Adaptation and Psychometric Properties of an Attitude toward Artificial Intelligence Scale (AIAS-4) among Peruvian Nurses
Abstract
:1. Introduction
2. Methods
2.1. Design and Participants
2.2. Instruments
- Two bilingual translators, native Spanish speakers, independently performed the initial translation of the AIAS into Spanish. Subsequently, both versions were compared to create an initial unified version.
- This translated version was then back-translated into English by two native English speakers from the United States, competent in Spanish but without prior knowledge of the AIAS. This stage aimed to confirm the preservation of the original meaning in the translation.
- An expert panel, consisting of two psychologists and two nurses, examined the Spanish version along with the back-translated English versions, with the purpose of developing a preliminary version of the AIAS in Spanish (AIAS-S).
- This preliminary version was subjected to the evaluation of a focus group composed of 10 nurses, to verify its comprehension and readability. The issues identified at this stage led to the making of relevant linguistic adjustments, resulting in the final version of the instrument in Spanish, called AIAS-S, which translates to “Attitude toward Artificial Intelligence in Spanish” (see Table 2).
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Descriptive Statistics of Items
3.2. Confirmatory Factor Analysis
3.3. Reliability
3.4. Measurement Invariance
4. Discussion
4.1. Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaplan, A.D.; Sanders, T.; Hancock, P.A. The Relationship between Extroversion and the Tendency to Anthropomorphize Robots: A Bayesian Analysis. Front. Robot. AI 2019, 6, 135. [Google Scholar] [CrossRef] [PubMed]
- Harari, Y.N. Reboot for the AI Revolution. Nature 2017, 550, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Makridakis, S. The Forthcoming Artificial Intelligence (AI) Revolution: Its Impact on Society and Firms. Futures 2017, 90, 46–60. [Google Scholar] [CrossRef]
- Brill, T.M.; Munoz, L.; Miller, R.J. Siri, Alexa, and Other Digital Assistants: A Study of Customer Satisfaction with Artificial Intelligence Applications. J. Mark. Manag. 2019, 35, 35–70. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, S.; Kuyumdzhiev, M.; Webster, C. Automation Fears: Drivers and Solutions. Technol. Soc. 2020, 63, 101431. [Google Scholar] [CrossRef]
- Waytz, A.; Norton, M.I. Botsourcing and Outsourcing: Robot, British, Chinese, and German Workers Are for Thinking-Not Feeling-Jobs. Emotion 2014, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Tschang, F.T.; Almirall, E. Artificial Intelligence as Augmenting Automation: Implications for Employment. Acad. Manag. Perspect. 2021, 35, 642–659. [Google Scholar] [CrossRef]
- Fast, E.; Horvitz, E. Long-Term Trends in the Public Perception of Artificial Intelligence. Proc. AAAI Conf. Artif. Intell. 2017, 31, 963–969. [Google Scholar] [CrossRef]
- Liu, M.; Ren, Y.; Nyagoga, L.M.; Stonier, F.; Wu, Z.; Yu, L. Future of Education in the Era of Generative Artificial Intelligence: Consensus among Chinese Scholars on Applications of ChatGPT in Schools. Futur. Educ. Res. 2023, 1, 72–101. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.; et al. Opinion Paper: “So What If ChatGPT Wrote It?” Multidisciplinary Perspectives on Opportunities, Challenges and Implications of Generative Conversational AI for Research, Practice and Policy. Int. J. Inf. Manag. 2023, 71, 102642. [Google Scholar] [CrossRef]
- Sheikh, H.; Prins, C.; Schrijvers, E. Regulation. In Mission AI; Springer: Cham, Switzerland, 2023; pp. 241–286. [Google Scholar]
- Xie, T.; Pentina, I.; Hancock, T. Friend, Mentor, Lover: Does Chatbot Engagement Lead to Psychological Dependence? J. Serv. Manag. 2023, 34, 806–828. [Google Scholar] [CrossRef]
- Hu, B.; Mao, Y.; Kim, K.J. How Social Anxiety Leads to Problematic Use of Conversational AI: The Roles of Loneliness, Rumination, and Mind Perception. Comput. Human Behav. 2023, 145, 107760. [Google Scholar] [CrossRef]
- Pentina, I.; Hancock, T.; Xie, T. Exploring Relationship Development with Social Chatbots: A Mixed-Method Study of Replika. Comput. Human Behav. 2023, 140, 107600. [Google Scholar] [CrossRef]
- Laestadius, L.; Bishop, A.; Gonzalez, M.; Illenčík, D.; Campos-Castillo, C. Too Human and Not Human Enough: A Grounded Theory Analysis of Mental Health Harms from Emotional Dependence on the Social Chatbot Replika. New Media Soc. 2022. [Google Scholar] [CrossRef]
- Gherheş, V. Why Are We Afraid of Artificial Intelligence (Ai)? Eur. Rev. Appl. Sociol. 2018, 11, 6–15. [Google Scholar] [CrossRef]
- Liang, Y.; Lee, S.A. Fear of Autonomous Robots and Artificial Intelligence: Evidence from National Representative Data with Probability Sampling. Int. J. Soc. Robot. 2017, 9, 379–384. [Google Scholar] [CrossRef]
- Gibbs, S. Elon Musk Leads 116 Experts Calling for Outright Ban of Killer Robots. Available online: https://www.theguardian.com/technology/2017/aug/20/elon-musk-killer-robots-experts-outright-ban-lethal-autonomous-weapons-war (accessed on 3 December 2023).
- Cellan-Jones, R. Stephen Hawking Warns Artificial Intelligence Could End Mankind. BBC News, 2 December 2014; 2. [Google Scholar]
- Morley, J.; Machado, C.C.V.; Burr, C.; Cowls, J.; Joshi, I.; Taddeo, M.; Floridi, L. The Ethics of AI in Health Care: A Mapping Review. Soc. Sci. Med. 2020, 260, 113172. [Google Scholar] [CrossRef]
- Zhang, B.; Dafoe, A. Artificial Intelligence: American Attitudes and Trends. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Barnett, T.; Pearson, A.W.; Pearson, R.; Kellermanns, F.W. Five-Factor Model Personality Traits as Predictors of Perceived and Actual Usage of Technology. Eur. J. Inf. Syst. 2015, 24, 374–390. [Google Scholar] [CrossRef]
- Devaraj, U.S.; Easley, R.F.; Michael Crant, J. How Does Personality Matter? Relating the Five-Factor Model to Technology Acceptance and Use. Inf. Syst. Res. 2008, 19, 93–105. [Google Scholar] [CrossRef]
- Chen, Y.N.K.; Wen, C.H.R. Impacts of Attitudes Toward Government and Corporations on Public Trust in Artificial Intelligence. Commun. Stud. 2021, 72, 115–131. [Google Scholar] [CrossRef]
- Siegrist, M. Trust and Risk Perception: A Critical Review of the Literature. Risk Anal. 2021, 41, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Al-makhadmah, I. Challenges Facing Medical Tourism in Jordan from View of Tourism Decision Makers. Int. J. Herit. Tour. Hosp. 2020, 14, 236–243. [Google Scholar] [CrossRef]
- Hosseini, F.; Mirzaei, A. A Survey of Perspectives and Factors in the Development of Medical Tourism in the Middle East. J. Arch. Mil. Med. 2021, 9, e116161. [Google Scholar] [CrossRef]
- Ahmed, Z.; Bhinder, K.K.; Tariq, A.; Tahir, M.J.; Mehmood, Q.; Tabassum, M.S.; Malik, M.; Aslam, S.; Asghar, M.S.; Yousaf, Z. Knowledge, Attitude, and Practice of Artificial Intelligence among Doctors and Medical Students in Pakistan: A Cross-Sectional Online Survey. Ann. Med. Surg. 2022, 76, 103493. [Google Scholar] [CrossRef] [PubMed]
- Swed, S.; Alibrahim, H.; Elkalagi, N.K.H.; Nasif, M.N.; Rais, M.A.; Nashwan, A.J.; Aljabali, A.; Elsayed, M.; Sawaf, B.; Albuni, M.K.; et al. Knowledge, Attitude, and Practice of Artificial Intelligence among Doctors and Medical Students in Syria: A Cross-Sectional Online Survey. Front. Artif. Intell. 2022, 5, 1011524. [Google Scholar] [CrossRef] [PubMed]
- Swan, B.A. Assessing the Knowledge and Attitudes of Registered Nurses about Artificial Intelligence in Nursing and Health Care. Nurs. Econ. 2021, 39, 139. [Google Scholar]
- Gong, B.; Nugent, J.P.; Guest, W.; Parker, W.; Chang, P.J.; Khosa, F.; Nicolaou, S. Influence of Artificial Intelligence on Canadian Medical Students’ Preference for Radiology Specialty: ANational Survey Study. Acad. Radiol. 2019, 26, 566–577. [Google Scholar] [CrossRef]
- Teng, M.; Singla, R.; Yau, O.; Lamoureux, D.; Gupta, A.; Hu, Z.; Hu, R.; Aissiou, A.; Eaton, S.; Hamm, C.; et al. Health Care Students’ Perspectives on Artificial Intelligence: Countrywide Survey in Canada. JMIR Med. Educ. 2022, 8, e33390. [Google Scholar] [CrossRef]
- Reznick, R.K.; Harris, K.; Horsley, T.; Hassani, M.S. Task Force Report on Artificial Intelligence and Emerging Digital Technologies; Royal College of Physicians and Surgeons of Canada: Ottawa, ON, Canada, 2020. [Google Scholar]
- McGrow, K. Artificial Intelligence: Essentials for Nursing. Nursing 2019, 49, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Ji, E.-S.; Lee, H.-J. Type of Perception toward Change of 4th Industrial Revolution and Nursing Education in Nursing Students: Q Methodological Approach. J. Korean Soc. Wellness 2020, 15, 135–148. [Google Scholar] [CrossRef]
- Zhang, C.; Schießl, J.; Plößl, L.; Hofmann, F.; Gläser-Zikuda, M. Acceptance of Artificial Intelligence among Pre-Service Teachers: A Multigroup Analysis. Int. J. Educ. Technol. High. Educ. 2023, 20, 49. [Google Scholar] [CrossRef]
- Busch, F.; Hoffmann, L.; Truhn, D.; Palaian, S.; Alomar, M.; Shpati, K.; Makowski, M.R.; Bressem, K.K.; Adams, L.C. International Pharmacy Students’ Perceptions towards Artificial Intelligence in Medicine—A Multinational, Multicentre Cross-Sectional Study. Br. J. Clin. Pharmacol. 2024, 90, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Güven, D.; Kazanci, E.G.; Ören, A.; Sever, L.; Ünlü, P. The Knowledge of Students at Bursa Faculty of Medicine towards Artificial Intelligence: A Survey Study. J. Bursa Fac. Med. 2024, 2, 20–26. [Google Scholar] [CrossRef]
- Shen, C.; Li, C.; Xu, F.; Wang, Z.; Shen, X.; Gao, J.; Ko, R.; Jing, Y.; Tang, X.; Yu, R.; et al. Web-Based Study on Chinese Dermatologists’ Attitudes towards Artificial Intelligence. Ann. Transl. Med. 2020, 8, 698. [Google Scholar] [CrossRef] [PubMed]
- Kolling, T. Attitudes towards Artificial Intelligence: An Ageing and Gender Perspective. Gerontechnology 2022, 21, 2. [Google Scholar] [CrossRef]
- Schepman, A.; Rodway, P. Initial Validation of the General Attitudes towards Artificial Intelligence Scale. Comput. Hum. Behav. Reports 2020, 1, 100014. [Google Scholar] [CrossRef] [PubMed]
- Sindermann, C.; Sha, P.; Zhou, M.; Wernicke, J.; Schmitt, H.S.; Li, M.; Sariyska, R.; Stavrou, M.; Becker, B.; Montag, C. Assessing the Attitude Towards Artificial Intelligence: Introduction of a Short Measure in German, Chinese, and English Language. KI Kunstl. Intell. 2021, 35, 109–118. [Google Scholar] [CrossRef]
- Eysenck, H.J. Four Ways Five Factors Are Not Basic. Pers. Individ. Dif. 1992, 13, 667–673. [Google Scholar] [CrossRef]
- McCrae, R.R.; Costa, P.T. Empirical and Theoretical Status of the Five-Factor Model of Personality Traits. In The SAGE Handbook of Personality Theory and Assessment: Volume 1—Personality Theories and Models; Boyle, G.J., Matthews, G., Saklofske, D.H., Eds.; Sage Publications Ltd.: London, UK, 2008; pp. 273–294. [Google Scholar]
- Araujo, T.; Helberger, N.; Kruikemeier, S.; de Vreese, C.H. In AI We Trust? Perceptions about Automated Decision-Making by Artificial Intelligence. AI Soc. 2020, 35, 611–623. [Google Scholar] [CrossRef]
- Rheu, M.; Shin, J.Y.; Peng, W.; Huh-Yoo, J. Systematic Review: Trust-Building Factors and Implications for Conversational Agent Design. Int. J. Hum. Comput. Interact. 2021, 37, 81–96. [Google Scholar] [CrossRef]
- Kieslich, K.; Lünich, M.; Marcinkowski, F. The Threats of Artificial Intelligence Scale (TAI): Development, Measurement and Test Over Three Application Domains. Int. J. Soc. Robot. 2021, 13, 1563–1577. [Google Scholar] [CrossRef]
- Grassini, S. Development and Validation of the AI Attitude Scale (AIAS-4): A Brief Measure of General Attitude toward Artificial Intelligence. Front. Psychol. 2023, 14, 1191628. [Google Scholar] [CrossRef] [PubMed]
- Morales-García, W.C.; Sairitupa-Sanchez, L.Z.; Morales-García, S.B.; Morales-García, M. Adaptation and Psychometric Properties of a Brief Version of the General Self-Efficacy Scale for Use with Artificial Intelligence (GSE-6AI) among University Students. Front. Educ. 2024, 9, 1293437. [Google Scholar] [CrossRef]
- Morales-García, W.C.; Sairitupa-Sanchez, L.Z.; Morales-García, S.B.; Morales-García, M. Development and Validation of a Scale for Dependence on Artificial Intelligence in University Students. Front. Educ. 2024, 9, 1323898. [Google Scholar] [CrossRef]
- Ato, M.; López, J.J.; Benavente, A. Un Sistema de Clasificación de Los Diseños de Investigación En Psicología. An. Psicol. 2013, 29, 1038–1059. [Google Scholar] [CrossRef]
- Soper, D. A-Priori Sample Size Calculator for Structural Equation Models. Available online: https://www.danielsoper.com/statcalc/calculator.aspx?id=89 (accessed on 10 October 2023).
- Beaton, D.E.; Bombardier, C.; Guillemin, F.; Ferraz, M.B. Guidelines for the Process of Cross-Cultural Adaptation of Self-Report Measures. Spine 2000, 25, 3186–3191. [Google Scholar] [CrossRef] [PubMed]
- George, D.; Mallery, P. SPSS for Windows Step by Step A Simple Guide and Reference Fourth Edition (11.0 Update) Answers to Selected Exercises; Allyn & Bacon: Boston, MA, USA, 2003; p. 63. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Muthen, L.; Muthen, B. Mplus Statistical Analysis with Latent Variables. User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling, 4th ed.; Taylor & Francis: New York, NY, USA, 2016. [Google Scholar]
- McDonald, R.P. Test Theory: A United Treatment; Lawrence Erlbaum: Mahwah, NJ, USA, 1999. [Google Scholar]
- Chen, F.F. Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Allaire, J.J. RStudio: Integrated Development Environment for R; Posit: Boston, MA, USA, 2018; pp. 165–171. [Google Scholar]
- Rosseel, Y. Lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. SemTools: Useful Tools for Structural Equation Modeling. 2022. Available online: https://cran.r-project.org/web/packages/semTools/semTools.pdf (accessed on 4 December 2023).
Characteristics | n | % | |
---|---|---|---|
Gender | Female | 153 | 63.0 |
Male | 90 | 37.0 | |
Marital Status | Married | 80 | 32.9 |
Cohabiting | 20 | 8.2 | |
Living together | 13 | 5.3 | |
Divorced | 130 | 53.5 | |
Widowed | 54 | 22.2 | |
Level of Education | Specialty | 129 | 53.1 |
Bachelor’s Degre | 60 | 24.7 | |
Postgraduate | 65 | 26.7 | |
Employment Status | Contract (CAS) | 36 | 14.8 |
Permanent Contract) | 68 | 28.0 | |
Tenured | 16 | 6.6 | |
Substitute | 58 | 23.9 | |
Third-party | 153 | 63.0 |
English Version | Spanish Version | M | sd | g1 | g2 | r.cor | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|---|---|---|
1. I believe that AI will improve my life | 1. Creo que la IA mejorará mi vida | 5.84 | 2.62 | −0.07 | −0.85 | 0.86 | - | |||
2. I believe that AI will improve my work | 2. Creo que la IA mejorará mi trabajo | 5.87 | 2.77 | −0.07 | −1.02 | 0.86 | 0.86 ** | - | ||
3. I think I will use AI technology in the future | 3. Pienso que usaré tecnología de IA en el futuro | 6.73 | 2.65 | −0.41 | −0.82 | 0.85 | 0.78 ** | 0.78 ** | - | |
4. I think AI technology is positive for humanity | 4. Pienso que la tecnología IA es positiva para la humanidad | 6.16 | 2.61 | −0.1 | −0.87 | 0.83 | 0.75 ** | 0.76 ** | 0.82 ** | - |
Invariance | χ2 | df | p | TLI | RMSEA | SRMR | CFI | ΔCFI |
---|---|---|---|---|---|---|---|---|
Configural | 2.228 | 2 | 0.328 | 0.996 | 0.031 | 0.004 | 0.999 | |
Metric | 2.869 | 5 | 0.72 | 1.013 | 0.000 | 0.013 | 1.000 | −0.001 |
Scalar | 9.862 | 8 | 0.275 | 0.993 | 0.044 | 0.023 | 0.995 | 0.005 |
Strict | 12.764 | 12 | 0.386 | 0.998 | 0.023 | 0.028 | 0.998 | −0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-García, W.C.; Sairitupa-Sanchez, L.Z.; Morales-García, S.B.; Morales-García, M. Adaptation and Psychometric Properties of an Attitude toward Artificial Intelligence Scale (AIAS-4) among Peruvian Nurses. Behav. Sci. 2024, 14, 437. https://doi.org/10.3390/bs14060437
Morales-García WC, Sairitupa-Sanchez LZ, Morales-García SB, Morales-García M. Adaptation and Psychometric Properties of an Attitude toward Artificial Intelligence Scale (AIAS-4) among Peruvian Nurses. Behavioral Sciences. 2024; 14(6):437. https://doi.org/10.3390/bs14060437
Chicago/Turabian StyleMorales-García, Wilter C., Liset Z. Sairitupa-Sanchez, Sandra B. Morales-García, and Mardel Morales-García. 2024. "Adaptation and Psychometric Properties of an Attitude toward Artificial Intelligence Scale (AIAS-4) among Peruvian Nurses" Behavioral Sciences 14, no. 6: 437. https://doi.org/10.3390/bs14060437
APA StyleMorales-García, W. C., Sairitupa-Sanchez, L. Z., Morales-García, S. B., & Morales-García, M. (2024). Adaptation and Psychometric Properties of an Attitude toward Artificial Intelligence Scale (AIAS-4) among Peruvian Nurses. Behavioral Sciences, 14(6), 437. https://doi.org/10.3390/bs14060437