Factors Influencing Users’ Perceptions of Digital Platform Indispensability: A Comparative Study of Korea and Finland
Abstract
:1. Introduction
- RQ1: How does the perceived indispensability of digital platforms vary between Korea and Finland?
- RQ2: What factors determine how indispensable digital platforms are considered in Korea and Finland?
- RQ3: To what extent do the relative influences of specific factors on platform indispensability differ between Korea and Finland?
2. Literature Review and Research Hypotheses
2.1. Digital Platform Indispensability
2.2. Digital Platform Gaps between Local and Global Platforms
2.3. Research Hypotheses
2.3.1. The Quality of the Digital Platform
2.3.2. Digital Platform Usage
3. Methodology
3.1. Data
3.1.1. Sampling Method
3.1.2. Survey Instrument and Validation
3.1.3. Ensuring Data Reliability and Validity
3.2. Descriptive Analysis
4. Results
4.1. Difference between the Mean of the Two Countries (RQ1)
4.2. Analysis Results (RQ2 & 3)
4.3. Discussion
5. Conclusions
5.1. Implications for Researchers
5.2. Implications for Policymakers
5.3. Implications for Digital Platform Users
5.4. Implications for Practitioners
5.5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Dijck, J.; Poell, T.; De Waal, M. The Platform Society: Public Values in a Connective World; Oxford University Press: London, UK, 2018. [Google Scholar]
- Quarta, A. Narratives of the Digital Economy: How Platforms Are Challenging Consumer Law and Hierarchical Organization. Glob. Jurist 2020, 20, 20200026. [Google Scholar] [CrossRef]
- Vaidhyanathan, S. Antisocial Media: How Facebook Disconnects Us and Undermines Democracy; Oxford University Press: London, UK, 2018. [Google Scholar]
- Pierson, J. Digital Platforms as Entangled Infrastructures: Addressing Public Values and Trust in Messaging Apps. Eur. J. Commun. 2021, 36, 349–361. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P.; Venkatesh, A. Has the Internet Become Indispensable? Commun. ACM 2004, 47, 37–42. [Google Scholar] [CrossRef]
- Hermes, S.; Clemons, E.; Schreieck, M.; Pfab, S.; Mitre, M.; Böhm, M.; Wiesche, M.; Krcmar, H. Breeding Grounds of Digital Platforms: Exploring the Sources of American Platform Domination, China’s Platform Self-Sufficiency, and Europe’s Platform Gap. Res. Pap. 2020, 132, 1–18. [Google Scholar]
- Chiarella, M.L. Digital Markets Act (DMA) and Digital Services Act (DSA): New Rules for the EU Digital Environment. Athens JL 2023, 9, 299. [Google Scholar]
- Beems, B. The DMA in the Broader Regulatory Landscape of the EU: An Institutional Perspective. Eur. Compet. J. 2023, 19, 1–29. [Google Scholar] [CrossRef]
- EU Artificial Intelligence Act 2024. Available online: https://artificialintelligenceact.eu/ (accessed on 12 April 2024).
- Neuwirth, R.J. Prohibited Artificial Intelligence Practices in the Proposed EU Artificial Intelligence Act (AIA). Comput. Law Secur. Rev. 2023, 48, 105798. [Google Scholar] [CrossRef]
- McKnight, S.; Kenney, M.; Breznitz, D. Regulating the platform giants: Building and governing China's online economy. Policy Internet 2023, 15, 243–265. [Google Scholar] [CrossRef]
- Zhang, Z. Infrastructuralization of Tik Tok: Transformation, Power Relationships, and Platformization of Video Entertainment in China. Media Cult. Soc. 2021, 43, 219–236. [Google Scholar] [CrossRef]
- Kim, K.P. The Rise and Development of the Platform Economy in South Korea. Int. J. Asian Stud. 2023, 20, 575–589. [Google Scholar] [CrossRef]
- Yoon, J.H. “NAVER Shaken by Google’ Advance?” Money Today 2023. Available online: https://news.mt.co.kr/mtview.php?no=2023061213434572239 (accessed on 12 April 2024). (In Korean).
- Anttiroiko, A.V. City-as-a-Platform: The Rise of Participatory Innovation Platforms in Finnish Cities. Sustainability 2016, 8, 922. [Google Scholar] [CrossRef]
- Platzer, E.; Petrovic, O.; Rauch, W.; Maxl, E. An Experimental Deprivation Study on Technology Indispensability. In Central European Conference on Information and Intelligent Systems; Faculty of Organization and Informatics Varazdin: Varazdin, Croatia, 2009; pp. 89–96. Available online: https://www.proquest.com/conference-papersproceedings/experimental-deprivation-study-ontechnology/docview/1313188450/se-2 (accessed on 12 April 2024).
- Rahman, K.S. Regulating Informational Infrastructure: Internet Platforms as the New Public Utilities. Georget. Law Technol. Rev. 2018, 2, 2. [Google Scholar]
- Marinelli, A.; Parisi, S. Apps, Platforms, and Everyday Practices: How People Perceive and Care (or not) About the Digital Traces They Leave Online. Am. Behav. Sci. 2024, 68, 711–730. [Google Scholar] [CrossRef]
- Schnauber-Stockmann, A.; Mangold, F. Day-to-day routines of media platform use in the digital age: A structuration perspective. Commun. Monogr. 2020, 87, 464–483. [Google Scholar] [CrossRef]
- Barns, S. Negotiating the platform pivot: From participatory digital ecosystems to infrastructures of everyday life. Geogr. Compass 2019, 13, e12464. [Google Scholar] [CrossRef]
- Fast, K. A Discursive Approach to Mediatisation: Corporate Technology Discourse and the Trope of Media Indispensability. Media Commun. 2018, 6, 15–28. [Google Scholar] [CrossRef]
- Hoffman, D.L. Internet Indispensability, Online Social Capital, and Consumer Well-Being. In Transformative Consumer Research for Personal and Collective Well-Being; Routledge: London, UK, 2012; pp. 193–204. [Google Scholar]
- Cheng, Z.; Cheng, Z.; Cheng, Z. On Smartphone Indispensability: A Country-level Exploratory Study. In Proceedings of the AMCIS 2015, Fajardo, Puerto Rico, 13–15 August 2015; Available online: https://aisel.aisnet.org/amcis2015/GlobalIssues/GeneralPresentations/7 (accessed on 12 April 2024).
- Kinder, E.; Jarrahi, M.H.; Sutherland, W. Gig platforms, tensions, alliances and ecosystems: An actor-network perspective. Proc. ACM Hum.-Comput. Interact. 2019, 3, 1–26. [Google Scholar] [CrossRef]
- Jansson, A. The Molding of Mediatization: The Stratified Indispensability of Media in Close Relationships. Communications 2015, 40, 379–401. [Google Scholar] [CrossRef]
- Plantin, J.C.; De Seta, G. WeChat as Infrastructure: The Techno-Nationalist Shaping of Chinese Digital Platforms. Chin. J. Commun. 2019, 12, 257–273. [Google Scholar] [CrossRef]
- He, Q. Rethinking the Legal Regulation of Internet Platform Monopoly in China. Policy Internet 2022, 14, 284–303. [Google Scholar] [CrossRef]
- Chirita, A. Abuse of Global Platform Dominance or Competition on the Merits? Loy. Consum. Lit. Rev. 2021, 33, 1. [Google Scholar]
- Barwise, P.; Watkins, L. The evolution of digital dominance. In Digital Dominance: The Power of Google, Amazon, Facebook, and Apple; Oxford University Press: London, UK, 2018; pp. 21–49. [Google Scholar]
- Marty, F.; Mouton, J. Ecosystems as Quasi-Essential Facilities: Should We Impose Platform Neutrality? J. Law Mark. Innov. 2022, 1, 108–134. [Google Scholar] [CrossRef]
- Moore, M.; Tambini, D. (Eds.) Regulating Big Tech: Policy Responses to Digital Dominance; Oxford University Press: London, UK, 2022. [Google Scholar]
- Flew, T.; Gillett, R. Platform policy: Evaluating different responses to the challenges of platform power. J. Digit. Media Policy 2021, 12, 231–246. [Google Scholar] [CrossRef]
- Cammaerts, B.; Mansell, R. Digital platform policy and regulation: Toward a radical democratic turn. Int. J. Commun. 2020, 14, 135–154. [Google Scholar]
- Nadeem, S. Platform Power: Investigating the Dynamics of Dominant Platforms and their Impact on Industry Competition. Res. Stud. Bus. 2024, 2, 29–38. [Google Scholar]
- Qiu, J.L. Chinese Techno-Nationalism and Global wi-fi Policy. In Reorienting Global Communication: Indian and Chinese Media Beyond Borders; Curtin, M., Shah, H., Eds.; University of Illinois Press: Urbana, IL, USA, 2010; pp. 284–304. [Google Scholar]
- Bouwman, H.; Carlsson, C.; Carlsson, J.; Nikou, S.; Sell, A.; Walden, P. How Nokia Failed to Nail the Smartphone Market. In Proceedings of the 25th European Regional Conference of the International Telecommunications Society (ITS): “Disruptive Innovation in the ICT Industries: Challenges for European Policy and Business”, Brussels, Belgium, 22–25 June 2014. [Google Scholar]
- Hofstede, G. Culture’s consequences: Comparing values, behaviors, institutions, and organizations across nations. Coll. Aviat. Rev. 2016, 34, 108. [Google Scholar]
- Straub, D.; Keil, M.; Brenner, W. Testing the technology acceptance model across cultures: A three country study. Inf. Manag. 1997, 33, 1–11. [Google Scholar] [CrossRef]
- McIntyre, D.P.; Srinivasan, A. Networks, Platforms, and Strategy: Emerging Views and Next Steps. Strateg. Manag. J. 2017, 38, 141–160. [Google Scholar] [CrossRef]
- Claussen, J.; Kretschmer, T.; Mayrhofer, P. The effects of rewarding user engagement: The case of Facebook apps. Inf. Syst. Res. 2013, 24, 186–200. [Google Scholar] [CrossRef]
- Asante, I.O.; Jiang, Y.; Hossin, A.M.; Luo, X. Optimization of consumer engagement with artificial intelligence elements on electronic commerce platforms. J. Electron. Commer. Res. 2023, 24, 7–28. [Google Scholar]
- Cheng, S.; Lee, S.-J.; Choi, B. An Empirical Investigation of Users’ Voluntary Switching Intention for Mobile Personal Cloud Storage Services based on the Push-Pull-Mooring Framework. Comput. Hum. Behav. 2019, 92, 198–215. [Google Scholar] [CrossRef]
- Davis, F.D.; Granić, A.; Marangunić, N. The technology acceptance model 30 years of TAM. Technology 2023, 1, 1–150. [Google Scholar]
- Baker-Eveleth, L.; Stone, R.W. User’s perceptions of perceived usefulness, satisfaction, and intentions of mobile application. Int. J. Mob. Commun. 2020, 18, 1–18. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Thies, F.; Wessel, M.; Benlian, A. Effects of social interaction dynamics on platforms. J. Manag. Inf. Syst. 2016, 33, 843–873. [Google Scholar] [CrossRef]
- Vakeel, K.A.; Malthouse, E.C.; Yang, A. Impact of network effects on service provider performance in digital business platforms. J. Serv. Manag. 2021, 32, 461–482. [Google Scholar] [CrossRef]
- Lee, M.C. Factors Influencing the Adoption of Internet Banking: An Integration of TAM and TPB with Perceived Risk and Perceived Benefit. Electron. Commer. Res. Appl. 2009, 8, 130–141. [Google Scholar] [CrossRef]
- Quach, S.; Thaichon, P.; Martin, K.D.; Weaven, S.; Palmatier, R.W. Digital technologies: Tensions in privacy and data. J. Acad. Mark. Sci. 2022, 50, 1299–1323. [Google Scholar] [CrossRef]
- Isaak, J.; Hanna, M.J. User Data Privacy: Facebook, Cambridge Analytica, and Privacy Protection. Computer 2018, 51, 56–59. [Google Scholar] [CrossRef]
- Duan, Y.; Ge, Y.; Feng, Y. Pricing and personal data collection strategies of online platforms in the face of privacy concerns. Electron. Commer. Res. 2022, 22, 539–559. [Google Scholar] [CrossRef]
- Anderson, I.A.; Wood, W. Habits and the Electronic Herd: The Psychology Behind Social Media’s Successes and Failures. Consum. Psychol. Rev. 2021, 4, 83–99. [Google Scholar] [CrossRef]
- Bjur, J.; Schrøder, K.C.; Hasebrink, U.; Courtois, C.; Adoni, H.; Nossek, H. Cross-media use: Unfolding complexities in contemporary audiencehood. In Audience Transformations; Taylor & Francis Group: Abingdon, UK, 2013; pp. 15–29. [Google Scholar]
- Büchi, M.; Just, N.; Latzer, M. Modeling the second-level digital divide: A five-country study of social differences in Internet use. New Media Soc. 2016, 18, 2703–2722. [Google Scholar] [CrossRef]
- Liao, C.; Palvia, P.; Lin, H.N. The Roles of Habit and Web Site Quality in E-Commerce. Int. J. Inf. Manag. 2006, 26, 469–483. [Google Scholar] [CrossRef]
- Aydin, M. A Multilevel Modeling Approach to Investigating Factors Impacting Computer and Information Literacy: ICILS Korea and Finland Sample. Educ. Inf. Technol. 2022, 27, 1675–1703. [Google Scholar] [CrossRef]
- Jang, M.; Aavakare, M.; Nikou, S.; Kim, S. The Impact of Literacy on Intention to Use Digital Technology for Learning: A Comparative Study of Korea and Finland. Telecommun. Policy 2021, 45, 102154. [Google Scholar] [CrossRef]
- OECD. Data Usage Increases More than 25% in the Majority of OECD Countries in 2019. Available online: www.oecd.org/digital/broadband-statistics-update (accessed on 12 April 2024).
- Plantin, J.-C.; Lagoze, C.; Edwards, P.N.; Sandvig, C. Infrastructure Studies Meet Platform Studies in the Age of Google and Facebook. New Media Soc. 2018, 20, 293–310. [Google Scholar] [CrossRef]
- Cothran, T. Google Scholar Acceptance and Use Among Graduate Students: A Quantitative Study. Libr. Inf. Sci. Res. 2011, 33, 293–301. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G.; Cheung, C.M. How Habit Limits the Predictive Power Of Intention: The Case of Information Systems Continuance. MIS Q. 2007, 31, 705–737. [Google Scholar] [CrossRef]
- Matute, J.; Polo-Redondo, Y.; Utrillas, A. The Influence of EWOM Characteristics on Online Repurchase Intention: Mediating Roles of Trust and Perceived Usefulness. Online Inf. Rev. 2016, 40, 1090–1110. [Google Scholar] [CrossRef]
- Forsythe, S.; Liu, C.; Shannon, D.; Gardner, L.C. Development of a Scale to Measure the Perceived Benefits and Risks of Online Shopping. J. Interact. Mark. 2006, 20, 55–75. [Google Scholar] [CrossRef]
- Gong, Z.; Han, Z.; Li, X.; Yu, C.; Reinhardt, J.D. Factors Influencing the Adoption of Online Health Consultation Services: The Role of Subjective Norm, Trust, Perceived Benefit, and Offline Habit. Front. Public Health 2019, 7, 286. [Google Scholar] [CrossRef]
- Lu, Y.; Cao, Y.; Wang, B.; Yang, S. A Study on Factors that Affect Users’ Behavioral Intention to Transfer Usage from the Offline to the Online Channel. Comput. Hum. Behav. 2011, 27, 355–364. [Google Scholar] [CrossRef]
- Ridings, C.M.; Gefen, D. Virtual Community Attraction: Why People Hang Out Online. J. Comput.-Mediat. Commun. 2004, 10, JCMC10110. [Google Scholar] [CrossRef]
- Seol, S.; Lee, H.; Yu, J.; Zo, H. Continuance Usage of Corporate SNS Pages: A Communicative Ecology Perspective. Inf. Manag. 2016, 53, 740–751. [Google Scholar] [CrossRef]
- Lee, W.K. The Temporal Relationships Among Habit, Intention and IS Uses. Comput. Hum. Behav. 2014, 32, 54–60. [Google Scholar] [CrossRef]
- Hubert, M.; Blut, M.; Brock, C.; Backhaus, C.; Eberhardt, T. Acceptance of Smartphone-Based Mobile Shopping: Mobile Benefits, Customer Characteristics, Perceived Risks, and the Impact of Application Context. Psychol. Mark. 2017, 34, 175–194. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Musil, C.M.; Jones, S.L.; Warner, C.D. Structural Equation Modeling and Its Relationship to Multiple Regression and Factor Analysis. Res. Nurs. Health 1998, 21, 271–281. [Google Scholar]
- Nusair, K.; Hua, N. Comparative Assessment of Structural Equation Modeling and Multiple Regression Research Methodologies: E-commerce Context. Tour. Manag. 2010, 31, 314–324. [Google Scholar] [CrossRef]
- Petrocelli, J.V. Hierarchical Multiple Regression in Counseling Research: Common Problems and Possible Remedies. Meas. Eval. Couns. Dev. 2003, 36, 9–22. [Google Scholar] [CrossRef]
- Falvo, M.J.; Earhart, G.M. Six-minute Walk Distance in Persons with Parkinson Disease: A Hierarchical Regression Model. Arch. Phys. Med. Rehabil. 2009, 90, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Yang, F. The postcolonial route of WeChat: Technological mimicry, excess, and orientalism. Asian J. Commun. 2022, 32, 448–461. [Google Scholar] [CrossRef]
- Wörsdörfer, M. The Digital Markets Act and EU competition policy: A critical ordoliberal evaluation. Philos. Manag. 2023, 22, 149–171. [Google Scholar] [CrossRef]
- Hwang, I.J.; Lee, B.G.; Kim, K.Y. Information asymmetry, social networking site word of mouth, and mobility effects on social commerce in Korea. Cyberpsychology Behav. Soc. Netw. 2014, 17, 117–124. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Beck, S.; Jung, K. Why Google cannot be the # 1 in Korea? In Search for Critical Success Factors from Local User Experience. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015; pp. 847–852. [Google Scholar]
Finland (N = 153) | Korea (N = 214) | M (SD) | ||||
---|---|---|---|---|---|---|
Gender | Female | 80 | 52% | 142 | 66% | 1.632 (0.510) |
Male | 68 | 44% | 72 | 34% | ||
Other | 5 | 3% | - | - | ||
Age | 10s | 3 | 2% | 20 | 9% | 3.376 (1.371) |
20s | 43 | 28% | 41 | 19% | ||
30s | 63 | 41% | 46 | 21% | ||
40s | 23 | 15% | 42 | 20% | ||
50s | 11 | 7% | 44 | 21% | ||
60s+ | 10 | 7% | 21 | 10% | ||
Education | High school or less | 17 | 11% | 55 | 26% | 2.771 (1.062) |
Some college | 18 | 12% | 24 | 11% | ||
Bachelor’s degree | 35 | 23% | 116 | 54% | ||
Graduate degree | 83 | 54% | 19 | 9% | ||
Monthly household income | <1500 USD | 45 | 29% | 32 | 15% | 2.523 (1.042) |
1500–3000 USD | 98 | 64% | 69 | 32% | ||
3000–4500 USD | 8 | 5% | 55 | 26% | ||
4500–7000 USD | 1 | 1% | 38 | 18% | ||
>7000 USD | 1 | 1% | 7 | 3% |
Variable | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|
Indispensability | 1 | 5 | 3.724 | 0.691 |
Comprehensiveness | 1.75 | 5 | 3.993 | 0.559 |
Usefulness | 2.25 | 5 | 4.033 | 0.516 |
Security risk | 1 | 5 | 2.739 | 0.838 |
Social interaction | 1.2 | 5 | 3.622 | 0.628 |
Habitual use | 1.6 | 5 | 3.950 | 0.601 |
Daily use frequency | 1 | 5 | 2.161 | 1.061 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Indispensability | 1 | ||||||||||
2. Gender | 0.05 | 1 | |||||||||
3. Age | −0.06 | −0.03 | 1 | ||||||||
4. Education | 0.08 | −0.05 | −0.08 | 1 | |||||||
5. Income | 0.05 | −0.12 * | 0.19 † | 0.10 | 1 | ||||||
6. Comprehensiveness | 0.36 ‡ | 0.09 | −0.10 | −0.09 | −0.06 | 1 | |||||
7. Usefulness | 0.59 ‡ | 0.10 | −0.11 * | −0.03 | 0.01 | 0.54 ‡ | 1 | ||||
8. Security risk | −0.15 † | 0.01 | −0.04 | 0.01 | −0.13 * | −0.19 | −0.20 † | 1 | |||
9. Social interaction | 0.44 ‡ | −0.01 | −0.16 † | −0.03 | −0.01 | 0.48 ‡ | 0.48 ‡ | −0.05 | 1 | ||
10. Habitual use | 0.65 ‡ | 0.09 | 0.01 | 0.05 | 0.02 | 0.42 ‡ | 0.54 ‡ | −0.15 † | 0.34 ‡ | 1 | |
11. Daily use frequency | 0.32 ‡ | −0.08 | −0.15 † | 0.26 ‡ | −0.05 | 0.07 | 0.22 ‡ | −0.01 | 0.16 † | 0.31 ‡ | 1 |
Finland M (S.D.) | Korea M (S.D.) | Mean Difference | |
---|---|---|---|
Indispensability | 3.87 (0.53) | 3.62 (0.77) | 0.26 *** |
Comprehensiveness | 3.912 (0.50) | 4.05 (0.59) | −0.13 |
Social interaction | 3.70 (0.64) | 3.57 (0.61) | 0.14 * |
Perceived usefulness | 4.10 (0.41) | 3.98 (0.58) | 0.12 * |
Perceived security risk | 2.83 (0.95) | 2.68 (0.75) | 0.15 |
Habitual usage | 4.04 (0.38) | 3.89 (0.71) | 0.16 * |
Daily use frequency | 2.51 (1.18) | 1.91 (0.89) | 0.60 *** |
Variable | Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|---|
Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | ||
Individual characteristics (Controls) | Gender | −0.010 | 0.079 | −0.019 | 0.069 | −0.014 | 0.066 |
Age | −0.030 | 0.039 | −0.005 | 0.034 | 0.006 | 0.033 | |
Education | 0.051 | 0.044 | 0.055 | 0.039 | 0.044 | 0.038 | |
Income | 0.051 | 0.054 | 0.045 | 0.047 | 0.063 | 0.045 | |
Platform quality | Comprehensiveness | −0.131 | 0.087 | −0.163 * | 0.083 | ||
Usefulness | 0.535 *** | 0.101 | 0.412 *** | 0.101 | |||
Security risk | −0.099 * | 0.041 | −0.094 * | 0.039 | |||
Social interaction | 0.160 * | 0.068 | 0.102 | 0.066 | |||
Platform usage | Habitual usage | 0.400 *** | 0.109 | ||||
Usage frequency | 0.055 | 0.033 | |||||
Constants | 3.706 *** | 0.267 | 1.653 ** | 0.539 | 0.680 | 0.573 | |
R2 | 0.027 | 0.281 | 0.362 | ||||
Adjusted R2 | 0.000 | 0.241 | 0.318 | ||||
ΔF | 1.011 | 7.027 *** | 8.072 *** | ||||
N | 153 | 153 | 153 |
Variable | Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|---|
Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | ||
Individual characteristics (Controls) | Gender | 0.207 | 0.112 | 0.072 | 0.086 | 0.026 | 0.075 |
Age | −0.016 | 0.036 | 0.043 | 0.029 | 0.015 | 0.025 | |
Education | −0.046 | 0.055 | 0.017 | 0.042 | −0.018 | 0.037 | |
Income | 0.084 | 0.048 | 0.040 | 0.038 | 0.030 | 0.033 | |
Platform quality | Comprehensiveness | 0.148 | 0.097 | 0.050 | 0.085 | ||
Usefulness | 0.565 *** | 0.106 | 0.327 *** | 0.096 | |||
Security risk | 0.020 | 0.057 | 0.041 | 0.050 | |||
Social interaction | 0.290 *** | 0.085 | 0.199 ** | 0.074 | |||
Platform usage | Habitual usage | 0.477 *** | 0.065 | ||||
Usage frequency | 0.067 | 0.043 | |||||
Constants | 3.706 *** | 0.267 | 1.653 ** | 0.539 | 0.680 | 0.573 | |
R2 | 0.029 | 0.452 | 0.592 | ||||
Adjusted R2 | 0.010 | 0.430 | 0.572 | ||||
ΔF | 1.557 | 21.096 *** | 29.461 *** | ||||
N | 214 | 214 | 214 |
Variable | Finland | Korea | |||
---|---|---|---|---|---|
Coefficient | S.E. | Coefficient | S.E. | ||
Individual characteristics (Controls) | Gender | −0.01 | 0.07 | 0.03 | 0.08 |
Age | 0.01 | 0.03 | 0.02 | 0.03 | |
Education | 0.04 | 0.04 | −0.02 | 0.04 | |
Income | 0.06 | 0.05 | 0.03 | 0.03 | |
Platform quality | Comprehensiveness | −0.16 * | 0.08 | 0.05 | 0.09 |
Usefulness | 0.41 *** | 0.10 | 0.33 *** | 0.10 | |
Security risk | −0.09 * | 0.04 | 0.04 | 0.05 | |
Social interaction | 0.10 | 0.07 | 0.20 ** | 0.07 | |
Platform usage | Habitual usage | 0.40 *** | 0.11 | 0.48 *** | 0.07 |
Usage frequency | 0.06 | 0.03 | 0.07 | 0.04 | |
Constants | 3.706 *** | 0.267 | 1.653 ** | 0.539 | |
R2 | 0.362 | 0.592 | |||
Adjusted R2 | 0.318 | 0.572 | |||
N | 153 | 214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, M.; Nikou, S.; Kim, S. Factors Influencing Users’ Perceptions of Digital Platform Indispensability: A Comparative Study of Korea and Finland. Behav. Sci. 2024, 14, 502. https://doi.org/10.3390/bs14060502
Jang M, Nikou S, Kim S. Factors Influencing Users’ Perceptions of Digital Platform Indispensability: A Comparative Study of Korea and Finland. Behavioral Sciences. 2024; 14(6):502. https://doi.org/10.3390/bs14060502
Chicago/Turabian StyleJang, Moonkyoung, Shahrokh Nikou, and Seongcheol Kim. 2024. "Factors Influencing Users’ Perceptions of Digital Platform Indispensability: A Comparative Study of Korea and Finland" Behavioral Sciences 14, no. 6: 502. https://doi.org/10.3390/bs14060502
APA StyleJang, M., Nikou, S., & Kim, S. (2024). Factors Influencing Users’ Perceptions of Digital Platform Indispensability: A Comparative Study of Korea and Finland. Behavioral Sciences, 14(6), 502. https://doi.org/10.3390/bs14060502