The Impact of Interpersonal Interaction on Purchase Intention in Livestreaming E-Commerce: A Moderated Mediation Model
Abstract
:1. Introduction
- (1)
- How does interpersonal interaction affect consumer psychological distance and purchase intention for LSE products?
- (2)
- What role does psychological distance play in the influence of interpersonal interaction on consumer purchase intention?
- (3)
- What roles do brand identification and time pressure play in the interpersonal interaction–psychological distance–purchase intention research framework?
2. Literature Review and Hypothesis Development
2.1. Literature Review
2.1.1. Interpersonal Interaction
2.1.2. Psychological Distance
2.1.3. Brand Identification
2.1.4. Time Pressure
2.2. Hypothesis Development
2.2.1. Interpersonal Interaction and Purchase Intention
2.2.2. Interpersonal Interaction and Psychological Distance
2.2.3. Psychological Distance and Purchase Intention
2.2.4. The Mediating Effect of Psychological Distance
2.2.5. The Moderating Effect of Brand Identification
2.2.6. The Moderating Effect of Time Pressure
2.3. Research Model
3. Methodology
3.1. Questionnaire
3.2. Data Collection
4. Results
4.1. Demographic Profile
4.2. Common Method Bias
4.3. Reliability and Validity Analysis
4.4. Collinearity Diagnostics
4.5. Hypothesis Validation
4.6. Assessing Research Model Quality
5. Discussion and Implications
5.1. Discussion
5.2. Implications
5.2.1. Theoretical Implications
5.2.2. Practical Implications
6. Conclusions, Limitations, and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xin, B.; Hao, Y.; Xie, L. Strategic Product Showcasing Mode of E-Commerce Live Streaming. J. Retail. Consum. Serv. 2023, 73, 103360. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, Y.; Hao, A.; Deng, J. How Social Presence Influences Consumer Purchase Intention in Live Video Commerce: The Mediating Role of Immersive Experience and the Moderating Role of Positive Emotions. J. Res. Interact. Mark. 2022, 17, 493–509. [Google Scholar] [CrossRef]
- iiMedia, R. Global Live E-Commerce Industry Development Overview and Segmentation Research Data. Available online: https://www.iimedia.cn/c1077/92176.html (accessed on 2 November 2023).
- Xinhua, N.A. Report Shows: China’s Live-Streaming e-Commerce Shows Rapid Growth. Available online: http://www.news.cn/fortune/2023-09/29/c_1129893233.htm (accessed on 2 November 2023).
- Chen, W.-K.; Chen, C.-W.; Silalahi, A.D.K. Understanding Consumers’ Purchase Intention and Gift-Giving in Live Streaming Commerce: Findings from SEM and FsQCA. Emerg. Sci. J. 2022, 6, 460–481. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, Z.; Li, X.; Jiang, X.; Zhu, M.X. The Influences of Livestreaming on Online Purchase Intention: Examining Platform Characteristics and Consumer Psychology. Ind. Manag. Data Syst. 2022, 123, 862–885. [Google Scholar] [CrossRef]
- Cao, J.; Li, J.; Wang, Y.; Ai, M. The Impact of Self-Efficacy and Perceived Value on Customer Engagement under Live Streaming Commerce Environment. Secur. Comm. Netw. 2022, 2022, 2904447. [Google Scholar] [CrossRef]
- Shih, I.-T.; Silalahi, A.D.K.; Eunike, I.J. Engaging Audiences in Real-Time: The Nexus of Socio-Technical Systems and Trust Transfer in Live Streaming e-Commerce. Comput. Hum. Behav. Rep. 2024, 13, 100363. [Google Scholar] [CrossRef]
- Kang, K.; Lu, J.; Guo, L.; Li, W. The Dynamic Effect of Interactivity on Customer Engagement Behavior through Tie Strength: Evidence from Live Streaming Commerce Platforms. Int. J. Inf. Manag. 2021, 56, 102251. [Google Scholar] [CrossRef]
- Joo, E.; Yang, J. How Perceived Interactivity Affects Consumers’ Shopping Intentions in Live Stream Commerce: Roles of Immersion, User Gratification and Product Involvement. J. Res. Interact. Mark. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Wang, M.; Sun, L.-L.; Hou, J.-D. How Emotional Interaction Affects Purchase Intention in Social Commerce: The Role of Perceived Usefulness and Product Type. PRBM 2021, 14, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Onofrei, G.; Filieri, R.; Kennedy, L. Social Media Interactions, Purchase Intention, and Behavioural Engagement: The Mediating Role of Source and Content Factors. J. Bus. Res. 2022, 142, 100–112. [Google Scholar] [CrossRef]
- Ma, X.; Jin, J.; Liu, Y. The Influence of Interpersonal Interaction on Consumers’ Purchase Intention under e-Commerce Live Broadcasting Mode: The Moderating Role of Presence. Front. Psychol. 2023, 14, 1097768. [Google Scholar] [CrossRef]
- Shiu, J.Y.; Liao, S.T.; Tzeng, S.-Y. How Does Online Streaming Reform E-Commerce? An Empirical Assessment of Immersive Experience and Social Interaction in China. Humanit. Soc. Sci. Commun. 2023, 10, 224. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, X. Impact of Live Streamer Characteristics and Customer Response on Live-Streaming Performance: Empirical Evidence from e-Commerce Platform. Procedia Comput. Sci. 2022, 214, 1277–1284. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Chen, Q. The Effects of Tourism E-Commerce Live Streaming Features on Consumer Purchase Intention: The Mediating Roles of Flow Experience and Trust. Front. Psychol. 2022, 13, 995129. [Google Scholar] [CrossRef] [PubMed]
- Liberman, N.; Trope, Y.; McCrea, S.M.; Sherman, S.J. The Effect of Level of Construal on the Temporal Distance of Activity Enactment. J. Exp. Soc. Psychol. 2007, 43, 143–149. [Google Scholar] [CrossRef]
- Liberman, N.; Trope, Y. The Psychology of Transcending the Here and Now. Science 2008, 322, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Khan, J.; Su, Y.; Tong, J.; Zhao, S. Impulse Buying Tendency in Live-Stream Commerce: The Role of Viewing Frequency and Anticipated Emotions Influencing Scarcity-Induced Purchase Decision. J. Retail. Consum. Serv. 2023, 75, 103534. [Google Scholar] [CrossRef]
- Kuenzel, S.; Vaux Halliday, S. Investigating Antecedents and Consequences of Brand Identification. J. Prod. Brand Manag. 2008, 17, 293–304. [Google Scholar] [CrossRef]
- Zheng, C.; Ling, S.; Cho, D. How Social Identity Affects Green Food Purchase Intention: The Serial Mediation Effect of Green Perceived Value and Psychological Distance. Behav. Sci. 2023, 13, 664. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, W.; Wang, X.; Liang, S. Moderating Effects of Time Pressure on the Relationship between Perceived Value and Purchase Intention in Social E-Commerce Sales Promotion: Considering the Impact of Product Involvement. Inf. Manag. 2019, 56, 317–328. [Google Scholar] [CrossRef]
- Lam, S.K.; Ahearne, M.; Hu, Y.; Schillewaert, N. Resistance to Brand Switching When a Radically New Brand Is Introduced: A Social Identity Theory Perspective. J. Mark. 2010, 74, 128–146. [Google Scholar] [CrossRef]
- Simmel, G. The Sociology of Sociability. Am. J. Sociol. 1949, 55, 254–261. [Google Scholar] [CrossRef]
- Simmel, G. The Sociology of Georg Simmel; Free Press: New York, NY, USA, 1950; Volume 92892. [Google Scholar]
- Steuer, J.; Biocca, F.; Levy, M.R. Defining Virtual Reality: Dimensions Determining Telepresence. Commun. Age Virtual Real. 1995, 33, 37–39. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations. J. Mark. 1996, 60, 50–68. [Google Scholar] [CrossRef]
- Nambisan, S.; Baron, R.A. Virtual Customer Environments: Testing a Model of Voluntary Participation in Value Co-Creation Activities. J. Prod. Innov. Manag. 2009, 26, 388–406. [Google Scholar] [CrossRef]
- McMahan, C.; Hovland, R.; McMillan, S. Online Marketing Communications. J. Interact. Advert. 2009, 10, 61–76. [Google Scholar] [CrossRef]
- Liu, H.; Chu, H.; Huang, Q.; Chen, X. Enhancing the Flow Experience of Consumers in China through Interpersonal Interaction in Social Commerce. Comput. Hum. Behav. 2016, 58, 306–314. [Google Scholar] [CrossRef]
- Ma, X.; Zou, X.; Lv, J. Why Do Consumers Hesitate to Purchase in Live Streaming? A Perspective of Interaction between Participants. Electron. Commer. Res. Appl. 2022, 55, 101193. [Google Scholar] [CrossRef]
- Bullough, E. ‘Psychical distance’ as a factor in art and an aesthetic principle. Br. J. Psychol. 1912, 5, 87–118. [Google Scholar] [CrossRef]
- Liberman, N.; Trope, Y. The Role of Feasibility and Desirability Considerations in near and Distant Future Decisions: A Test of Temporal Construal Theory. J. Personal. Soc. Psychol. 1998, 75, 5–18. [Google Scholar] [CrossRef]
- Amit, E.; Algom, D.; Trope, Y. Distance-Dependent Processing of Pictures and Words. J. Exp. Psychol. Gen. 2009, 138, 400–415. [Google Scholar] [CrossRef]
- Trope, Y.; Liberman, N. Temporal Construal. Psychol. Rev. 2003, 110, 403–421. [Google Scholar] [CrossRef] [PubMed]
- Trope, Y.; Liberman, N. “Construal-Level Theory of Psychological Distance”: Correction to Trope and Liberman (2010). Psychol. Rev. 2010, 117, 1024. [Google Scholar] [CrossRef]
- Kim, K.; Zhang, M.; Li, X. Effects of Temporal and Social Distance on Consumer Evaluations. J. Consum. Res. 2008, 35, 706–713. [Google Scholar] [CrossRef]
- Khamitov, M.; Wang, X.; Thomson, M. How Well Do Consumer-Brand Relationships Drive Customer Brand Loyalty? Generalizations from a Meta-Analysis of Brand Relationship Elasticities. J. Consum. Res. 2019, 46, 435–459. [Google Scholar] [CrossRef]
- Turner, J.C. Social Comparison and Social Identity: Some Prospects for Intergroup Behaviour. Eur. J. Soc. Psychol. 1975, 5, 1–34. [Google Scholar] [CrossRef]
- Stokburger-Sauer, N.; Ratneshwar, S.; Sen, S. Drivers of Consumer–Brand Identification. Int. J. Res. Mark. 2012, 29, 406–418. [Google Scholar] [CrossRef]
- Kuenzel, S.; Halliday, S.V. The Chain of Effects from Reputation and Brand Personality Congruence to Brand Loyalty: The Role of Brand Identification. J. Target. Meas. Anal. Mark. 2010, 18, 167–176. [Google Scholar] [CrossRef]
- Bhattacharya, C.B.; Sen, S. Consumer–Company Identification: A Framework for Understanding Consumers’ Relationships with Companies. J. Mark. 2003, 67, 76–88. [Google Scholar] [CrossRef]
- Han, S.H.; Ekinci, Y.; Chen, C.-H.S.; Park, M.K. Antecedents and the Mediating Effect of Customer-Restaurant Brand Identification. J. Hosp. Mark. Manag. 2019, 29, 202–220. [Google Scholar] [CrossRef]
- Lam, S.K.; Ahearne, M.; Mullins, R.; Hayati, B.; Schillewaert, N. Exploring the Dynamics of Antecedents to Consumer–Brand Identification with a New Brand. J. Acad. Mark. Sci. 2012, 41, 234–252. [Google Scholar] [CrossRef]
- Ordóñez, L.; Benson, L. Decisions under Time Pressure: How Time Constraint Affects Risky Decision Making. Organ. Behav. Hum. Decis. Process. 1997, 71, 121–140. [Google Scholar] [CrossRef]
- Olschewski, S.; Rieskamp, J. Distinguishing Three Effects of Time Pressure on Risk Taking: Choice Consistency, Risk Preference, and Strategy Selection. Behav. Decis. Mak. 2021, 34, 541–554. [Google Scholar] [CrossRef]
- Svenson, O.; Edland, A. Change of Preferences under Time Pressure: Choices and Judgements. Scand. J. Psychol. 1987, 28, 322–330. [Google Scholar] [CrossRef]
- Zhang, N. Product Presentation in the Live-Streaming Context: The Effect of Consumer Perceived Product Value and Time Pressure on Consumer’s Purchase Intention. Front. Psychol. 2023, 14, 1124675. [Google Scholar] [CrossRef]
- Vermeir, I.; Van Kenhove, P. The Influence of Need for Closure and Perceived Time Pressure on Search Effort for Price and Promotional Information in a Grocery Shopping Context. Psychol. Mark. 2004, 22, 71–95. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chen, C.-F. Passengers’ Shopping Motivations and Commercial Activities at Airports—The Moderating Effects of Time Pressure and Impulse Buying Tendency. Tour. Manag. 2013, 36, 426–434. [Google Scholar] [CrossRef]
- Spears, N. Time Pressure and Information in Sales Promotion Strategy: Conceptual Framework and Content Analysis. J. Advert. 2001, 30, 67–76. [Google Scholar] [CrossRef]
- Geng, R.; Chen, J. The Influencing Mechanism of Interaction Quality of UGC on Consumers’ Purchase Intention—An Empirical Analysis. Front. Psychol. 2021, 12, 697382. [Google Scholar] [CrossRef]
- Li, G.; Jiang, Y.; Chang, L. The Influence Mechanism of Interaction Quality in Live Streaming Shopping on Consumers’ Impulsive Purchase Intention. Front. Psychol. 2022, 13, 918196. [Google Scholar] [CrossRef]
- Ellison, N.; Heino, R.; Gibbs, J. Managing Impressions Online: Self-Presentation Processes in the Online Dating Environment. J. Comp. Mediat. Comm. 2006, 11, 415–441. [Google Scholar] [CrossRef]
- Chang, Y.P.; Dong, X.B. Research on the Impact of Consumer Interaction Behaviour on Purchase Intention in an SNS Environment. Inf. Dev. 2014, 32, 496–508. [Google Scholar] [CrossRef]
- Hu, M.; Chaudhry, S.S. Enhancing Consumer Engagement in E-Commerce Live Streaming via Relational Bonds. Internet Res. 2020, 30, 1019–1041. [Google Scholar] [CrossRef]
- Yin, X.; Li, Y.; Gao, R.; Li, J.; Wang, H. Understanding the Purchase Decisions of Silver Consumers in Short-Form Video Platforms from the Perspective of Existence, Relatedness, and Growth Needs. Behav. Sci. 2023, 13, 1011. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Liang, X.; Xie, T.; Wang, H. See Now, Act Now: How to Interact with Customers to Enhance Social Commerce Engagement? Inf. Manag. 2020, 57, 103324. [Google Scholar] [CrossRef]
- Senecal, S.; Nantel, J. The Influence of Online Product Recommendations on Consumers’ Online Choices. J. Retail. 2004, 80, 159–169. [Google Scholar] [CrossRef]
- Sokolova, K.; Kefi, H. Instagram and YouTube Bloggers Promote It, Why Should I Buy? How Credibility and Parasocial Interaction Influence Purchase Intentions. J. Retail. Consum. Serv. 2020, 53, 101742. [Google Scholar] [CrossRef]
- Yin, X.; Li, J.; Si, H.; Wu, P. Attention Marketing in Fragmented Entertainment: How Advertising Embedding Influences Purchase Decision in Short-Form Video Apps. J. Retail. Consum. Serv. 2024, 76, 103572. [Google Scholar] [CrossRef]
- Edwards, S.M.; Lee, J.K.; Ferle, C.L. Does Place Matter When Shopping Online? Perceptions of Similarity and Familiarity as Indicators of Psychological Distance. J. Interact. Advert. 2009, 10, 35–50. [Google Scholar] [CrossRef]
- Sohn, D.; Lee, B.-K. Dimensions of Interactivity: Differential Effects of Social and Psychological Factors. J. Comput.-Mediat. Comm. 2006, 10, JCMC10311. [Google Scholar] [CrossRef]
- Uhm, J.-P.; Kim, S.; Do, C.; Lee, H.-W. How Augmented Reality (AR) Experience Affects Purchase Intention in Sport E-Commerce: Roles of Perceived Diagnosticity, Psychological Distance, and Perceived Risks. J. Retail. Consum. Serv. 2022, 67, 103027. [Google Scholar] [CrossRef]
- Ramirez, E.; Jiménez, F.R.; Gau, R. Concrete and Abstract Goals Associated with the Consumption of Environmentally Sustainable Products. Eur. J. Mark. 2015, 49, 1645–1665. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Huang, S.; Zhang, L.; Zhao, Y. Exploring Consumers’ Buying Behavior in a Large Online Promotion Activity: The Role of Psychological Distance and Involvement. J. Theor. Appl. Electron. Commer. Res. 2020, 15, 66–80. [Google Scholar] [CrossRef]
- Zheng, C.; Yuan, L.; Bian, X.; Wang, H.; Huang, L. Management Response to Negative Comments, Psychological Distance and Product Nature: A Consumer Perspective. Eur. J. Mark. 2020, 54, 2551–2573. [Google Scholar] [CrossRef]
- Lee, H.M.; Li, B.J. So Far yet so near: Exploring the Effects of Immersion, Presence, and Psychological Distance on Empathy and Prosocial Behavior. Int. J. Hum.-Comput. Stud. 2023, 176, 103042. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, Y.; Zhang, Z.; Wang, Y.; Zhu, M. How Technical Features of Virtual Live Shopping Platforms Affect Purchase Intention: Based on the Theory of Interactive Media Effects. Decis. Support. Syst. 2024, 180, 114189. [Google Scholar] [CrossRef]
- Kressmann, F.; Sirgy, M.J.; Herrmann, A.; Huber, F.; Huber, S.; Lee, D.-J. Direct and Indirect Effects of Self-Image Congruence on Brand Loyalty. J. Bus. Res. 2006, 59, 955–964. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Wang, Y.-S.; Yieh, K. Predicting Smartphone Brand Loyalty: Consumer Value and Consumer-Brand Identification Perspectives. Int. J. Inf. Manag. 2016, 36, 245–257. [Google Scholar] [CrossRef]
- He, H.; Li, Y.; Harris, L. Social Identity Perspective on Brand Loyalty. J. Bus. Res. 2012, 65, 648–657. [Google Scholar] [CrossRef]
- Fuller, J.B.; Hester, K.; Barnett, T.; Frey, L.; Relyea, C.; Beu, D. Perceived External Prestige and Internal Respect: New Insights into the Organizational Identification Process. Hum. Relat. 2006, 59, 815–846. [Google Scholar] [CrossRef]
- Rana, I.A.; Arshad, H.S.H.; Jamshed, A.; Khalid, Z.; Younas, Z.I.; Bhatti, S.S.; Ahmad, J. The Impact of Psychological Distance to Climate Change and Urban Informality on Adaptation Planning. Urban. Clim. 2023, 49, 101460. [Google Scholar] [CrossRef]
- Indrawati, I.; Ramantoko, G.; Widarmanti, T.; Aziz, I.A.; Khan, F.U. Utilitarian, Hedonic, and Self-Esteem Motives in Online Shopping. Span. J. Mark.–SJME 2022, 26, 231–246. [Google Scholar] [CrossRef]
- Apasrawirote, D.; Yawised, K. Factors Influencing the Behavioral and Purchase Intention on Live-Streaming Shopping. Asian J. Bus. Res. 2022, 12, 39. [Google Scholar] [CrossRef]
- Park, C.W.; Iyer, E.S.; Smith, D.C. The Effects of Situational Factors on In-Store Grocery Shopping Behavior: The Role of Store Environment and Time Available for Shopping. J. Consum. Res. 1989, 15, 422. [Google Scholar] [CrossRef]
- Dhar, R.; Nowlis, S.M. The Effect of Time Pressure on Consumer Choice Deferral. J. Consum. Res. 1999, 25, 369–384. [Google Scholar] [CrossRef]
- Iyer, E.S. Unplanned Purchasing: Knowledge of Shopping Environment and. J. Retail. 1989, 65, 40. [Google Scholar]
- Edland, A.; Svenson, O. Judgment and Decision Making Under Time Pressure. In Time Pressure and Stress in Human Judgment and Decision Making; Springer: Boston, MA, USA, 1993; pp. 27–40. [Google Scholar]
- Krishnan, B.C.; Dutta, S.; Jha, S. Effectiveness of Exaggerated Advertised Reference Prices: The Role of Decision Time Pressure. J. Retail. 2013, 89, 105–113. [Google Scholar] [CrossRef]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Wang, H.; Ding, J.; Akram, U.; Yue, X.; Chen, Y. An Empirical Study on the Impact of E-Commerce Live Features on Consumers’ Purchase Intention: From the Perspective of Flow Experience and Social Presence. Information 2021, 12, 324. [Google Scholar] [CrossRef]
- Shang, Q.; Ma, H.; Wang, C.; Gao, L. Effects of Background Fitting of E-Commerce Live Streaming on Consumers’ Purchase Intentions: A Cognitive-Affective Perspective. Psychol. Res. Behav. Manag. 2023, 16, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Ming, J.; Jianqiu, Z.; Bilal, M.; Akram, U.; Fan, M. How Social Presence Influences Impulse Buying Behavior in Live Streaming Commerce? The Role of S-O-R Theory. Int. J. Web Inf. Syst. 2021, 17, 300–320. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Xu, Y.; Zeng, K. How Live Streaming Features Impact Consumers’ Purchase Intention in the Context of Cross-Border E-Commerce? A Research Based on SOR Theory. Front. Psychol. 2021, 12, 767876. [Google Scholar] [CrossRef]
- Edwards, J.R.; Bagozzi, R.P. On the Nature and Direction of Relationships between Constructs and Measures. Psychol. Methods 2000, 5, 155–174. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, S.B.; Podsakoff, P.M.; Jarvis, C.B. The Problem of Measurement Model Misspecification in Behavioral and Organizational Research and Some Recommended Solutions. J. Appl. Psychol. 2005, 90, 710–730. [Google Scholar] [CrossRef]
- Diamantopoulos, A.; Riefler, P.; Roth, K.P. Advancing Formative Measurement Models. J. Bus. Res. 2008, 61, 1203–1218. [Google Scholar] [CrossRef]
- Kumar, V.; Kaushik, A.K. Building Consumer–Brand Relationships through Brand Experience and Brand Identification. J. Strateg. Mark. 2018, 28, 39–59. [Google Scholar] [CrossRef]
- Suri, R.; Monroe, K.B. The Effects of Time Constraints on Consumers’ Judgments of Prices and Products. J. Consum. Res. 2003, 30, 92–104. [Google Scholar] [CrossRef]
- Wang, R. Influence of the Fit between Elements in Livestreaming Shopping on Consumers’ Purchase Intention: A Dual-Processing Fluency Perspective. Telemat. Inform. Rep. 2024, 13, 100123. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling (3. Baskı); Guilford: New York, NY, USA, 2011; Volume 14, pp. 1497–1513. [Google Scholar]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to Use and How to Report the Results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M.; Straub, D.W. Editor’s Comments: A Critical Look at the Use of PLS-SEM in “MIS Quarterly”. MISQ 2012, 36, iii–xiv. [Google Scholar] [CrossRef]
- Weiboyi China Live Streaming E-Commerce Opportunity Insight Report. 2023. Available online: https://26202256.s21i.faiusr.com/61/ABUIABA9GAAg2_KqnQYo0LycIQ.pdf (accessed on 10 December 2023).
- Sinolink, S. Special Analysis Report on Internet Celebrity Live Broadcasting with Goods. Available online: https://pdf.dfcfw.com/pdf/H3_AP201911251371068382_1.pdf (accessed on 10 December 2023).
- Schwarz, A.; Rizzuto, T.; Carraher-Wolverton, C.; Roldán, J.L.; Barrera-Barrera, R. Examining the Impact and Detection of the “Urban Legend” of Common Method Bias. SIGMIS Database 2017, 48, 93–119. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Kock, N. Common Method Bias in PLS-SEM. Int. J. e-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. Advanced Issues in Partial Least Squares Structural Equation Modeling; Sage Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Henseler, J.; Hair, J.F. On the Emancipation of PLS-SEM: A Commentary on Rigdon (2012). Long. Range. Plan. 2014, 47, 154–160. [Google Scholar] [CrossRef]
- Shmueli, G.; Ray, S.; Velasquez Estrada, J.M.; Chatla, S.B. The Elephant in the Room: Predictive Performance of PLS Models. J. Bus. Res. 2016, 69, 4552–4564. [Google Scholar] [CrossRef]
- Shmueli, G.; Sarstedt, M.; Hair, J.F.; Cheah, J.-H.; Ting, H.; Vaithilingam, S.; Ringle, C.M. Predictive Model Assessment in PLS-SEM: Guidelines for Using PLSpredict. Eur. J. Mark. 2019, 53, 2322–2347. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Cao, Y. Investigating the Influence of Online Interpersonal Interaction on Purchase Intention Based on Stimulus-Organism-Reaction Model. Hum. Cent. Comput. Inf. Sci. 2018, 8, 37. [Google Scholar] [CrossRef]
- Zhou, W.; Dong, J.; Zhang, W. The Impact of Interpersonal Interaction Factors on Consumers’ Purchase Intention in Social Commerce: A Relationship Quality Perspective. Ind. Manag. Data Syst. 2022, 123, 697–721. [Google Scholar] [CrossRef]
- Gunawan, D.D.; Huarng, K.-H. Viral Effects of Social Network and Media on Consumers’ Purchase Intention. J. Bus. Res. 2015, 68, 2237–2241. [Google Scholar] [CrossRef]
- Jia, Y.; Ouyang, J.; Guo, Q. When Rich Pictorial Information Backfires: The Interactive Effects of Pictures and Psychological Distance on Evaluations of Tourism Products. Tour. Manag. 2021, 85, 104315. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Tang, H.; Zhang, Y. Electronic Word-of-Mouth and Consumer Purchase Intentions in Social e-Commerce. Electron. Commer. Res. Appl. 2020, 41, 100980. [Google Scholar] [CrossRef]
- Shabnam, S.; Quaddus, M.; Roy, S.K.; Quazi, A. Consumer Belief System and Pro-Environmental Purchase Intention: Does Psychological Distance Intervene? J. Clean. Prod. 2021, 327, 129403. [Google Scholar] [CrossRef]
- Cachón-Rodríguez, G.; Prado-Román, C.; Blanco-González, A. The Relationship between Corporate Identity and University Loyalty: The Moderating Effect of Brand Identification in Managing an Institutional Crisis. J. Conting. Crisis Manag. 2020, 129, 265–280. [Google Scholar] [CrossRef]
- Weitzl, W.J.; Hutzinger, C.; Wagner, U. I Am Ashamed of My Brand-Self! Consumer-Brand Identification as a Moderator of Emotional Reactions Following Symbol-Laden Brand Failures. J. Prod. Brand Manag. 2023, 33, 1–13. [Google Scholar] [CrossRef]
- Tykocinski, O.E.; Pittman, T.S. Product Aversion Following a Missed Opportunity: Price Contrast or Avoidance of Anticipated Regret? Basic. Appl. Soc. Psych. 2001, 23, 149–156. [Google Scholar] [CrossRef]
- Lu, C.; Qin, Q.; Lin, Y. Cognitive Mechanism of Consumer Purchase Decision in False Promotion: An Emperical Study Based on Time Pressure and Overconfidence. Nankai Manag. Rev. 2013, 16, 92–103. [Google Scholar]
- KAO, D.T. Message Sidedness in Advertising: The Moderating Roles of Need for Cognition and Time Pressure in Persuasion. Scand. J. Psychol. 2011, 52, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Lv, X.; Li, H. To Buy or Not to Buy? The Effect of Time Scarcity and Travel Experience on Tourists’ Impulse Buying. Ann. Tour. Res. 2021, 86, 103083. [Google Scholar] [CrossRef]
- Qing, C.; Jin, S. What Drives Consumer Purchasing Intention in Live Streaming E-Commerce? Front. Psychol. 2022, 13, 938726. [Google Scholar] [CrossRef]
Constructs | Items | Sources |
---|---|---|
CAI | The anchor can answer my specific questions clearly and quickly. | Ma et al. Ma et al. [13,31] |
The anchor can interact with me on product-related information. | ||
The anchor’s responses are closely related to my comments. | ||
The anchor’s response can fulfill my needs. | ||
CCI | I can exchange shopping experiences with other consumers. | |
I can exchange product experiences with other consumers. | ||
I can fully communicate with other consumers. | ||
I can get a lot of product-related information from other consumer comments. | ||
Psychological Distance (PD) | This product is very concrete in my mind. | Sun et al. [69] |
This product is very real in my mind. | ||
This product is very close to me in my mind. | ||
Brand Identification (BI) | This brand is like a part of me. | Yeh et al. Kumar et al. [71,90] |
The brand has a lot of personal meaning for me. | ||
I have a strong sense of belonging to the brand. | ||
When someone compliments the brand, it feels like a compliment to me. | ||
Time Pressure (TP) | No time pressure/Too much time pressure. | Suri et al. [91] |
More than adequate time available/Not adequate time available. | ||
Not in need of more time to consider this purchase decision/In need of more time to consider this purchase decision. | ||
Purchase Intention (PI) | I would consider purchasing these products. | |
There is a high probability that I will purchase the products. | Peng et al. [22] | |
I will purchase these products soon. | Wang [92] | |
I would like to purchase the products if I have enough time, energy, and money. |
Items | Frequency | Proportion | |
---|---|---|---|
Gender | Male | 353 | 46.6% |
Female | 405 | 53.4% | |
Age (in years) | 18–25 | 298 | 39.3% |
26–35 | 277 | 36.5% | |
36–45 | 122 | 16.1% | |
>45 | 61 | 8.0% | |
Education | High school or below | 122 | 16.1% |
Three-year college | 183 | 24.1% | |
Undergraduate | 402 | 53.0% | |
Postgraduate or above | 51 | 6.7% | |
Monthly income (CNY/Yuan) | <3000 | 97 | 12.8% |
3000–8000 | 452 | 59.6% | |
8000–13,000 | 163 | 21.5% | |
>13,000 | 46 | 6.1% | |
Number of monthly uses | <3 | 162 | 21.4% |
3–6 | 329 | 43.4% | |
7–10 | 177 | 23.4% | |
>10 | 90 | 11.9% |
Constructs | Item | Factor Loadings | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|
CAI | CAI1 | 0.868 | 0.858 | 0.904 | 0.702 |
CAI2 | 0.835 | ||||
CAI3 | 0.830 | ||||
CAI4 | 0.817 | ||||
CCI | CCI1 | 0.871 | 0.835 | 0.890 | 0.669 |
CCI2 | 0.799 | ||||
CCI3 | 0.791 | ||||
CCI4 | 0.808 | ||||
Psychological Distance (PD) | PD1 | 0.899 | 0.895 | 0.935 | 0.827 |
PD2 | 0.916 | ||||
PD3 | 0.913 | ||||
Brand Identification (BI) | BI1 | 0.846 | 0.840 | 0.892 | 0.675 |
BI2 | 0.822 | ||||
BI3 | 0.819 | ||||
BI4 | 0.798 | ||||
Time Pressure (TP) | TP1 | 0.896 | 0.869 | 0.919 | 0.792 |
TP2 | 0.898 | ||||
TP3 | 0.875 | ||||
Purchase Intention (PI) | PI1 | 0.896 | 0.891 | 0.925 | 0.755 |
PI2 | 0.844 | ||||
PI3 | 0.890 | ||||
PI4 | 0.843 |
CAI | CCI | PD | BI | TP | PI | |
---|---|---|---|---|---|---|
CAI | 0.838 | |||||
CCI | 0.348 | 0.818 | ||||
PD | 0.526 | 0.622 | 0.909 | |||
BI | 0.191 | 0.332 | 0.280 | 0.821 | ||
TP | 0.201 | 0.251 | 0.247 | 0.215 | 0.890 | |
PI | 0.395 | 0.454 | 0.625 | 0.292 | 0.241 | 0.869 |
CAI | CCI | PD | BI | TP | PI | |
---|---|---|---|---|---|---|
CAI | ||||||
CCI | 0.409 | |||||
PD | 0.599 | 0.717 | ||||
BI | 0.225 | 0.389 | 0.316 | |||
TP | 0.234 | 0.292 | 0.280 | 0.251 | ||
PI | 0.452 | 0.523 | 0.699 | 0.333 | 0.273 |
CAI | CCI | PD | BI | TP | PI | |
---|---|---|---|---|---|---|
CAI | 1.150 | 1.420 | ||||
CCI | 1.273 | 1.881 | ||||
PD | 2.196 | |||||
BI | 1.151 | 1.196 | ||||
TP | 1.140 | |||||
PI | ||||||
BI × CAI | 1.099 | 1.195 | ||||
BI × CCI | 1.153 | 1.229 | ||||
TP × PD | 1.991 | |||||
TP × CAI | 1.395 | |||||
TP × CCI | 1.853 |
Paths | Hypotheses | Path Coefficients β-Values | t-Values | p-Values | Confidence Interval | Decision | |
---|---|---|---|---|---|---|---|
2.5% | 97.5% | ||||||
Direct effects | |||||||
CAI → PI | H1a | 0.117 | 3.568 | 0.000 | 0.052 | 0.182 | Supported |
CCI → PI | H1b | 0.141 | 3.820 | 0.000 | 0.069 | 0.215 | Supported |
CAI → PD | H2a | 0.352 | 12.100 | 0.000 | 0.297 | 0.410 | Supported |
CCI → PD | H2b | 0.506 | 18.796 | 0.000 | 0.451 | 0.557 | Supported |
PD → PI | H3 | 0.409 | 10.045 | 0.000 | 0.332 | 0.487 | Supported |
Mediation effects | |||||||
CAI → PD → PI | H4a | 0.144 | 7.662 | 0.000 | 0.109 | 0.184 | Supported |
CCI → PD → PI | H4b | 0.207 | 8.790 | 0.000 | 0.162 | 0.254 | Supported |
Moderating effects | |||||||
BI × CAI → PD | H5a | 0.116 | 4.206 | 0.000 | 0.062 | 0.169 | Supported |
BI × CCI → PD | H5b | 0.099 | 3.739 | 0.000 | 0.044 | 0.150 | Supported |
BI × CAI → PI | H5c | 0.147 | 5.284 | 0.000 | 0.092 | 0.201 | Supported |
BI × CCI → PI | H5d | 0.106 | 3.575 | 0.000 | 0.045 | 0.163 | Supported |
TP × PD → PI | H6a | 0.152 | 3.816 | 0.000 | 0.072 | 0.229 | Supported |
TP × CAI → PI | H6b | 0.112 | 3.255 | 0.001 | 0.048 | 0.182 | Supported |
TP × CCI → PI | H6c | 0.112 | 2.949 | 0.003 | 0.037 | 0.186 | Supported |
R2 | Q2 Predict | |
---|---|---|
Psychological Distance (PD) | 0.530 | 0.518 |
Purchase Intention (PI) | 0.572 | 0.444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, S.; Zheng, C.; Cho, D.; Kim, Y.; Dong, Q. The Impact of Interpersonal Interaction on Purchase Intention in Livestreaming E-Commerce: A Moderated Mediation Model. Behav. Sci. 2024, 14, 320. https://doi.org/10.3390/bs14040320
Ling S, Zheng C, Cho D, Kim Y, Dong Q. The Impact of Interpersonal Interaction on Purchase Intention in Livestreaming E-Commerce: A Moderated Mediation Model. Behavioral Sciences. 2024; 14(4):320. https://doi.org/10.3390/bs14040320
Chicago/Turabian StyleLing, Shuai, Can Zheng, Dongmin Cho, Yonggu Kim, and Qizhen Dong. 2024. "The Impact of Interpersonal Interaction on Purchase Intention in Livestreaming E-Commerce: A Moderated Mediation Model" Behavioral Sciences 14, no. 4: 320. https://doi.org/10.3390/bs14040320
APA StyleLing, S., Zheng, C., Cho, D., Kim, Y., & Dong, Q. (2024). The Impact of Interpersonal Interaction on Purchase Intention in Livestreaming E-Commerce: A Moderated Mediation Model. Behavioral Sciences, 14(4), 320. https://doi.org/10.3390/bs14040320