Dynamic Testing in a Heterogeneous Clinical Sample: A Feasibility Study †
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Materials
2.4. Statistical Analyses
3. Results
3.1. Feasibility
3.2. Psychometric Properties
3.3. Learning Potential
3.4. Correlations Between the Dynamic and Static Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FSIQ | Full-Scale Intelligence Quotient |
LLT | Location Learning Test |
MCI | Mild Cognitive Impairment |
PRI | Perceptual Reasoning Index |
PSI | Processing Speed Index |
RAVLT | Rey Auditory Verbal Learning Test |
VCI | Verbal Comprehension Index |
WAIS-IV-NL | Fourth edition of the Dutch version of the Wechsler Adult Intelligence Scale |
WMI | Working Memory Index |
ZPD | Zone of Proximal Development |
References
- Boosman, H., Bovend’Eerdt, T. J. H., Visser-Meily, J. M. A., Nijboer, T. C. W., & Van Heugten, C. M. (2016). Dynamic testing of learning potential in adults with cognitive impairments: A systematic review of methodology and predictive value. Journal of Neuropsychology, 10(2), 186–210. [Google Scholar] [CrossRef] [PubMed]
- Boosman, H., Visser-Meily, J. M. A., Ownsworth, T., Winkens, I., & Van Heugten, C. M. (2014). Validity of the dynamic wisconsin card sorting test for assessing learning potential in brain injury rehabilitation. Journal of the International Neuropsychological Society, 20(10), 1034–1044. [Google Scholar] [CrossRef]
- Bouma, A., Mulder, J., Lindeboom, J., & Schmand, B. (2012). Handboek neuropsychologische diagnostiek (2nd ed.). Pearson Assessment and Information. [Google Scholar]
- Brown, A. L., & French, L. A. (1979). The zone of potential development: Implications for intelligence testing in the year 2000. Intelligence, 3(3), 255–271. [Google Scholar] [CrossRef]
- Carlson, J., & Wiedl, K. H. (2000). The validity of dynamic assessment. In C. Lidz, & J. G. Elliott (Eds.), Dynamic assessment: Prevailing models and applications (pp. 681–712). Elsevier Science. [Google Scholar]
- Davidson, C. A., Johannesen, J. K., & Fiszdon, J. M. (2016). Role of learning potential in cognitive remediation: Construct and predictive validity. Schizophrenia Research, 171(1), 117–124. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ballesteros, R., Zamarrón, M. D., Tárraga, L., Moya, R., & Iñiguez, J. (2003). Cognitive plasticity in healthy, mild cognitive impairment (MCI) subjects and Alzheimer’s disease patients: A research project in Spain. European Psychologist, 8(3), 148–159. [Google Scholar] [CrossRef]
- Gentner, D., & Maravilla, F. (2017). Analogical reasoning. In L. J. Ball, & V. A. Thompson (Eds.), International handbook of thinking and reasoning. Routledge. [Google Scholar]
- Grigorenko, E. L., & Sternberg, R. J. (1998). Dynamic testing. Psychological Bulletin, 124(1), 75–111. [Google Scholar] [CrossRef]
- Hosenfeld, B., van den Boom, D. C., & Resing, W. C. M. (1997). Constructing geometric analogies for the longitudinal testing of elementary school children. Journal of Educational Measurement, 34(4), 367–372. [Google Scholar] [CrossRef]
- Huang, J. L., & Bramble, R. J. (2016). Trait, state, and task-contingent conscientiousness: Influence on learning and transfer. Personality and Individual Differences, 92, 180–185. [Google Scholar] [CrossRef]
- Kessels, R. P. C. (2019). Improving precision in neuropsychological assessment: Bridging the gap between classic paper-and-pencil tests and paradigms from cognitive neuroscience. The Clinical Neuropsychologist, 33(2), 357–368. [Google Scholar] [CrossRef]
- Kessels, R. P. C., Bucks, R. S., Willison, J. R., & Byrne, L. M. T. (2014). Location learning test: Handleiding (herziene uitgave) (3rd ed.). Hogrefe Uitgevers. [Google Scholar]
- Kushwaha, A., Basera, D. S., Kumari, S., Sutar, R. F., Singh, V., Das, S., & Agrawal, A. (2024). Assessment of memory deficits in psychiatric disorders: A systematic literature review. Journal of Neurosciences in Rural Practice, 15(2), 182–193. [Google Scholar] [CrossRef] [PubMed]
- Küster, O. C., Kösel, J., & Uttner, I. (2016). Cognitive reserve in Alzheimer’s dementia: Diagnostic accuracy of a testing-the-limits paradigm. Available online: https://content.iospress.com/articles/journal-of-alzheimers-disease/jad151141 (accessed on 25 January 2023).
- Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). Oxford University Press. [Google Scholar]
- Meijer, J. (2001). Learning potential and anxious tendency: Test anxiety as a bias factor in educational testing. Anxiety, Stress, & Coping, 14(3), 337–362. [Google Scholar] [CrossRef]
- Mulder, J. (2012). 15-woorden test A en B (15WT-A en 15WT-B). In A. Bouma, J. Mulder, J. Lindeboom, & B. Schmand (Eds.), Handboek neuropsychologische diagnostiek (2nd ed.). Pearson Assessment and Information. [Google Scholar]
- Oomens, W., Maes, J. H. R., Hasselman, F., & Egger, J. I. M. (2023). A time-series perspective on executive functioning: The benefits of a dynamic approach to random number generation. International Journal of Methods in Psychiatric Research, 32(2), e1945. [Google Scholar] [CrossRef]
- Resing, W. C. M. (1993). Measuring inductive reasoning skills: The construction of a learning potential test. In J. H. M. Hamers, A. J. J. M. Ruijssenaars, & K. Sijtsma (Eds.), Learning potential assessment: Theoretical, methodological and practical issues. Swets & Zeitlinger Publishers. [Google Scholar]
- Resing, W. C. M. (2016). Dynamisch en statisch testen: Onmisbaar in psychodiagnostisch onderzoek. Tijdschrift voor Neuropsychologie, 11(1). Available online: https://www.tvnp.nl/inhoud/tijdschrift_artikel/NP-11-1-6/Dynamisch-en-statisch-testen-Onmisbaar-in-psychodiagnostisch-onderzoek (accessed on 25 January 2023).
- Resing, W. C. M., Steijn, W. M. P., Xenidou-Dervou, I., Stevenson, C. E., & Elliott, J. G. (2011). Computerized dynamic testing: A study of the potential of an approach using sensor technology. Journal of Cognitive Education and Psychology, 10(2), 178–194. [Google Scholar] [CrossRef]
- Resing, W. C. M., Stevenson, C. E., & Bosma, T. (2012). Dynamic testing: Measuring inductive reasoning in children with developmental disabilities and mild cognitive impairments. Journal of Cognitive Education and Psychology, 11(2), 159–178. [Google Scholar] [CrossRef]
- Resing, W. C. M., Vogelaar, B., & Elliott, J. G. (2019). Children’s solving of ‘Tower of Hanoi’ tasks: Dynamic testing with the help of a robot. Educational Psychology, 40(9), 1136–1163. [Google Scholar] [CrossRef]
- Sbordone, R. J. (2008). Ecological validity of neuropsychological testing: Critical issues. In A. M. Horton, & D. Wedding (Eds.), The neuropsychology handbook: Third edition. Springer Publishing Company. [Google Scholar]
- Schack, T., & Guthke, J. (2003). Dynamic testing. International Journal of Sport and Exercise Psychology, 1(1), 40–60. [Google Scholar] [CrossRef]
- Schöttke, H. H., Bartram, M., & Wiedl, K. H. (1993). Psychometric implications of learning potential assessment: A typological approach. In J. H. M. Hamers, A. J. J. M. Ruijssenaars, & K. Sijtsma (Eds.), Learning potential assessment: Theoretical, methodological and practical issues. Swets & Zeitlinger Publishers. [Google Scholar]
- Sergi, M. J., Kern, R. S., Mintz, J., & Green, M. F. (2005). Learning potential and the prediction of work skill acquisition in schizophrenia. Schizophrenia Bulletin, 31(1), 67–72. [Google Scholar] [CrossRef] [PubMed]
- Stad, F. E., Wiedl, K. H., Vogelaar, B., Bakker, M., & Resing, W. C. M. (2019). The role of cognitive flexibility in young children’s potential for learning under dynamic testing conditions. European Journal of Psychology of Education, 34(1), 123–146. [Google Scholar] [CrossRef]
- Sternberg, R. J., & Grigorenko, E. L. (2002). Dynamic testing: The nature and measurement of learning potential. Cambridge University Press. [Google Scholar]
- Stevenson, C. E., Bergwerff, C. E., Heiser, W. J., & Resing, W. C. M. (2014). Working memory and dynamic measures of analogical reasoning as predictors of children’s math and reading achievement. Infant and Child Development, 23(1), 51–66. [Google Scholar] [CrossRef]
- Stevenson, C. E., Heiser, W. J., & Resing, W. C. M. (2016). Dynamic testing of analogical reasoning in 5- to 6-year-olds: Multiple-choice versus constructed-response training items. Journal of Psychoeducational Assessment, 34(6), 550–565. [Google Scholar] [CrossRef]
- Stevenson, C. E., Touw, K. W. J., & Resing, W. C. M. (2011). Computer or paper analogy puzzles: Does assessment mode influence young children’s strategy progression? Educational and Child Psychology, 28(2), 67–84. [Google Scholar] [CrossRef]
- Tas, C., Brown, E. C., Esen-Danaci, A., Lysaker, P. H., & Brüne, M. (2012). Intrinsic motivation and metacognition as predictors of learning potential in patients with remitted schizophrenia. Journal of Psychiatric Research, 46(8), 1086–1092. [Google Scholar] [CrossRef]
- Toglia, J., & Cermak, S. A. (2009). Dynamic assessment and prediction of learning potential in clients with unilateral neglect. The American Journal of Occupational Therapy, 63(5), 569–579. [Google Scholar] [CrossRef] [PubMed]
- Tosi, G., Borsani, C., Castiglioni, S., Daini, R., Franceschi, M., & Romano, D. (2020). Complexity in neuropsychological assessments of cognitive impairment: A network analysis approach. Cortex, 124, 85–96. [Google Scholar] [CrossRef]
- Touw, K. W. J., Vogelaar, B., Thissen, F., Rovers, S., & Resing, W. C. M. (2020). Progression and individual differences in children’s series completion after dynamic testing. British Journal of Educational Psychology, 90(1), 184–205. [Google Scholar] [CrossRef] [PubMed]
- Tzuriel, D., & Shamir, A. (2002). The effects of mediation in computer assisted dynamic assessment. Journal of Computer Assisted Learning, 18(1), 21–32. [Google Scholar] [CrossRef]
- Uttner, I., Schurig, N., von Arnim, C. A. F., Lange-Asschenfeldt, C., Tumani, H., & Riepe, M. W. (2010). Reduced benefit from mnemonic strategies in early-stage Alzheimer’s disease: A brief testing-the-limits paradigm for clinical practice. Journal of Neurology, 257(10), 1718–1726. [Google Scholar] [CrossRef]
- Vakil, E. (2012). Neuropsychological assessment: Principles, rationale, and challenges. Journal of Clinical and Experimental Neuropsychology, 34(2), 135–150. [Google Scholar] [CrossRef] [PubMed]
- Vogelaar, B., Sweijen, S. W., & Resing, W. C. M. (2019). Gifted and average-ability children’s potential for solving analogy items. Journal of Intelligence, 7(3), 19. [Google Scholar] [CrossRef]
- Vogelaar, B., Veerbeek, J., Splinter, S. E., & Resing, W. C. M. (2021). Computerized dynamic testing of children’s potential for reasoning by analogy: The role of executive functioning. Journal of Computer Assisted Learning, 37(3), 632–644. [Google Scholar] [CrossRef]
- Vygotsky, L. S. (1978). Mind in society: Development of higher psychological processes (M. Cole, S. Scribner, V. John-Steiner, & E. Souberman, Eds.). Harvard University Press. [Google Scholar]
- Wechsler, D. (2012a). WAIS-IV-NL nederlandstalige bewerking: Afname- en scoringshandleiding. Pearson Assessment and Information. [Google Scholar]
- Wechsler, D. (2012b). WAIS-IV-NL nederlandstalige bewerking: Technische handleiding. Pearson Assessment and Information. [Google Scholar]
- Wiedl, K. H., Schöttke, H., & Garcia, M. D. C. (2001). Dynamic assessment of cognitive rehabilitation potential in schizophrenic persons and in elderly persons with and without dementia. European Journal of Psychological Assessment, 17(2), 112–119. [Google Scholar] [CrossRef]
- Wilson, B. A. (1993). Ecological validity of neuropsychological assessment: Do neuropsychological indexes predict performance in everyday activities? Applied and Preventive Psychology, 2(4), 209–215. [Google Scholar] [CrossRef]
Group | Static Test Measures | Dynamic Test Measures | |||||
---|---|---|---|---|---|---|---|
WAIS-IV-NL | RAVLT | LLT | Pretest | Training | Practice | Posttest | |
Training group (n = 14) | X | X | X | X | X | X | |
Practice group (n = 15) | X | X | X | X | X | X | |
Control group (n = 11) | X | X | X | X | X |
Test | Variable M ± SD (min–max) | Meaning |
---|---|---|
WAIS-IV-NL | Full-Scale IQ 100 ± 15 (40–160) | Intelligence quotient, corrected for age and made up of the four index scores below |
Verbal Comprehension Index 100 ± 15 (40–160) | Index score, corrected for age | |
Perceptual Comprehension Index 100 ± 15 (40–160) | Index score, corrected for age | |
Working Memory Index 100 ± 15 (40–160) | Index score, corrected for age | |
Processing Speed Index 100 ± 15 (40–160) | Index score, corrected for age | |
RAVLT | Total score (0–75) | The total number of correct answers on all five trials |
LLT | Total score (0–305) | The total number of errors on all five trials |
Learning index (0–1) | The total of the improvement ratios between the trials one to five, divided by four |
Phase | n | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
Pretest | 38 | 3.27 | 19.38 | 11.58 | 3.49 |
Training | 14 | 4.80 | 29.81 | 14.52 | 6.32 |
Practice | 15 | 3.90 | 10.91 | 6.96 | 2.12 |
Posttest | 40 | 3.56 | 19.49 | 9.33 | 3.29 |
Dynamic Measures | Minimum-Maximum | Training Group (n = 14, M ± SD (Range)) | Practice Group (n = 15, M ± SD (Range)) | Control Group (n = 11, M ± SD (Range)) |
---|---|---|---|---|
Pretest total score | 0–10 | 3.07 ± 3.22 (0–10) | 3.40 ± 2.61 (0–8) | 4.73 ± 2.61 (0–8) |
Posttest total score | 0–10 | 6.64 ± 3.50 (0–10) | 6.00 ± 3.48 (0–10) | 6.91 ± 2.59 (0–10) |
Static Measures | Minimum-Maximum | Training Group (n = 14, M ± SD (Range)) | Practice Group (n = 15, M ± SD (Range)) | Control Group (n = 11, M ± SD (Range)) |
WAIS-IV-NL FSIQ | 45–155 | 98.39 ± 17.20 (90–107) 1 | 91.00 ± 12.48 (83–99) | 101.50 ± 14.53 (92–111) 3 |
WAIS-IV-NL VCI | 45–155 | 103.46 ± 14.81 (66–120) 1 | 97.67 ± 8.80 (87–116) | 102.50 ± 15.92 (68–118) 3 |
WAIS-IV-NL PRI | 45–155 | 97.85 ± 18.92 (60–121) 1 | 97.73 ± 17.67 (72–127) | 100.90 ± 15.11 (81–131) 3 |
WAIS-IV-NL WMI | 45–155 | 101.62 ± 15.41 (61–117) 1 | 90.80 ± 11.19 (74–117) | 100.50 ± 12.14 (86–117) 3 |
WAIS-IV-NL PSI | 45–155 | 90.62 ± 21.26 (63–141) 1 | 87.40 ± 13.15 (70–122) | 99.90 ± 14.08 (76–128) 3 |
RAVLT total score | 0–75 | 45.31 ± 11.66 (20–62) 1 | 47.86 ± 8.92 (32–60) 2 | 54.50 ± 4.74 (47–63) 3 |
LLT total score | 0–175 | 24.69 ± 20.25 (0–59) 1 | 13.73 ± 10.96 (1–41) | 10.11 ± 9.97 (0–31) 4 |
LLT learning index | 0–1 | 0.71 ± 0.24 (0.34–1) 1 | 0.70 ± 0.27 (0.18–1) | 0.88 ± 0.23 (0.32–1) 4 |
Test | Variable | All Conditions Pretest | Training Group Posttest | Practice Group Posttest | Control Group Posttest | ||||
---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | ||
Dynamic test | Pretest | 0.610 | 0.021 | 0.879 | <0.001 | 0.795 | 0.003 | ||
Posttest | 0.730 | <0.001 | |||||||
WAIS-IV-NL | FSIQ | 0.715 | <0.001 | 0.572 | 0.041 | 0.624 | 0.013 | 0.861 | 0.001 |
VCI | 0.557 | <0.001 | 0.533 | 0.061 | 0.545 | 0.036 | 0.790 | 0.646 | |
PRI | 0.675 | <0.001 | 0.568 | 0.043 | 0.661 | 0.007 | 0.699 | 0.024 | |
WMI | 0.565 | <0.001 | 0.613 | 0.026 | 0.482 | 0.069 | 0.878 | 0.001 | |
PSI | 0.507 | 0.001 | 0.252 | 0.407 | 0.390 | 0.151 | 0.415 | 0.234 | |
RAVLT | Total score | 0.510 | 0.001 | 0.479 | 0.098 | 0.510 | 0.062 | 0.252 | 0.483 |
LLT | Total score | −0.407 | 0.012 | −0.135 | 0.661 | −0.770 | 0.001 | −0.524 | 0.148 |
Learning index | 0.525 | 0.001 | 0.257 | 0.397 | 0.710 | 0.003 | 0.629 | 0.070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendriks, Y.; Vogelaar, B.; van Heeswijk, R.; Veerbeek, J.; Resing, W.; van Aken, L.; Egger, J. Dynamic Testing in a Heterogeneous Clinical Sample: A Feasibility Study. Behav. Sci. 2025, 15, 1342. https://doi.org/10.3390/bs15101342
Hendriks Y, Vogelaar B, van Heeswijk R, Veerbeek J, Resing W, van Aken L, Egger J. Dynamic Testing in a Heterogeneous Clinical Sample: A Feasibility Study. Behavioral Sciences. 2025; 15(10):1342. https://doi.org/10.3390/bs15101342
Chicago/Turabian StyleHendriks, Ynès, Bart Vogelaar, Roos van Heeswijk, Jochanan Veerbeek, Wilma Resing, Loes van Aken, and Jos Egger. 2025. "Dynamic Testing in a Heterogeneous Clinical Sample: A Feasibility Study" Behavioral Sciences 15, no. 10: 1342. https://doi.org/10.3390/bs15101342
APA StyleHendriks, Y., Vogelaar, B., van Heeswijk, R., Veerbeek, J., Resing, W., van Aken, L., & Egger, J. (2025). Dynamic Testing in a Heterogeneous Clinical Sample: A Feasibility Study. Behavioral Sciences, 15(10), 1342. https://doi.org/10.3390/bs15101342