Links between Vaccination Fear-, Anxiety-, Alexithymia-, and Type D Personality-Related Vaccination Decisions: A Network Analysis in a Multicultural Sample
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedure
2.3. Instruments
2.4. Statistical Analysis
3. Results
3.1. Descriptive, Frequency, and Inferential Analysis
3.2. Correlation and Regression Analysis
3.3. Psychometric Network Analysis
3.4. Network Analysis
3.5. Network Analysis for Sex and Cultures
4. Discussion
Limitations and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Health in the 2030 Agenda for Sustainable Development. Sixty-Ninth World Health Assembly. Document A69/15. April 2016. Available online: https://apps.who.int/gb/e/e_wha69.html (accessed on 9 May 2024).
- World Health Organization. Immunization Coverage. July 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage (accessed on 9 May 2024).
- Lin, F.Y.; Wang, C.H. Personality and individual attitudes toward vaccination: A nationally representative survey in the United States. BMC Public Health 2020, 20, 1759. [Google Scholar] [CrossRef] [PubMed]
- Salali, G.D.; Uysal, M.S. COVID-19 vaccine hesitancy is associated with beliefs on the origin of the novel coronavirus in the UK and Turkey. Psychol. Med. 2022, 52, 3750–3752. [Google Scholar] [CrossRef]
- Lee, C.H.; Duck, I.M.; Sibley, C.G. Personality and demographic correlates of New Zealanders’ confidence in the safety of childhood vaccinations. Vaccine 2017, 35, 6089–6095. [Google Scholar] [CrossRef] [PubMed]
- Jeudin, P.; Liveright, E.; Del Carmen, M.G.; Perkins, R.B. Race, ethnicity, and income factors impacting human papillomavirus vaccination rates. Clin. Therap. 2014, 36, 24–37. [Google Scholar] [CrossRef]
- Cadeddu, C.; Daugbjerg, S.; Ricciardi, W.; Rosano, A. Beliefs towards vaccination and trust in the scientific community in Italy. Vaccine 2020, 38, 6609–6617. [Google Scholar] [CrossRef]
- Candio, P.; Violato, M.; Clarke, P.M.; Duch, R.; Roope, L.S. Prevalence, predictors and reasons for COVID-19 vaccine hesitancy: Results of a global online survey. Health Policy 2023, 137, 104895. [Google Scholar] [CrossRef]
- Fridman, A.; Gershon, R.; Gneezy, A. COVID-19 and vaccine hesitancy: A longitudinal study. PLoS ONE 2021, 16, e0250123. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.B.; Bednarczyk, R.A.; Ray, C.E.; Melchiori, K.J.; Graham, J.; Huntsinger, J.R.; Omer, S.B. Association of moral values with vaccine hesitancy. Nat. Hum. Behav. 2017, 1, 873–880. [Google Scholar] [CrossRef]
- Freeman, D.; Lambe, S.; Yu, L.M.; Freeman, J.; Chadwick, A.; Vaccari, C.; Waite, F.; Rosebrock, L.; Petit, A.; Vanderslott, S.; et al. Injection fears and COVID-19 vaccine hesitancy. Psychol. Med. 2023, 53, 1185–1195. [Google Scholar] [CrossRef]
- Hornsey, M.J.; Harris, E.A.; Fielding, K.S. The psychological roots of anti-vaccination attitudes: A 24-nation investigation. Health Psychol. 2018, 37, 307. [Google Scholar] [CrossRef]
- Malas, O. Influence of fear on anti-vaccine conspiracy theories and behaviour against vaccination. Rev. Psicol. Salud 2023, 11, 179–192. [Google Scholar] [CrossRef]
- Malas, O.; Tolsá, M.D. Needle-related fear versus vaccination fear, vaccination intention, and declared reasons for avoiding vaccination. Clínica Salud 2022, 33, 101–107. [Google Scholar] [CrossRef]
- Kahan, D.M.; Braman, D.; Cohen, G.L.; Gastil, J.; Slovic, P. Who fears the HPV vaccine, who doesn’t, and why? An experimental study of the mechanisms of cultural cognition. Law Hum. Behav. 2010, 34, 501–516. [Google Scholar] [CrossRef]
- Malas, O.; Tolsá, M.D. Vaccination Fear Scale (VFS-6): Development and Initial Validation. Medit. J. Clin. Psychol. 2021, 9. [Google Scholar] [CrossRef]
- Peretti-Watel, P.; Raude, J.; Sagaon-Teyssier, L.; Constant, A.; Verger, P.; Beck, F. Attitudes toward vaccination and the H1N1 vaccine: Poor people’s unfounded fears or legitimate concerns of the elite? Soc. Sci. Med. 2014, 109, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Duradoni, M.; Veloso, M.V.; La Gamma, M.; Monciatti, A.M.; Guazzini, A. Italian version of the Vaccination Fear Scale (VFS-6): Internal and external validation. Medit. J. Clin. Psychol. 2022, 10, 1–19. [Google Scholar] [CrossRef]
- Ochnik, D.; Rogowska, A.M.; Benatov, J.; Arzenšek, A. Adaptation and Preliminary Validation of the Fear of Coronavirus Vaccination Scale in the Prospective Study among a Representative Sample of Polish, Israeli, Slovenian, and German Adults during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 11587. [Google Scholar] [CrossRef] [PubMed]
- Bendau, A.; Plag, J.; Petzold, M.B.; Ströhle, A. COVID-19 vaccine hesitancy and related fears and anxiety. Int. Immunopharmacol. 2021, 97, 107724. [Google Scholar] [CrossRef]
- Ferreri, F.; Lapp, L.K.; Peretti, C.S. Current research on cognitive aspects of anxiety disorders. Curr. Opi. Psychiatry 2011, 24, 49–54. [Google Scholar] [CrossRef]
- Oglesby, M.E.; Schmidt, N.B. The role of threat level and intolerance of uncertainty (IU) in anxiety: An experimental test of IU theory. Behav. Ther. 2017, 48, 427–434. [Google Scholar] [CrossRef]
- Birrell, J.; Meares, K.; Wilkinson, A.; Freeston, M. Toward a definition of intolerance of uncertainty: A review of factor analytical studies of the Intolerance of Uncertainty Scale. Clin. Psychol. Rev. 2011, 31, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- McNeil, A.; Purdon, C. Anxiety disorders, COVID-19 fear, and vaccine hesitancy. J. Anxiety Disord. 2022, 90, 102598. [Google Scholar] [CrossRef]
- Malas, O.; Boustani, N.M.; Duradoni, M.; Omotoso, D.; Avşar, A.Ş.; Shyroka, A.; Colombini, G.; Blanch, A. The Vaccination Fear Scale (VFS-6): Adaptation, Cross-Cultural Validation, and Invariance among Genders and Six Different Cultures, Applying Classical Test Theory (CTT) and Item Response Theory (IRT). Eur. J. Investig. Health Psychol. Educ. 2024, 14, 808–822. [Google Scholar] [CrossRef]
- Turiano, N.A.; Hill, P.; Graham, E.K.; Mroczek, D.K. 22 associations between personality and health behaviors across the life span. In The Oxford Handbook of Integrative Health Science, 2nd ed.; Ryff, C.D., Krueger, R.F., Eds.; Oxford University Press: New York, NY, USA, 2018; p. 305. [Google Scholar] [CrossRef]
- Pfattheicher, S.; Petersen, M.B.; Böhm, R. Information about herd immunity through vaccination and empathy promote COVID-19 vaccination intentions. Health Psychol. 2022, 41, 85. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.N.; Merkley, E. Dynamic role of personality in explaining COVID-19 vaccine hesitancy and refusal. Front. Psychol. 2023, 14, 1163570. [Google Scholar] [CrossRef]
- Pedersen, S.S.; Denollet, J. Type D personality, cardiac events, and impaired quality of life: A review. Eur. J. Prev. Cardiol. 2003, 10, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Tselebis, A.; Kosmas, E.; Bratis, D.; Moussas, G.; Karkanias, A.; Ilias, I.; Tzanakis, N. Prevalence of alexithymia and its association with anxiety and depression in a sample of Greek chronic obstructive pulmonary disease (COPD) outpatients. Ann. Gen. Psychiatry. 2010, 9, 1–7. [Google Scholar] [CrossRef]
- Barchetta, S.; Martino, G.; Craparo, G.; Salehinejad, M.A.; Nitsche, M.A.; Vicario, C.M. Alexithymia is linked with a negative bias for past and current events in healthy humans. Int. J. Environ. Res. Public Health 2021, 18, 6696. [Google Scholar] [CrossRef]
- Vicario, C.M.; Martino, G.; Marcuzzo, A.; Craparo, G. No evidence of perceptual pseudoneglect in Alexithymia. Brain Sci. 2021, 11, 376. [Google Scholar] [CrossRef]
- Vicario, C.M.; Mucciardi, M.; Faraone, G.; Lucifora, C.; Schade, H.M.; Falzone, A.; Nitsche, M.A. Individual predictors of vaccine hesitancy in the Italian post COVID-19 pandemic era. Hum. Vaccines Immunother. 2024, 20, 2306677. [Google Scholar] [CrossRef]
- Denollet, J.; Rombouts, H.; Gillebert, T.C.; Brutsaert, D.L.; Sys, S.U.; Stroobant, N. Personality as independent predictor of long-term mortality in patients with coronary heart disease. Lancet 1996, 347, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, N.; Fabes, R.A.; Murphy, B.C. Relations of shyness and low sociability to regulation and emotionality. J. Pers. Soc. Psychol. 1995, 68, 505. [Google Scholar] [CrossRef]
- De Fruyt, F.; Denollet, J. Type D personality: A five-factor model perspective. Psychol. Health 2002, 17, 671–683. [Google Scholar] [CrossRef]
- Tugade, M.M.; Fredrickson, B.L. Resilient individuals use positive emotions to bounce back from negative emotional experiences. J. Pers. Soc. Psychol. 2004, 86, 320. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.T.; Bautista, J.R. Predicting intention to take protective measures during haze: The roles of efficacy, threat, media trust, and affective attitude. J. Health Commun. 2016, 21, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Chen, Q.; Zhang, Y.; Evans, R. Predicting COVID-19 vaccination intentions: The roles of threat appraisal, coping appraisal, subjective norms, and negative affect. BMC Public Health 2023, 23, 230. [Google Scholar] [CrossRef] [PubMed]
- Lerner, J.S.; Keltner, D. Fear, anger, and risk. J. Pers. Soc. Psychol. 2001, 81, 146. [Google Scholar] [CrossRef]
- Chou, W.Y.S.; Budenz, A. Considering emotion in COVID-19 vaccine communication: Addressing vaccine hesitancy and fostering vaccine confidence. Health Commun. 2020, 35, 1718–1722. [Google Scholar] [CrossRef]
- Cheung, T.; Jin, Y.; Lam, S.; Su, Z.; Hall, B.J.; Xiang, Y.T. Network analysis of depressive symptoms in Hong Kong residents during the COVID-19 pandemic. Transl. Psychiatry 2021, 11, 460. [Google Scholar] [CrossRef]
- Sardella, A.; Varallo, G.; Agus, M.; Lenzo, V.; Zagaria, A.; Terrone, G.; Franceschini, C. Anxiety, depression, emotion regulation, and daytime sleepiness: Are there links between these factors? Network analysis on an Italian sample during the COVID-19 pandemic. Clin. Neuropsychiatry 2023, 20, 395. [Google Scholar] [CrossRef]
- Jones, P.J.; Ma, R.; McNally, R.J. Bridge centrality: A network approach to understanding comorbidity. Multivar. Behav. Res. 2021, 56, 353–367. [Google Scholar] [CrossRef]
- Epskamp, S. Brief report on estimating regularized gaussian networks from continuous and ordinal data. arXiv 2016, arXiv:1606.05771. [Google Scholar] [CrossRef]
- Van Borkulo, C.D.; Borsboom, D.; Epskamp, S.; Blanken, T.F.; Boschloo, L.; Schoevers, R.A.; Waldorp, L.J. A new method for constructing networks from binary data. Sci. Rep. 2014, 4, 5918. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A brief measure for assessing generalized anxiety disorder the GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Denollet, J. DS14: Standard assessment of negative affectivity, social inhibition, and Type D personality. Psychosom. Med. 2005, 67, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Preece, D.A.; Mehta, A.; Petrova, K.; Sikka, P.; Bjureberg, J.; Chen, W.; Becerra, R.; Allan, A.; Robinson, K.; Gross, J.J. The Perth Alexithymia Questionnaire-Short form (PAQ-S): A 6-item measure of alexithymia. J. Affect. Disord. 2023, 325, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef]
- Robinaugh, D.J.; Millner, A.J.; McNally, R.J. Identifying highly influential nodes in the complicated grief network. J. Abnorm. Psychol. 2016, 125, 747. [Google Scholar] [CrossRef]
- Haslbeck, J.M.B.; Waldorp, L.J. MGM: Estimating time-varying mixed graphical models in high-dimensional data. J. Stat. Softw. 2020, 93, 1–46. [Google Scholar] [CrossRef]
- Epskamp, S.; Rhemtulla, M.; Borsboom, D. Generalized network psychometrics: Combining network and latent variable models. Psychometrika 2017, 82, 904–927. [Google Scholar] [CrossRef]
- Christensen, A.P.; Golino, H.; Silvia, P.J. A psychometric network perspective on the validity and validation of personality trait questionnaires. Eur. J. Personal. 2020, 34, 1095–1108. [Google Scholar] [CrossRef]
- Hevey, D. Network analysis: A brief overview and tutorial. Health Psychol. Behav. Med. 2018, 6, 301–328. [Google Scholar] [CrossRef] [PubMed]
- Triandis, H.C. Individualism and Collectivism; Routledge: London, UK, 2018. [Google Scholar]
- Schwartz, S.H. A Theory of Cultural Value Orientations: Explication and Applications. Compar. Sociol. 2006, 5, 137–182. [Google Scholar] [CrossRef]
- Leigh, J.P.; Moss, S.J.; White, T.M.; Picchio, C.A.; Rabin, K.H.; Ratzan, S.C.; Wyka, K.; El-Mohandes, A.; Lazarus, J.V. Factors affecting COVID-19 vaccine hesitancy among healthcare providers in 23 countries. Vaccine 2022, 40, 4081–4089. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Wyka, K.; White, T.M.; Picchio, C.A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Ratzan, S.C.; Kamarulzaman, A.; El-Mohandes, A. A survey of COVID-19 vaccine acceptance across 23 countries in 2022. Nat. Med. 2023, 29, 366–375. [Google Scholar] [CrossRef]
- Olu-Abiodun, O.; Abiodun, O.; Okafor, N. COVID-19 vaccination in Nigeria: A rapid review of vaccine acceptance rate and the associated factors. PLoS ONE 2022, 17, e0267691. [Google Scholar] [CrossRef]
- Hamdan, M.B.; Singh, S.; Polavarapu, M.; Jordan, T.R.; Melhem, N.M. COVID-19 vaccine hesitancy among university students in Lebanon. Epidemiol. Infect. 2021, 149, e242. [Google Scholar] [CrossRef]
- Rahman, M.M.; Masum, M.H.U.; Wajed, S.; Talukder, A. A comprehensive review on COVID-19 vaccines: Development, effectiveness, adverse effects, distribution and challenges. Virusdisease 2022, 33, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, R.A.; Klein, W.M. Risk perceptions and health behavior. Curr. Opin. Psychol. 2015, 5, 85–89. [Google Scholar] [CrossRef] [PubMed]
Sample Nationality | X2/df | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | TS | 1 | 2 | 3 | 4 | 5 | 6 | p | |
Vaccination (%) | Yes | 76.41 | 96.40 | 96.01 | 87.47 | 37.61 | 92.93 | 58.79 | 707.27 |
No | 23.59 | 3.60 | 3.99 | 12.53 | 62.39 | 7.07 | 41.21 | <0.001 | |
VFS-6 | Median | 11.0 | 8.0 | 8.0 | 11.0 | 14.0 | 13.0 | 9.0 | 66.78 |
IR | 8.0–15.0 | 7.0–12.0 | 7.0–11.0 | 8.0–16.0 | 10.0–18.0 | 9.0–17.0 | 7.0–13.0 | <0.001 | |
VFS1 | Median | 7.0 | 5.0 | 5.0 | 7.0 | 9.0 | 9.0 | 6.0 | 62.54 |
IR | 4.0–10.0 | 4.0–8.0 | 4.0–7.0 | 5.0–9.0 | 6.0–12.0 | 5.0–11.0 | 4.0–9.0 | <0.001 | |
VFS2 | Median | 3.0 | 3.0 | 3.0 | 4.0 | 4.0 | 3.0 | 3.0 | 54.76 |
IR | 3.0–5.0 | 3.0–3.0 | 3.0–3.0 | 3.0–7.0 | 3.0–8.0 | 3.0–6.0 | 3.0–4.0 | <0.001 | |
GAD-7 | Median | 9.0 | 10.0 | 8.0 | 9.0 | 9.0 | 9.0 | 7.0 | 10.29 |
IR | 5.0–13.0 | 6.0–13.0 | 6.0–12.0 | 6.0–14.0 | 5.0–14.0 | 6.0–14.0 | 4.0–11.0 | <0.001 | |
PAQ-S | Median | 18.0 | 16.5 | 16.0 | 21.0 | 22.0 | 15.0 | 17.0 | 47.71 |
IR | 13.0–24.0 | 11.0–22.0 | 12.0–21.0 | 16.0–27.0 | 16.0–28.0 | 10.0–21.2 | 12.0–22.0 | <0.001 | |
DS14 | Median | 37,0 | 35.0 | 38.0 | 35.0 | 40.0 | 38.0 | 34.0 | 17.26 |
IR | 30.0–44.0 | 28.0–41.0 | 30.0–47.0 | 30.0–43.0 | 33.0–46.5 | 30.7–45.0 | 27.0–42.0 | <0.001 | |
NA | Median | 18.0 | 17.0 | 20.0 | 18.0 | 18.0 | 20.0 | 16.0 | 14.37 |
IR | 14.0–23.0 | 13.0–21.0 | 16.0–24.0 | 15.0–23.0 | 13.5–22.5 | 15.0–25.0 | 13.0–21.0 | <0.001 | |
SI | Median | 18.0 | 18.0 | 18.5 | 17.0 | 22.0 | 18.0 | 18.0 | 39.17 |
IR | 15.0–23.0 | 14.0–20.7 | 14.0–24.0 | 15.0–21.0 | 18.0–25.0 | 13.7–22.0 | 13.0–22.0 | <0.001 |
Spearman Rho Correlations | Strength & Directionality | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VS | VFS | VFS1 | VFS2 | GAD | PAQ | DS | NA | SI | p | Γ | d | |
VS | -- | -- | -- | -- | ||||||||
VFS | −0.280 | -- | -- | -- | -- | |||||||
VFS1 | −0.311 | 0.953 | -- | <0.001 | −0.454 | −0.239 | ||||||
VFS2 | −0.124 | 0.748 | 0.547 | -- | <0.001 | −0.223 | −0.109 | |||||
GAD | 0.021 | 0.165 | 0.133 | 0.181 | -- | 0.285 | 0.031 | 0.016 | ||||
PAQ | −0.142 | 0.263 | 0.212 | 0.283 | 0.315 | -- | <0.001 | −0.199 | −0.105 | |||
DS | −0.031 | 0.244 | 0.216 | 0.211 | 0.447 | 0.471 | -- | -- | -- | -- | ||
NA | 0.069 | 0.217 | 0.189 | 0.187 | 0.533 | 0.419 | 0.872 | -- | <0.001 | 0.098 | 0.051 | |
SI | −0.122 | 0.209 | 0.183 | 0.192 | 0.230 | 0.406 | 0.848 | 0.497 | -- | <0.001 | −0.174 | −0.091 |
Model | B | B IC95% | t | p | r2 | Δr2 | ||
---|---|---|---|---|---|---|---|---|
1 | VFS1 | −0.321 | −0.043 | −0.034 | −17.036 | <0.001 | 0.103 | 0.103 |
2 | VFS1 | −0.344 | −0.046 | −0.037 | −18.170 | <0.001 | 0.120 | 0.017 |
NA | 0.133 | 0.006 | 0.012 | 6.996 | <0.001 | |||
3 | VFS1 | −0.330 | −0.044 | −0.035 | −17.541 | <0.001 | 0.139 | 0.020 |
NA | 0.212 | 0.012 | 0.017 | 9.879 | <0.001 | |||
SI | −0.163 | −0.015 | −0.009 | −7.577 | <0.001 | |||
4 | VFS1 | −0.316 | −0.042 | −0.033 | −16.763 | <0.001 | 0.151 | 0.011 |
NA | 0.247 | 0.014 | 0.020 | 11.135 | <0.001 | |||
SI | −0.131 | −0.013 | −0.006 | −5.930 | <0.001 | |||
PAQ | −0.124 | −0.009 | −0.004 | −5.839 | <0.001 | |||
5 | VFS1 | −0.367 | −0.049 | −0.039 | −16.893 | <0.001 | 0.158 | 0.007 |
NA | 0.239 | 0.013 | 0.019 | 10.810 | <0.001 | |||
SI | −0.136 | −0.013 | −0.007 | −6.173 | <0.001 | |||
PAQ | −0.140 | −0.010 | −0.005 | −6.557 | <0.001 | |||
VFS2 | 0.104 | 0.009 | 0.023 | 4.643 | <0.001 |
Weight Matrix | Centrality Measures | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | VS | VFS1 | VFS2 | GAD | PAQ | NA | SI | Betweenness | Closeness | Strength | Expected Influence |
VS | 0.000 | 1.303 | 1.305 | 0.410 | −1.555 | ||||||
VFS1 | −0.398 | 0.000 | 0.391 | −0.205 | 0.357 | −0.619 | |||||
VFS2 | 0.105 | 0.493 | 0.000 | −0.521 | −1.106 | −0.454 | 0.683 | ||||
GAD | 0.000 | 0.020 | 0.019 | 0.000 | −0.977 | −0.805 | −1.422 | 0.038 | |||
PAQ | −0.172 | −0.038 | 0.172 | 0.108 | 0.000 | −0.521 | −0.218 | −0.379 | −0.029 | ||
NA | 0.251 | 0.101 | 0.032 | 0.438 | 0.205 | 0.000 | 1.303 | 1.464 | 1.799 | 1.644 | |
SI | −0.163 | −0.027 | 0.060 | −0.065 | 0.206 | 0.396 | 0.000 | −0.977 | −0.435 | −0.310 | −0.163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malas, O.; Boustani, N.M.; Duradoni, M.; Omotoso, D.; Avşar, A.Ş.; Shyroka, A.; Colombini, G.; Tolsá, M.D. Links between Vaccination Fear-, Anxiety-, Alexithymia-, and Type D Personality-Related Vaccination Decisions: A Network Analysis in a Multicultural Sample. Behav. Sci. 2024, 14, 761. https://doi.org/10.3390/bs14090761
Malas O, Boustani NM, Duradoni M, Omotoso D, Avşar AŞ, Shyroka A, Colombini G, Tolsá MD. Links between Vaccination Fear-, Anxiety-, Alexithymia-, and Type D Personality-Related Vaccination Decisions: A Network Analysis in a Multicultural Sample. Behavioral Sciences. 2024; 14(9):761. https://doi.org/10.3390/bs14090761
Chicago/Turabian StyleMalas, Olga, Nada Mallah Boustani, Mirko Duradoni, Dayo Omotoso, Asiye Şengül Avşar, Anastasiia Shyroka, Giulia Colombini, and Maria Dolores Tolsá. 2024. "Links between Vaccination Fear-, Anxiety-, Alexithymia-, and Type D Personality-Related Vaccination Decisions: A Network Analysis in a Multicultural Sample" Behavioral Sciences 14, no. 9: 761. https://doi.org/10.3390/bs14090761
APA StyleMalas, O., Boustani, N. M., Duradoni, M., Omotoso, D., Avşar, A. Ş., Shyroka, A., Colombini, G., & Tolsá, M. D. (2024). Links between Vaccination Fear-, Anxiety-, Alexithymia-, and Type D Personality-Related Vaccination Decisions: A Network Analysis in a Multicultural Sample. Behavioral Sciences, 14(9), 761. https://doi.org/10.3390/bs14090761