Interplay among Anxiety, Digital Environmental Exposure, and Cognitive Control: Implications of Natural Settings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.2.1. Video
2.2.2. Task
2.2.3. Questionnaire
2.2.4. Procedure
2.3. Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Twohig-Bennett, C.; Jones, A. The Health Benefits of the Great Outdoors: A Systematic Review and Meta-Analysis of Greenspace Exposure and Health Outcomes. Environ. Res. 2018, 166, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Astell-Burt, T.; Mitchell, R.; Hartig, T. The Association between Green Space and Mental Health Varies across the Lifecourse. A Longitudinal Study. J. Epidemiol. Community Health 2014, 68, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Forns, J.; Plasència, A.; Nieuwenhuijsen, M.J. Mental Health Benefits of Long-Term Exposure to Residential Green and Blue Spaces: A Systematic Review. Int. J. Environ. Res. Public Health 2015, 12, 4354–4379. [Google Scholar] [CrossRef] [PubMed]
- Triguero-Mas, M.; Donaire-Gonzalez, D.; Seto, E.; Valentín, A.; Martínez, D.; Smith, G.; Hurst, G.; Carrasco-Turigas, G.; Masterson, D.; van den Berg, M.; et al. Natural Outdoor Environments and Mental Health: Stress as a Possible Mechanism. Environ. Res. 2017, 159, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Effects of Forest Environment (Shinrin-Yoku/Forest Bathing) on Health Promotion and Disease Prevention—The Establishment of “Forest Medicine”—. Environ. Health Prev. Med. 2022, 27, 43. [Google Scholar] [CrossRef] [PubMed]
- Siah, C.J.R.; Goh, Y.S.; Lee, J.; Poon, S.N.; Ow Yong, J.Q.Y.; Tam, W.-S.W. The Effects of Forest Bathing on Psychological Well-Being: A Systematic Review and Meta-Analysis. Int. J. Ment. Health Nurs. 2023, 32, 1038–1054. [Google Scholar] [CrossRef] [PubMed]
- Bielinis, E.; Jaroszewska, A.; Łukowski, A.; Takayama, N. The Effects of a Forest Therapy Programme on Mental Hospital Patients with Affective and Psychotic Disorders. Int. J. Environ. Res. Public Health 2020, 17, 118. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.H.; Chang, M.C.; Lee, S.-J. The Effects of Forest Therapy on Depression and Anxiety in Patients with Chronic Stroke. Int. J. Neurosci. 2017, 127, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Suzuki, H.; Li, Y.J.; Wakayama, Y.; et al. Visiting a Forest, but Not a City, Increases Human Natural Killer Activity and Expression of Anti-Cancer Proteins. Int. J. Immunopathol. Pharmacol. 2008, 21, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Otsuka, T.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Li, Y.; Hirata, K.; Shimizu, T.; et al. Acute Effects of Walking in Forest Environments on Cardiovascular and Metabolic Parameters. Eur. J. Appl. Physiol. 2011, 111, 2845–2853. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Barbieri, G.; Donelli, D. Effects of Forest Bathing (Shinrin-Yoku) on Levels of Cortisol as a Stress Biomarker: A Systematic Review and Meta-Analysis. Int. J. Biometeorol. 2019, 63, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kobayashi, M.; Inagaki, H.; Hirata, Y.; Li, Y.J.; Hirata, K.; Shimizu, T.; Suzuki, H.; Katsumata, M.; Wakayama, Y.; et al. A Day Trip to a Forest Park Increases Human Natural Killer Activity and the Expression of Anti-Cancer Proteins in Male Subjects. J. Biol. Regul. Homeost. Agents 2010, 24, 157–165. [Google Scholar] [PubMed]
- Yeon, P.-S.; Jeon, J.-Y.; Jung, M.-S.; Min, G.-M.; Kim, G.-Y.; Han, K.-M.; Shin, M.-J.; Jo, S.-H.; Kim, J.-G.; Shin, W.-S. Effect of Forest Therapy on Depression and Anxiety: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 12685. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.; van Lissa, C.; Hagedoorn, P.; Kellar, I.; Helbich, M. The Effect of Short-Term Exposure to the Natural Environment on Depressive Mood: A Systematic Review and Meta-Analysis. Environ. Res. 2019, 177, 108606. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Seo, E.; An, J. Does Forest Therapy Have Physio-Psychological Benefits? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 10512. [Google Scholar] [CrossRef] [PubMed]
- Bang, K.-S.; Kim, S.; Song, M.K.; Kang, K.I.; Jeong, Y. The Effects of a Health Promotion Program Using Urban Forests and Nursing Student Mentors on the Perceived and Psychological Health of Elementary School Children in Vulnerable Populations. Int. J. Environ. Res. Public Health 2018, 15, 1977. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.Y.; Dillon, D.; Chew, P.K.H. A Guide to Nature Immersion: Psychological and Physiological Benefits. Int. J. Environ. Res. Public Health 2020, 17, 5989. [Google Scholar] [CrossRef]
- Wen, Y.; Yan, Q.; Pan, Y.; Gu, X.; Liu, Y. Medical Empirical Research on Forest Bathing (Shinrin-Yoku): A Systematic Review. Environ. Health Prev. Med. 2019, 24, 70. [Google Scholar] [CrossRef] [PubMed]
- Grilli, G.; Sacchelli, S. Health Benefits Derived from Forest: A Review. Int. J. Environ. Res. Public Health 2020, 17, 6125. [Google Scholar] [CrossRef] [PubMed]
- Rajoo, K.S.; Karam, D.S.; Abdullah, M.Z. The Physiological and Psychosocial Effects of Forest Therapy: A Systematic Review. Urban For. Urban Green. 2020, 54, 126744. [Google Scholar] [CrossRef]
- Spano, G.; Theodorou, A.; Reese, G.; Carrus, G.; Sanesi, G.; Panno, A. Virtual Nature, Psychological and Psychophysiological Outcomes: A Systematic Review. J. Environ. Psychol. 2023, 89, 102044. [Google Scholar] [CrossRef]
- Valtchanov, D.; Barton, K.R.; Ellard, C. Restorative Effects of Virtual Nature Settings. Cyberpsychology Behav. Soc. Netw. 2010, 13, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Litleskare, S.; MacIntyre, T.E.; Calogiuri, G. Enable, Reconnect and Augment: A New ERA of Virtual Nature Research and Application. Int. J. Environ. Res. Public Health 2020, 17, 1738. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-P.; Lee, H.-Y.; Luo, X.-Y. The Effect of Virtual Reality Forest and Urban Environments on Physiological and Psychological Responses. Urban For. Urban Green. 2018, 35, 106–114. [Google Scholar] [CrossRef]
- Mostajeran, F.; Krzikawski, J.; Steinicke, F.; Kühn, S. Effects of Exposure to Immersive Videos and Photo Slideshows of Forest and Urban Environments. Sci. Rep. 2021, 11, 3994. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, A.E.; Joye, Y.; Koole, S.L. Why Viewing Nature Is More Fascinating and Restorative than Viewing Buildings: A Closer Look at Perceived Complexity. Urban For. Urban Green. 2016, 20, 397–401. [Google Scholar] [CrossRef]
- Yu, C.-P.; Lee, H.-Y.; Lu, W.-H.; Huang, Y.-C.; Browning, M.H.E.M. Restorative Effects of Virtual Natural Settings on Middle-Aged and Elderly Adults. Urban For. Urban Green. 2020, 56, 126863. [Google Scholar] [CrossRef]
- Sun, Y.; Li, F.; He, T.; Meng, Y.; Yin, J.; Yim, I.S.; Xu, L.; Wu, J. Physiological and Affective Responses to Green Space Virtual Reality among Pregnant Women. Environ. Res. 2023, 216, 114499. [Google Scholar] [CrossRef] [PubMed]
- Song, I.; Baek, K.; Kim, C.; Song, C. Effects of Nature Sounds on the Attention and Physiological and Psychological Relaxation. Urban For. Urban Green. 2023, 86, 127987. [Google Scholar] [CrossRef]
- Leung, G.Y.S.; Hazan, H.; Chan, C.S. Exposure to Nature in Immersive Virtual Reality Increases Connectedness to Nature among People with Low Nature Affinity. J. Environ. Psychol. 2022, 83, 101863. [Google Scholar] [CrossRef]
- Reese, G.; Stahlberg, J.; Menzel, C. Digital Shinrin-Yoku: Do Nature Experiences in Virtual Reality Reduce Stress and Increase Well-Being as Strongly as Similar Experiences in a Physical Forest? Virtual Real. 2022, 26, 1245–1255. [Google Scholar] [CrossRef]
- Palanica, A.; Lyons, A.; Cooper, M.; Lee, A.; Fossat, Y. A Comparison of Nature and Urban Environments on Creative Thinking across Different Levels of Reality. J. Environ. Psychol. 2019, 63, 44–51. [Google Scholar] [CrossRef]
- O’Meara, A.; Cassarino, M.; Bolger, A.; Setti, A. Virtual Reality Nature Exposure and Test Anxiety. Multimodal Technol. Interact. 2020, 4, 75. [Google Scholar] [CrossRef]
- Ohly, H.; White, M.P.; Wheeler, B.W.; Bethel, A.; Ukoumunne, O.C.; Nikolaou, V.; Garside, R. Attention Restoration Theory: A Systematic Review of the Attention Restoration Potential of Exposure to Natural Environments. J. Toxicol. Environ. Health Part B 2016, 19, 305–343. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, T.; Johnson, K.; Lee, K.; Korpela, K. Can Nature Walks With Psychological Tasks Improve Mood, Self-Reported Restoration, and Sustained Attention? Results From Two Experimental Field Studies. Front. Psychol. 2018, 9, 2057. [Google Scholar] [CrossRef] [PubMed]
- Berman, M.G.; Jonides, J.; Kaplan, S. The Cognitive Benefits of Interacting with Nature. Psychol. Sci. 2008, 19, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Mygind, L.; Kjeldsted, E.; Hartmeyer, R.; Mygind, E.; Bølling, M.; Bentsen, P. Mental, Physical and Social Health Benefits of Immersive Nature-Experience for Children and Adolescents: A Systematic Review and Quality Assessment of the Evidence. Health Place 2019, 58, 102136. [Google Scholar] [CrossRef] [PubMed]
- Buczyłowska, D.; Zhao, T.; Singh, N.; Jurczak, A.; Siry, A.; Markevych, I. Exposure to Greenspace and Bluespace and Cognitive Functioning in Children—A Systematic Review. Environ. Res. 2023, 222, 115340. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Spierer, L.; Chavan, C.; Manuel, A. Training-Induced Behavioral and Brain Plasticity in Inhibitory Control. Front. Hum. Neurosci. 2013, 7, 427. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, L.; Padmala, S.; Kenzer, A.; Bauer, A. Interactions between Cognition and Emotion during Response Inhibition. Emotion 2012, 12, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.A. Behavioral Inhibition, Sustained Attention, and Executive Functions: Constructing a Unifying Theory of ADHD. Psychol. Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Fletcher, P.C.; Bullmore, E.T.; Sahakian, B.J.; Robbins, T.W. Stop-Signal Inhibition Disrupted by Damage to Right Inferior Frontal Gyrus in Humans. Nat. Neurosci. 2003, 6, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Feil, J.; Sheppard, D.; Fitzgerald, P.B.; Yücel, M.; Lubman, D.I.; Bradshaw, J.L. Addiction, Compulsive Drug Seeking, and the Role of Frontostriatal Mechanisms in Regulating Inhibitory Control. Neurosci. Biobehav. Rev. 2010, 35, 248–275. [Google Scholar] [CrossRef] [PubMed]
- Eysenck, M.W.; Calvo, M.G. Anxiety and Performance: The Processing Efficiency Theory. Cogn. Emot. 1992, 6, 409–434. [Google Scholar] [CrossRef]
- Paulus, M.P. Cognitive Control in Depression and Anxiety: Out of Control? Curr. Opin. Behav. Sci. 2015, 1, 113–120. [Google Scholar] [CrossRef]
- Pacheco-Unguetti, A.; Acosta, A.; Lupiáñez, J.; Román, N.; Derakshan, N. Response Inhibition and Attentional Control in Anxiety. Q. J. Exp. Psychol. 2012, 65, 646–660. [Google Scholar] [CrossRef] [PubMed]
- Berggren, N.; Derakshan, N. Inhibitory Deficits in Trait Anxiety: Increased Stimulus-Based or Response-Based Interference? Psychon. Bull. Rev. 2014, 21, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Hallion, L.S.; Tolin, D.F.; Assaf, M.; Goethe, J.; Diefenbach, G.J. Cognitive Control in Generalized Anxiety Disorder: Relation of Inhibition Impairments to Worry and Anxiety Severity. Cogn. Ther. Res. 2017, 41, 610–618. [Google Scholar] [CrossRef]
- du Rocher, A.R.; Pickering, A.D. Trait Anxiety, Infrequent Emotional Conflict, and the Emotional Face Stroop Task. Personal. Individ. Differ. 2017, 111, 157–162. [Google Scholar] [CrossRef]
- Xia, L.; Mo, L.; Wang, J.; Zhang, W.; Zhang, D. Trait Anxiety Attenuates Response Inhibition: Evidence From an ERP Study Using the Go/NoGo Task. Front. Behav. Neurosci. 2020, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Sehlmeyer, C.; Konrad, C.; Zwitserlood, P.; Arolt, V.; Falkenstein, M.; Beste, C. ERP Indices for Response Inhibition Are Related to Anxiety-Related Personality Traits. Neuropsychologia 2010, 48, 2488–2495. [Google Scholar] [CrossRef] [PubMed]
- Karch, S.; Jäger, L.; Karamatskos, E.; Graz, C.; Stammel, A.; Flatz, W.; Lutz, J.; Holtschmidt-Täschner, B.; Genius, J.; Leicht, G.; et al. Influence of Trait Anxiety on Inhibitory Control in Alcohol-Dependent Patients: Simultaneous Acquisition of ERPs and BOLD Responses. J. Psychiatr. Res. 2008, 42, 734–745. [Google Scholar] [CrossRef] [PubMed]
- Saviola, F.; Pappaianni, E.; Monti, A.; Grecucci, A.; Jovicich, J.; De Pisapia, N. Trait and State Anxiety Are Mapped Differently in the Human Brain. Sci. Rep. 2020, 10, 11112. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Dolcos, S. Trait Anxiety Mediates the Link between Inferior Frontal Cortex Volume and Negative Affective Bias in Healthy Adults. Soc. Cogn. Affect. Neurosci. 2017, 12, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Paulus, M.P.; Feinstein, J.S.; Simmons, A.; Stein, M.B. Anterior Cingulate Activation in High Trait Anxious Subjects Is Related to Altered Error Processing during Decision Making. Biol. Psychiatry 2004, 55, 1179–1187. [Google Scholar] [CrossRef]
- Basten, U.; Stelzel, C.; Fiebach, C.J. Trait Anxiety Modulates the Neural Efficiency of Inhibitory Control. J. Cogn. Neurosci. 2011, 23, 3132–3145. [Google Scholar] [CrossRef] [PubMed]
- Weger, M.; Sandi, C. High Anxiety Trait: A Vulnerable Phenotype for Stress-Induced Depression. Neurosci. Biobehav. Rev. 2018, 87, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.I.; Ressler, K.J.; Binder, E.; Nemeroff, C.B. The Neurobiology of Anxiety Disorders: Brain Imaging, Genetics, and Psychoneuroendocrinology. Psychiatr. Clin. 2009, 32, 549–575. [Google Scholar] [CrossRef] [PubMed]
- Madonna, D.; Delvecchio, G.; Soares, J.C.; Brambilla, P. Structural and Functional Neuroimaging Studies in Generalized Anxiety Disorder: A Systematic Review. Braz. J. Psychiatry 2019, 41, 336–362. [Google Scholar] [CrossRef] [PubMed]
- Simmons, A.; Matthews, S.C.; Feinstein, J.S.; Hitchcock, C.; Paulus, M.P.; Stein, M.B. Anxiety Vulnerability Is Associated with Altered Anterior Cingulate Response to an Affective Appraisal Task. Neuroreport 2008, 19, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Gee, D.G.; Loucks, R.A.; Davis, F.C.; Whalen, P.J. Anxiety Dissociates Dorsal and Ventral Medial Prefrontal Cortex Functional Connectivity with the Amygdala at Rest. Cereb. Cortex 2011, 21, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Sills, L.; Simmons, A.N.; Lovero, K.L.; Rochlin, A.A.; Paulus, M.P.; Stein, M.B. Functioning of Neural Systems Supporting Emotion Regulation in Anxiety-Prone Individuals. NeuroImage 2011, 54, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Andreescu, C.; Sheu, L.K.; Tudorascu, D.; Walker, S.; Aizenstein, H. The Ages of Anxiety—Differences across the Lifespan in the Default Mode Network Functional Connectivity in Generalized Anxiety Disorder. Int. J. Geriatr. Psychiatry 2014, 29, 704–712. [Google Scholar] [CrossRef]
- Benedetti, V.; Gavazzi, G.; Giganti, F.; Carlo, E.; Becheri, F.R.; Zabini, F.; Giovannelli, F.; Viggiano, M.P. Virtual Forest Environment Influences Inhibitory Control. Land 2023, 12, 1390. [Google Scholar] [CrossRef]
- Leal, P.C.; Goes, T.C.; da Silva, L.C.F.; Teixeira-Silva, F. Trait vs. State Anxiety in Different Threatening Situations. Trends Psychiatry Psychother. 2017, 39, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Donders, F.C. On the Speed of Mental Processes. Acta Psychol. 1969, 30, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Bravi, R.; Gavazzi, G.; Benedetti, V.; Giovannelli, F.; Grasso, S.; Panconi, G.; Viggiano, M.P.; Minciacchi, D. Effect of Different Sport Environments on Proactive and Reactive Motor Inhibition: A Study on Open- and Closed-Skilled Athletes via Mouse-Tracking Procedure. Front. Psychol. 2022, 13, 1042705. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Lenge, M.; Bartolini, E.; Bianchi, A.; Agovi, H.; Mugnai, F.; Guerrini, R.; Giordano, F.; Viggiano, M.P.; Mascalchi, M. Left Inferior Frontal Cortex Can Compensate the Inhibitory Functions of Right Inferior Frontal Cortex and Pre-Supplementary Motor Area. J. Neuropsychol. 2019, 13, 503–508. [Google Scholar] [CrossRef]
- Mathôt, S.; Schreij, D.; Theeuwes, J. OpenSesame: An Open-Source, Graphical Experiment Builder for the Social Sciences. Behav. Res. Methods 2012, 44, 314–324. [Google Scholar] [CrossRef]
- Spielberger, C.D. Manual for the State-Trait Anxiety Inventory (Self-Evaluation Questionnaire); Consulting Psychologists Press: Palo Alto, CA, USA, 1970. [Google Scholar]
- Sanavio, E. CBA-2.0: Cognitive Behavioural Assessment 2.0: Scale Primarie: Manuale; OS: Firenze, Italy, 1997. [Google Scholar]
- Rousselet, G.; Pernet, C.; Wilcox, R. An Introduction to the Bootstrap: A Versatile Method to Make Inferences by Using Data-Driven Simulations. Meta-Psychology 2022, 7. [Google Scholar] [CrossRef]
- Rdc, T. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2010. [Google Scholar]
- Eysenck, M.W.; Derakshan, N.; Santos, R.; Calvo, M.G. Anxiety and Cognitive Performance: Attentional Control Theory. Emotion 2007, 7, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Farrow, M.R.; Washburn, K. A Review of Field Experiments on the Effect of Forest Bathing on Anxiety and Heart Rate Variability. Glob. Adv. Health Med. 2019, 8, 2164956119848654. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yan, L.; Yu, L.; Wei, H.; Guan, H.; Shang, C.; Chen, F.; Bao, J. Effect of Short-Term Forest Bathing in Urban Parks on Perceived Anxiety of Young-Adults: A Pilot Study in Guiyang, Southwest China. Chin. Geogr. Sci. 2019, 29, 139–150. [Google Scholar] [CrossRef]
- Guan, H.; Wei, H.; He, X.; Ren, Z.; An, B. The Tree-Species-Specific Effect of Forest Bathing on Perceived Anxiety Alleviation of Young-Adults in Urban Forests. Ann. For. Res. 2017, 60, 327–341. [Google Scholar] [CrossRef]
- Shin, W.S.; Shin, C.S.; Yeoun, P.S.; Kim, J.J. The Influence of Interaction with Forest on Cognitive Function. Scand. J. For. Res. 2011, 26, 595–598. [Google Scholar] [CrossRef]
- Mayer, F.S.; Frantz, C.M.; Bruehlman-Senecal, E.; Dolliver, K. Why Is Nature Beneficial?: The Role of Connectedness to Nature. Environ. Behav. 2009, 41, 607–643. [Google Scholar] [CrossRef]
- Kaplan, S. The Restorative Benefits of Nature: Toward an Integrative Framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Grassini, S.; Segurini, G.V.; Koivisto, M. Watching Nature Videos Promotes Physiological Restoration: Evidence From the Modulation of Alpha Waves in Electroencephalography. Front. Psychol. 2022, 13, 871143. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Giovannelli, F.; Noferini, C.; Cincotta, M.; Cavaliere, C.; Salvatore, M.; Mascalchi, M.; Viggiano, M.P. Subregional Prefrontal Cortex Recruitment as a Function of Inhibitory Demand: An fMRI Metanalysis. Neurosci. Biobehav. Rev. 2023, 152, 105285. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R. The Neural Basis of Inhibition in Cognitive Control. Neuroscientist 2007, 13, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Orsolini, S.; Salvadori, E.; Bianchi, A.; Rossi, A.; Donnini, I.; Rinnoci, V.; Pescini, F.; Diciotti, S.; Viggiano, M.P.; et al. Functional Magnetic Resonance Imaging of Inhibitory Control Reveals Decreased Blood Oxygen Level Dependent Effect in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke 2018, 50, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Rossi, A.; Orsolini, S.; Diciotti, S.; Giovannelli, F.; Salvadori, E.; Pantoni, L.; Mascalchi, M.; Viggiano, M.P. Impulsivity Trait and Proactive Cognitive Control: An fMRI Study. Eur. J. Neurosci. 2019, 49, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Giovannelli, F.; Mastrolorenzo, B.; Rossi, A.; Gavazzi, G.; Righi, S.; Zaccara, G.; Viggiano, M.P.; Cincotta, M. Relationship between Impulsivity Traits and Awareness of Motor Intention. Eur. J. Neurosci. 2016, 44, 2455–2459. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.L.; Shin, L.M.; Wright, C.I. Neuroimaging Studies of Amygdala Function in Anxiety Disorders. Ann. N. Y. Acad. Sci. 2003, 985, 389–410. [Google Scholar] [CrossRef] [PubMed]
- Chavanne, A.V.; Robinson, O.J. The Overlapping Neurobiology of Induced and Pathological Anxiety: A Meta-Analysis of Functional Neural Activation. AJP 2021, 178, 156–164. [Google Scholar] [CrossRef] [PubMed]
Measures | Baseline | ||
---|---|---|---|
Go RT (ms) | 447.3 ± 57 | ||
Go accuracy (%) | 88.9 ± 8 | ||
No-Go commission (n) | 6.9 ± 4 | ||
Pre-video | Post-video | Δ | |
Forest | |||
Go RT (ms) | 427.0 ± 64 | 434.5 ± 95 | 7.5 ± 80 |
Go accuracy (%) | 88.5 ± 11 | 90.2 ± 12 | 1.7 ± 6 |
No-Go commission (n) | 6.6 ± 4 | 4.2 ± 3 | −2.4 ± 3 |
Urban | |||
Go RT (ms) | 435.4 ± 73 | 420.0 ± 60 | −15.4 ± 43 |
Go accuracy (%) | 89.8 ± 11 | 89.8 ± 11 | 0.0 ± 5 |
No-Go commission (n) | 5.2 ± 3 | 4.8 ± 4 | −0.4 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedetti, V.; Giganti, F.; Cotugno, M.; Noferini, C.; Gavazzi, G.; Gronchi, G.; Righi, S.; Meneguzzo, F.; Becheri, F.R.; Li, Q.; et al. Interplay among Anxiety, Digital Environmental Exposure, and Cognitive Control: Implications of Natural Settings. Behav. Sci. 2024, 14, 323. https://doi.org/10.3390/bs14040323
Benedetti V, Giganti F, Cotugno M, Noferini C, Gavazzi G, Gronchi G, Righi S, Meneguzzo F, Becheri FR, Li Q, et al. Interplay among Anxiety, Digital Environmental Exposure, and Cognitive Control: Implications of Natural Settings. Behavioral Sciences. 2024; 14(4):323. https://doi.org/10.3390/bs14040323
Chicago/Turabian StyleBenedetti, Viola, Fiorenza Giganti, Maria Cotugno, Chiara Noferini, Gioele Gavazzi, Giorgio Gronchi, Stefania Righi, Francesco Meneguzzo, Francesco Riccardo Becheri, Qing Li, and et al. 2024. "Interplay among Anxiety, Digital Environmental Exposure, and Cognitive Control: Implications of Natural Settings" Behavioral Sciences 14, no. 4: 323. https://doi.org/10.3390/bs14040323
APA StyleBenedetti, V., Giganti, F., Cotugno, M., Noferini, C., Gavazzi, G., Gronchi, G., Righi, S., Meneguzzo, F., Becheri, F. R., Li, Q., & Viggiano, M. P. (2024). Interplay among Anxiety, Digital Environmental Exposure, and Cognitive Control: Implications of Natural Settings. Behavioral Sciences, 14(4), 323. https://doi.org/10.3390/bs14040323