A. C. (2013). Factorial validity of the center for epidemiologic studies depression scale short form in older population in China. International Psychogeriatrics, 26, 49–57. [Google Scholar] [CrossRef]
- Chen, X., Lin, S., Zheng, Y., He, L., & Fang, Y. (2023). Long-term trajectories of depressive symptoms and machine learning techniques for fall prediction in older adults: Evidence from the China Health and Retirement Longitudinal Study (CHARLS). Archives of Gerontology and Geriatrics, 111, 105012. [Google Scholar] [CrossRef]
- Cheng, S., & Chan, A. C. M. (2005). The center for epidemiologic studies depression scale in older Chinese: Thresholds for long and short forms. International Journal of Geriatric Psychiatry, 20(5), 465–470. [Google Scholar] [CrossRef]
- Cheng, X., Li, G., & Wang, H. (2023). The concordance filter: An adaptive model-free feature screening procedure. Computational Statistics, 39(5), 2413–2436. [Google Scholar] [CrossRef]
- Corruble, E., Gorwood, P., & Falissard, B. (2008). Association between age of onset and symptom profiles of late-life depression. Acta Psychiatrica Scandinavica, 118(5), 389–394. [Google Scholar] [CrossRef]
- de la Torre-Luque, A., de la Fuente, J., Prina, M. A., Sánchez-Niubò, A., Haro, J. M., & Ayuso-Mateos, J. L. (2019). Long-term trajectories of depressive symptoms in old age: Relationships with sociodemographic and health-related factors. Journal of Affective Disorders, 246, 329–337. [Google Scholar] [CrossRef]
- de la Torre-Luque, A., de la Fuente, J., Sánchez-Niubò, A., Caballero, F. F., Prina, M. A., Muniz-Terrera, G., Haro, J. M., & Ayuso-Mateos, J. L. (2019). Stability of clinically relevant depression symptoms in old-age across 11 cohorts: A multi-state study. Acta Psychiatrica Scandinavica, 140, 541–551. [Google Scholar] [CrossRef]
- Demic, S., & Cheng, S. (2014). Modeling the dynamics of disease states in depression. PLoS ONE, 9(10), e110358. [Google Scholar] [CrossRef]
- Emura, T., Matsui, S., & Rondeau, V. (2019). Survival analysis with correlated endpoints: Joint frailty-copula models. Springer. [Google Scholar]
- Ferri, C. V., Yang, K., & Girgus, J. S. (2022). Predicting the gender difference in depressive symptoms in older adults. Aging & Mental Health, 27, 1411–1418. [Google Scholar] [CrossRef]
- Gallagher, D., Mhaolain, A. N., Greene, E., Walsh, C., Denihan, A., Bruce, I., Golden, J., Conroy, R. M., Kirby, M., & Lawlor, B. A. (2009). Late life depression: A comparison of risk factors and symptoms according to age of onset in community dwelling older adults. International Journal of Geriatric Psychiatry, 25(10), 981–987. [Google Scholar] [CrossRef]
- Guo, L., Fang, M., Wang, L., Liu, L., He, C., Zhou, X., Lu, Y., & Hu, X. (2024). Gender differences in geriatric depressive symptoms in urban China: The role of ADL and sensory and communication abilities. Frontiers in Psychiatry, 15, 1344785. [Google Scholar] [CrossRef] [PubMed]
- Harris, T., Cook, D. G., Victor, C. R., DeWilde, S., & Beighton, C. (2006). Onset and persistence of depression in older people–results from a 2-year community follow-up study. Age and Ageing, 35(1), 25–32. [Google Scholar] [CrossRef] [PubMed]
- Heun, R., Kockler, M., & Papassotiropoulos, A. (2000). Distinction of early- and late-onset depression in the elderly by their lifetime symptomatology. International Journal of Geriatric Psychiatry, 15(12), 1138–1142. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C., & Qin, X. (2017). Depression hurts, depression costs: The medical spending attributable to depression and depressive symptoms in China. Health Economics, 27(3), 525–544. [Google Scholar] [CrossRef]
- Hu, Y., Li, P., & Martikainen, P. T. (2019). Rural-urban disparities in age trajectories of depression caseness in later life: The China health and retirement longitudinal study. PLoS ONE, 14, e0215907. [Google Scholar] [CrossRef]
- Jin, Y., Zhu, D., & He, P. (2020). Social causation or social selection? The longitudinal interrelationship between poverty and depressive symptoms in China. Social Science & Medicine, 249, 112848. [Google Scholar] [CrossRef]
- Kuchibhatla, M., Fillenbaum, G. G., Fillenbaum, G. G., Hybels, C. F., & Blazer, D. G. (2012). Trajectory classes of depressive symptoms in a community sample of older adults. Acta Psychiatrica Scandinavica, 125(6), 492–501. [Google Scholar] [CrossRef]
- Lei, X., Sun, X., Strauss, J., Zhang, P., & Zhao, Y. (2014). Depressive symptoms and SES among the mid-aged and elderly in China: Evidence from the China health and retirement longitudinal study national baseline. Social Science & Medicine, 120, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Le-Rademacher, J. G., Therneau, T. M., & Ou, F.-S. (2022). The utility of multistate models: A flexible framework for time-to-event data. Current Epidemiology Reports, 9, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y. (2020). Heterogeneity in the trajectories of depressive symptoms among elderly adults in rural China: The role of housing characteristics. Health & Place, 66, 102449. [Google Scholar] [CrossRef]
- Lin, S., Wu, Y., & Fang, Y. (2022). A hybrid machine learning model of depression estimation in home-based older adults: A 7-year follow-up study. BMC Psychiatry, 22, 816. [Google Scholar] [CrossRef]
- Liu, H., Ma, Y., Lin, L., Sun, Z., Li, Z., & Jiang, X. (2023). Association between activities of daily living and depressive symptoms among older adults in China: Evidence from the CHARLS. Frontiers in Public Health, 11, 1249208. [Google Scholar] [CrossRef]
- Luijendijk, H. J., den Berg, J. F. V., Dekker, M. C. J., van Tuijl, H. R., Otte, W. M., Smit, F., Hofman, A., Stricker, B. H., & Tiemeier, H. (2008). Incidence and recurrence of late-life depression. Archives of General Psychiatry, 65(12), 1394–1401. [Google Scholar] [CrossRef]
- Ma, C., Wang, C., & Pan, J. (2022). Multistate modeling and structure selection for multitype recurrent events and terminal event data. Biometrical Journal, 65, 2100334. [Google Scholar] [CrossRef]
- Meyer, M. L., Lin, F.-C., Jaensch, A., Mons, U., Hahmann, H., Koenig, W., Brenner, H., & Rothenbacher, D. (2019). Multi-state models of transitions in depression and anxiety symptom severity and cardiovascular events in patients with coronary heart disease. PLoS ONE, 14, e0213334. [Google Scholar] [CrossRef]
- Miao, Y.-F., Dong, X.-X., Li, D. L., Zhang, T., Wu, Y., & Pan, C.-W. (2023). Chronic conditions and depressive symptoms in middle-aged and older Chinese adults: Roles of perceived social support and area of residence. Journal of Affective Disorders, 340, 290–298. [Google Scholar] [CrossRef]
- Mohebbi, M., Nguyen, V., McNeil, J. J., Woods, R. L., Nelson, M. R., Shah, R. C., Storey, E., Murray, A. M., Reid, C. M., Kirpach, B., Wolfe, R., Lockery, J. E., & Berk, M. (2018). Psychometric properties of a short form of the Center for Epidemiologic Studies Depression (CES-D-10) scale for screening depressive symptoms in healthy community dwelling older adults. General Hospital Psychiatry, 51, 118–125. [Google Scholar] [CrossRef]
- Pei, Y., Cong, Z., & Wu, B. (2020). Education, adult children’s education, and depressive symptoms among older adults in rural China. Social Science & Medicine, 253, 112966. [Google Scholar] [CrossRef]
- Qiu, Y., Ma, Y., & Huang, X. (2022). Bidirectional Relationship between body pain and depressive symptoms: A pooled analysis of two national aging cohort studies. Frontiers in Psychiatry, 13, 881779. [Google Scholar] [CrossRef] [PubMed]
- Resseguier, N., Verdoux, H., Giorgi, R., Clavel-Chapelon, F., & Paoletti, X. (2013). Dealing with missing data in the center for epidemiologic studies depression self-report scale: A study based on the French E3N cohort. BMC Medical Research Methodology, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Sachs-Ericsson, N., Corsentino, E., Moxley, J., Hames, J. L., Rushing, N. C., Sawyer, K., Joiner, T., Selby, E. A., Zarit, S., Gotlib, I. H., & Steffens, D. C. (2013). A longitudinal study of differences in late- and early-onset geriatric depression: Depressive symptoms and psychosocial, cognitive, and neurological functioning. Aging & Mental Health, 17(1), 1–11. [Google Scholar] [CrossRef]
- Shen, L., Xu, X., Yue, S., & Yin, S. (2024). A predictive model for depression in Chinese middle-aged and elderly people with physical disabilities. BMC Psychiatry, 24, 305. [Google Scholar] [CrossRef]
- Shorey, S., Ng, E. D., & Wong, C. H. J. (2021). Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta-analysis. British Journal of Clinical Psychology, 61(2), 287–305. [Google Scholar] [CrossRef]
- Song, Q. (2016). Facing “Double Jeopardy”? Depressive symptoms in left-behind elderly in rural China. Journal of Aging and Health, 29(7), 1182–1213. [Google Scholar] [CrossRef]
- Sutin, A. R., Terracciano, A., Milaneschi, Y., An, Y., Ferrucci, L., & Zonderman, A. B. (2013). The trajectory of depressive symptoms across the adult life span. JAMA Psychiatry, 70(8), 803. [Google Scholar] [CrossRef]
- Tibubos, A. N., Brähler, E., Ernst, M., Baumgarten, C., Wiltink, J., Burghardt, J., Michal, M., Ghaemi Kerahrodi, J., Schulz, A., Wild, P. S., & Münzel, T. (2019). Course of depressive symptoms in men and women: Differential effects of social, psychological, behavioral and somatic predictors. Scientific Reports, 9(1), 18929. [Google Scholar] [CrossRef]
- Triolo, F., Vetrano, D. L., Trevisan, C., Sjöberg, L., Calderón-Larrañaga, A., Murri, M. B., Fratiglioni, L., & Dekhtyar, S. (2024). Mapping 15-year depressive symptom transitions in late life: Population-based cohort study. The British Journal of Psychiatry, 25, 321–327. [Google Scholar] [CrossRef]
- van Buuren, S., & Groothuis-Oudshoorn, K. G. M. (2011). MICE: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45, 1–67. [Google Scholar] [CrossRef]
- van der Slot, A. J. C., Bertens, A. S., Trompet, S., Mooijaart, S. P., Gussekloo, J., van den Bos, F., & Giltay, E. J. (2024). Temporal dynamics of depressive symptoms and cognitive decline in the oldest old: Dynamic time warp analysis of the Leiden 85-plus study. Age and Ageing, 53, afae130. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y., Jiang, G., Wang, L., Chen, M., Yang, K., Wen, K., Lan, Y., Hou, N., & Li, W. (2022). Association of the depressive scores, depressive symptoms, and conversion patterns of depressive symptoms with the risk of new-onset chronic diseases and multimorbidity in the middle-aged and elderly Chinese population. eClinicalMedicine, 52, 101603. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y., Su, B., Chen, C., Zhao, Y., Zhong, P., & Zheng, X. (2023). Urban-rural disparities in the prevalence and trends of depressive symptoms among Chinese elderly and their associated factors. Journal of Affective Disorders, 340, 258–268. [Google Scholar] [CrossRef]
- Wu, Y., Su, B., Zhong, P., Zhao, Y., Chen, C., & Zheng, X. (2024). Association between chronic disease status and transitions in depressive symptoms among middle-aged and older Chinese population: Insights from a Markov model-based cohort study. Journal of Affective Disorders, 363, 445–455. [Google Scholar] [CrossRef]
- Xia, N., Feng, S., & Wang, L. D.-L. (2017). Depressive symptoms and healthy lifestyle behaviours in soon-to-be old and older adults in China: An analysis of data from a nationwide cross-sectional survey. The Lancet, 390, S15. [Google Scholar] [CrossRef]
- Xue, Q., Pan, A., Gong, J., Wen, Y., Peng, X., Pan, J., & Pan, X.-F. (2020). Association between arthritis and depression risk: A prospective study and meta-analysis. Journal of Affective Disorders, 273, 493–499. [Google Scholar] [CrossRef]
- Yoon, Y. J. (2024). Depressive symptom trajectory of older adults with diabetes: Exploring the role of physical activities using latent growth modeling. Aging & Mental Health, 28, 1041–1049. [Google Scholar] [CrossRef]
- Zeng, J., & Jian, W. (2019). Changes in income-related inequalities of depression prevalence in China: A longitudinal, population study. Social Psychiatry and Psychiatric Epidemiology, 54(9), 1133–1142. [Google Scholar] [CrossRef]
- Zhao, Y., Hu, Y., Smith, J. P., Strauss, J., & Yang, G. (2014). Cohort profile: The China Health and Retirement Longitudinal Study (CHARLS). International Journal of Epidemiology, 43, 61–68. [Google Scholar] [CrossRef]
- Zhao, Y., Strauss, J., Chen, X., Wang, Y., Gong, J., Meng, Q., Wang, G., & Wang, H. (2020). China health and retirement longitudinal study wave 4 user’s guide. National School of Development, Peking University. [Google Scholar]
- Zheng, Y., Zhang, C., & Liu, Y. (2024). Risk prediction models of depression in older adults with chronic diseases. Journal of Affective Disorders, 359, 182–188. [Google Scholar] [CrossRef]
- Zhou, S., Gao, L., Liu, F., Tian, W., Jin, Y., & Zheng, Z. (2021). Socioeconomic status and depressive symptoms in older people with the mediation role of social support: A population-based longitudinal study. International Journal of Methods in Psychiatric Research, 30, e1894. [Google Scholar] [CrossRef]




| Variable | Description | Mean/Prop | SD |
|---|---|---|---|
| (1) Demographic background | |||
| residence | 1: urban community, 0: rural village | 21.87% | - |
| sex | 1: female, 0: male | 46.62% | - |
| age | in years | 57.88 | 8.50 |
| education | 1: elementary school or above, 0: otherwise | 64.17% | - |
| marital status | 1: married with spouse present, 0: others | 81.16% | - |
| retired | 1: yes, 0: no | 13.41% | - |
| income | in Yuan | 10,783.51 | 11,056.88 |
| (2) Health status and functioning | |||
| number of conditions | (1) hypertension, (2) dyslipidemia, (3) diabetes or high blood sugar, (4) chronic lung disease, (5) heart problems, (6) kidney disease, (7) stomach or other digestive disease, (8) arthritis or rheumatism | 1.1 | 1.17 |
| pain | 1: yes, 0: no | 23.56% | - |
| BADL disability | (1) dressing, (2) bathing, (3) eating, (4) getting out of bed and walking across a room, (5) using the toilet and getting up and down, (6) controlling urination and defecation (1: had difficulty with at least one activity, 0: otherwise) | 2.05% | - |
| (3) Family and Social Connectivity | |||
| social engagement | (1) interacted with friends, (2) played ma-jong or cards or chess or went to community club, (3) went to a sport or social or other kind of club, (4) took part in a community-related organization, (5) took part in voluntary activity or charity, (6) attended an educational or training course (1: attained at least one activity, 0: otherwise) | 51.31% | - |
| child interaction | Either live with all children or maintain at least weekly contact with non-coresident children (1: yes, 0: no) | 65.13% | - |
| child support | 1: yes, 0: no | 31.24% | - |
| Est | Std Error | TRR | 95% Lower CL | 95% Upper CL | Sig | |
|---|---|---|---|---|---|---|
| (1) no symptom → new symptom episode | ||||||
| residence (urban) | −0.1660 | 0.0812 | 0.8471 | 0.7224 | 0.9932 | * |
| sex (female) | 0.4026 | 0.0568 | 1.4957 | 1.3382 | 1.6717 | ** |
| age | 0.0000 | |||||
| education (elementary or above) | 0.0000 | |||||
| marital status (married) | −0.0500 | 0.0683 | 0.9512 | 0.8321 | 1.0874 | |
| retired (yes) | −0.2354 | 0.1050 | 0.7903 | 0.6432 | 0.9709 | * |
| income | −0.6536 | 0.2866 | 0.5201 | 0.2966 | 0.9122 | * |
| number of conditions | 0.0000 | |||||
| pain (yes) | 0.3875 | 0.0606 | 1.4733 | 1.3083 | 1.6590 | ** |
| BADL disability (yes) | 0.4671 | 0.1537 | 1.5954 | 1.1805 | 2.1561 | * |
| social engagement (yes) | −0.1310 | 0.0543 | 0.8772 | 0.7886 | 0.9757 | * |
| child interaction (yes) | 0.0000 | |||||
| child support (yes) | 0.0000 | |||||
| education × income | −0.5862 | 0.1144 | 0.5564 | 0.4446 | 0.6963 | ** |
| number of conditions × income | 1.4512 | 0.3113 | 4.2681 | 2.3188 | 7.8560 | ** |
| number of conditions × sex | 0.0000 | |||||
| sex × age | 0.0000 | |||||
| age × education | 0.0000 | |||||
| (2) new symptom episode → symptom persistence | ||||||
| residence (urban) | −0.0723 | 0.1490 | 0.9302 | 0.6946 | 1.2457 | |
| sex (female) | 0.0000 | |||||
| age | −0.4992 | 0.3999 | 0.6070 | 0.2772 | 1.3292 | |
| education (elemenatry or above) | 0.0000 | |||||
| marital status (married) | −0.0514 | 0.1238 | 0.9499 | 0.7453 | 1.2106 | |
| retired (yes) | 0.0000 | |||||
| income | 0.6114 | 0.5605 | 1.8430 | 0.6143 | 5.5291 | |
| number of conditions | 0.2197 | 0.7518 | 1.2457 | 0.2854 | 5.4364 | |
| pain (yes) | 0.0000 | |||||
| BADL disability (yes) | 0.0000 | |||||
| social engagement (yes) | 0.0000 | |||||
| child interaction (yes) | 0.0000 | |||||
| child support (yes) | −0.0811 | 0.1157 | 0.9221 | 0.7350 | 1.1569 | |
| education × income | −0.3622 | 0.2571 | 0.6962 | 0.4206 | 1.1523 | |
| number of conditions × income | 0.0000 | |||||
| number of conditions × sex | −0.0814 | 0.5722 | 0.9218 | 0.3003 | 2.8294 | |
| sex × age | 0.5098 | 0.4215 | 1.6649 | 0.7288 | 3.8037 | |
| age × education | 0.0000 | |||||
| (3) new symptom episode/symptom persistence → symptom remission | ||||||
| residence (urban) | 0.0000 | |||||
| sex (female) | 0.0000 | |||||
| age | 0.4673 | 0.2986 | 1.5956 | 0.8887 | 2.8648 | |
| education (elemenatry or above) | 0.0000 | |||||
| marital status (married) | 0.0821 | 0.1038 | 1.0855 | 0.8857 | 1.3303 | |
| retired (yes) | 0.0000 | |||||
| income | −0.1472 | 0.7786 | 0.8631 | 0.1876 | 3.9703 | |
| number of conditions | −0.1212 | 1.0128 | 0.8859 | 0.1217 | 6.4490 | |
| pain (yes) | 0.0000 | |||||
| BADL disability (yes) | 0.0000 | |||||
| social engagement (yes) | 0.0415 | 0.0811 | 1.0424 | 0.8892 | 1.2220 | |
| child interaction (yes) | 0.0000 | |||||
| child support (yes) | 0.0000 | |||||
| education × income | 0.1478 | 0.5211 | 1.1593 | 0.4175 | 3.2194 | |
| number of conditions × income | 0.0000 | |||||
| number of conditions × sex | −0.2723 | 0.5577 | 0.7616 | 0.2553 | 2.2720 | |
| sex × age | −0.3908 | 0.3525 | 0.6765 | 0.3390 | 1.3501 | |
| age × education | 0.0000 | |||||
| (4) symptom remission → symptom relapse | ||||||
| residence (urban) | −0.3314 | 0.3035 | 0.7179 | 0.3961 | 1.3014 | |
| sex (female) | 0.0000 | |||||
| age | −1.0178 | 0.6924 | 0.3614 | 0.0930 | 1.4039 | |
| education (elemenatry or above) | 0.0000 | |||||
| marital status (married) | 0.0000 | |||||
| retired (yes) | −0.4200 | 0.4482 | 0.6570 | 0.2729 | 1.5817 | |
| income | 0.0000 | |||||
| number of conditions | 0.0000 | |||||
| pain (yes) | 0.0000 | |||||
| BADL disability (yes) | −0.2841 | 0.5022 | 0.7527 | 0.2813 | 2.0144 | |
| social engagement (yes) | −0.0987 | 0.1900 | 0.9061 | 0.6244 | 1.3148 | |
| child interaction (yes) | 0.0000 | |||||
| child support (yes) | 0.0000 | |||||
| education × income | 0.0000 | |||||
| number of conditions × income | 0.0000 | |||||
| number of conditions × sex | 0.0000 | |||||
| sex × age | 1.5215 | 0.6106 | 4.5790 | 1.3835 | 15.1549 | * |
| age × education | 0.0000 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Lu, T.; Li, Y.; Chen, S. Identifying Important Factors for Depressive Symptom Dynamics in Chinese Middle-Aged and Older Adults Using a Multi-State Transition Model with Feature Selection. Behav. Sci. 2025, 15, 1501. https://doi.org/10.3390/bs15111501
Ma C, Lu T, Li Y, Chen S. Identifying Important Factors for Depressive Symptom Dynamics in Chinese Middle-Aged and Older Adults Using a Multi-State Transition Model with Feature Selection. Behavioral Sciences. 2025; 15(11):1501. https://doi.org/10.3390/bs15111501
Chicago/Turabian StyleMa, Chuoxin, Tianyi Lu, Yu Li, and Shanquan Chen. 2025. "Identifying Important Factors for Depressive Symptom Dynamics in Chinese Middle-Aged and Older Adults Using a Multi-State Transition Model with Feature Selection" Behavioral Sciences 15, no. 11: 1501. https://doi.org/10.3390/bs15111501
APA StyleMa, C., Lu, T., Li, Y., & Chen, S. (2025). Identifying Important Factors for Depressive Symptom Dynamics in Chinese Middle-Aged and Older Adults Using a Multi-State Transition Model with Feature Selection. Behavioral Sciences, 15(11), 1501. https://doi.org/10.3390/bs15111501

