The Role of the Motor System in L1 and L2 Action Verb Processing for Chinese Learners of English: Evidence from Mu Rhythm Desynchronization
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Materials
2.3. Experimental Task and Procedure
2.4. EEG Recording and Pre-Processing
2.5. Time–Frequency (TF) Analysis
2.6. Statistical Analyses
3. Results
3.1. Behavioral Results
3.2. EEG Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fodor, J.A. The Modularity of Mind: An Essay on Faculty Psychology; MIT Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Fodor, J.A. The Mind Doesn’t Work That Way; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Barsalou, L.W. Grounded cognition. Annu. Rev. Psychol. 2008, 59, 617–645. [Google Scholar] [CrossRef]
- Tyler, L.K.; Moss, H.E. Towards a distributed account of conceptual knowledge. Trends Cogn. Sci. 2001, 5, 244–252. [Google Scholar] [CrossRef]
- Fischer, M.H.; Zwaan, R.A. Embodied language: A review of the role of the motor system in language comprehension. Q. J. Exp. Psychol. 2008, 61, 825–850. [Google Scholar] [CrossRef]
- Gallese, V.; Lakoff, G. The Brain’s concepts: The role of the Sensory-motor system in conceptual knowledge. Cogn. Neuropsychol. 2005, 22, 455–479. [Google Scholar] [CrossRef]
- Zwaan, R.A.; Madden, C.J. Embodied sentence comprehension. In Grounding Cognition: The Role of Perception and Action in Memory, Language, and Thinking; Pecher, D., Zwaan, R.A., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 224–245. [Google Scholar]
- Fargier, R.; Paulignan, Y.; Boulenger, V.; Monaghan, P.; Reboul, A.; Nazir, T.A. Learning to associate novel words with motor actions: Language-induced motor activity following short training. Cortex 2012, 48, 888–990. [Google Scholar] [CrossRef]
- Gianelli, C.; Dalla Volta, R. Does listening to action-related sentences modulate the activity of the motor system? Replication of a combined TMS and behavioral study. Front. Psychol. 2015, 5, 1511. [Google Scholar] [CrossRef] [PubMed]
- Hauk, O.; Johnsrude, I.; Pulvermüller, F. Somatotopic representation of action words in human motor and premotor cortex. Neuron 2004, 41, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Johari, K.; Riccardi, N.; Malyutina, S.; Modi, M.; Desai, R.H. HD-tDCS of primary and higher-order motor cortex affects action word processing. Front. Hum. Neurosci. 2022, 16, 959455. [Google Scholar] [CrossRef] [PubMed]
- Klepp, A.; Niccolai, V.; Buccino, G.; Schnitzler, A.; Biermann-Ruben, K. Language-motor interference reflected in MEG beta oscillations. Neuroimage 2015, 109, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Klepp, A.; Niccolai, V.; Sieksmeyer, J.; Arnzen, S.; Indefrey, P.; Schnitzler, A.; Biermann-Ruben, K. Body-part specific interactions of action verb processing with motor behaviour. Behav. Brain Res. 2017, 15, 149–158. [Google Scholar] [CrossRef]
- Raposo, A.; Mossa, H.E.; Stamatakis, E.A.; Tyler, L.K. Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia 2009, 47, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Speer, N.K.; Reynolds, J.R.; Swallow, K.M.; Zacks, J.M. Reading stories activates neural representations of visual and motor experiences. Psychol. Sci. 2009, 20, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Lotto, A.J.; Hickok, G.S.; Holt, L.L. Reflections on mirror neurons and speech perception. Trends Cogn. Sci. 2009, 13, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Vukovic, N.; Shtyrov, Y. Cortical motor systems are involved in second-language comprehension: Evidence from rapid mu-rhythm desynchronisation. NeuroImage 2014, 102, 695–703. [Google Scholar] [CrossRef]
- Mahon, B.Z.; Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. J. Physiol. Paris. 2008, 102, 59–70. [Google Scholar] [CrossRef]
- Pulvermüller, F.; Fadiga, L. Active perception: Sensorimotor circuits as a cortical basis for language. Nat. Rev. Neurosci. 2010, 11, 351–360. [Google Scholar] [CrossRef]
- Pulvermüller, F. Meaning and the brain: The neurosemantics of referential, interactive, and combinatorial knowledge. J. Neuroling. 2011, 25, 423–459. [Google Scholar] [CrossRef]
- Boulenger, V.; Shtyrov, Y.; Pulvermüller, F. When do you grasp the idea? MEG evidence for instantaneous idiom understanding. NeuroImage 2012, 59, 3502–3513. [Google Scholar] [CrossRef]
- Hauk, O.; Pulvermüller, F. Neurophysiological distinction of action words in the fronto-central cortex. Hum. Brain Mapp. 2004, 21, 191–201. [Google Scholar] [CrossRef]
- Pulvermüller, F.; Härle, M.; Hummel, F. Walking or talking? Behavioral and neurophysiological correlates of action verb processing. Brain Lang. 2001, 78, 143–168. [Google Scholar] [CrossRef]
- Tian, L.; Chen, H.; Heikkinen, P.P.; Liu, W.; Parviainen, T. Spatiotemporal Dynamics of Activation in Motor and Language Areas Suggest a Compensatory Role of the Motor Cortex in Second Language Processing. Neurobiol. Lang. 2023, 4, 178–197. [Google Scholar] [CrossRef] [PubMed]
- van Elk, M.; van Schie, H.T.; Zwaan, R.A.; Bekkering, H. The functional role of motor activation in language processing: Motor cortical oscillations support lexical-semantic retrieval. NeuroImage 2010, 50, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Vukovic, N.; Feurra, M.; Shpektor, A.; Myachykov, A.; Shtyrov, Y. Primary motor cortex functionally contributes to language comprehension: An online rTMS study. Neuropsychologia 2017, 96, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Amsel, B.D. Tracking real-time neural activation of conceptual knowledge using single-trial event-related potentials. Neuropsychologia 2011, 49, 970–983. [Google Scholar] [CrossRef] [PubMed]
- Amsel, B.D.; Urbach, T.P.; Kutas, M. Alive and grasping: Stable and rapid semantic access to an object category but not object graspability. NeuroImage 2013, 77, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Boulenger, V.; Roy, A.C.; Paulignan, Y.; Deprez, V.; Jeannerod, M.; Nazir, T.A. Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. J. Cogn. Neurosci. 2006, 18, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Jeong, H. The social brain of language: Grounding second language learning in social interaction. NPJ Sci. Learn. 2020, 5, 8. [Google Scholar] [CrossRef]
- Francis, W.S. Bilingual semantic and conceptual representation. In Handbook of Bilingualism: Psycholinguistic Approaches; Kroll, J.F., De Groot, A.M.B., Eds.; Oxford University Press: Oxford, NY, USA, 2005; pp. 251–267. [Google Scholar]
- Pavlenko, A. New approaches to concepts in bilingual memory. Biling. Lang. Cogn. 2000, 2, 209–230. [Google Scholar] [CrossRef]
- Perani, D.; Abutalebi, J. The neural basis of first and second language processing. Curr. Opin. Neurobiol. 2005, 15, 202–206. [Google Scholar] [CrossRef]
- Baumeister, J.C.; Foroni, F.; Conrad, M.; Rumiati, R.I.; Winkielman, P. Embodiment and emotional memory in first vs. second language. Front. Psychol. 2017, 8, 394. [Google Scholar] [CrossRef]
- De Grauwe, S.; Willems, R.M.; Rueschemeyer, S.A.; Lemhöfer, K.; Schriefers, H. Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia 2014, 56, 334–349. [Google Scholar] [CrossRef]
- Foroni, F. Do we embody second language? Evidence for ‘partial’ simulation during processing of a second language. Brain Cogn. 2015, 99, 8–16. [Google Scholar] [CrossRef]
- Monaco, E.; Jost, L.B.; Lancheros, M.; Harquel, S.; Schmidlin, E.; Annoni, J.M. First and second language at hand: A chronometric transcranial-magnetic stimulation study on semantic and motor resonance. J. Cogn. Neurosci. 2021, 33, 1563–1580. [Google Scholar] [CrossRef]
- Monaco, E.; Mouthon, M.; Britz, J.; Sato, S.; Stefanos-Yakoub, I.; Annoni, J.M.; Jost, L.B. Embodiment of action-related language in the native and a late foreign language—An fMRI-study. Brain Lang. 2023, 244, 105312. [Google Scholar] [CrossRef]
- Tian, L.; Chen, H.; Zhao, W.; Wu, J.; Zhang, Q.; De, A.; Leppänen, P.; Cong, F.; Parviainen, T. The role of motor system in action-related language comprehension in L1 and L2: An fMRI study. Brain Lang. 2020, 201, 104714. [Google Scholar] [CrossRef]
- Vukovic, N.; Williams, J.N. Automatic perceptual simulation of first language meanings during second language sentence processing in bilinguals. Acta Psychol. 2014, 145, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Marmolejo-Ramos, F.; Pei, X. The linguistic context effects on the processing of body–object interaction words: An ERP study on second language learners. Brain Res. 2015, 1613, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, J.; Wang, R.; Li, P. A neuroimaging study of semantic representation in first and second languages. Lang. Cogn. Neurosci. 2020, 35, 1223–1238. [Google Scholar] [CrossRef]
- Bergen, B.; Lau, T.T.C.; Narayan, S.; Stojanovic, D.; Wheeler, K. Body part representations in verbal semantics. Mem. Cogn. 2010, 38, 969–981. [Google Scholar] [CrossRef] [PubMed]
- Buccino, G.; Marino, B.F.; Bulgarelli, C.; Mezzadri, M. Fluent speakers of a second language process graspable nouns expressed in L2 Like in their native language. Front. Psychol. 2017, 8, 1306. [Google Scholar] [CrossRef] [PubMed]
- Dudschig, C.; de la Vega, I.; Kaup, B. Embodiment and second-language: Automatic activation of motor responses during processing spatially associated L2 words and emotion L2 words in a vertical Stroop paradigm. Brain Lang. 2014, 132, 14–21. [Google Scholar] [CrossRef]
- Dudschig, C.; Kaup, B. Is it all task-specific? The role ofbinary responses, verbal mediation, and saliency for eliciting language-space associations. J. Exp. Psychol. Learn. Mem. Cogn. 2017, 43, 259–270. [Google Scholar] [CrossRef]
- Monaco, E.; Jost, L.B.; Gygax, P.M.; Annoni, J.M. Embodied semantics in a second language: Critical review and clinical implications. Front. Hum. Neurosci. 2019, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; de Vega, M.; León, I.; Bastiaansen, M.; Lewis, A.G.; Magyari, L. Brain dynamics in the comprehension of action-related language. A time-frequency analysis of mu rhythms. Neuropsychologia 2015, 109, 50–62. [Google Scholar] [CrossRef]
- Avanzini, P.; Fabbri-Destro, M.; Dalla Volta, R.; Daprati, E.; Rizzolatti, G.; Cantalupo, G. The dynamics of sensorimotor cortical oscillations during the observation of hand movements: An EEG study. PLoS ONE 2012, 7, e37534. [Google Scholar] [CrossRef]
- Cooper, N.R.; Simpson, A.; Till, A.; Simmons, K.; Puzzo, I. Beta event-related desynchronization as an index of individual differences in processing human facial expression: Further investigations of autistic traits in typically developing adults. Front. Hum. Neurosci. 2013, 7, 159. [Google Scholar] [CrossRef]
- Hari, R. Action–perception connection and the cortical mu rhythm. Prog. Brain Res. 2006, 159, 253–260. [Google Scholar] [PubMed]
- Neuper, C.; Scherer, R.; Reiner, M.; Pfurtscheller, G.J. Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cogn. Brain Res. 2005, 25, 668–677. [Google Scholar] [CrossRef]
- Orgs, G.; Dombrowski, J.H.; Heil, M.; Jansen-Osmann, P. Expertise in dance modulates alpha/beta event-related desynchronization during action observation. Eur. J. Neurosci. 2008, 27, 3380–3384. [Google Scholar] [CrossRef] [PubMed]
- Llanos, C.; Rodriguez, M.; Rodriguez-Sabate, C.; Morales, I.; Sabate, M. Mu-rhythm changes during the planning of motor and motor imagery actions. Neuropsychologia 2013, 51, 1019–1026. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Brunner, C.; Schlögl, A.; Lopes de Silva, F.H. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 2006, 31, 153–159. [Google Scholar] [CrossRef]
- Pineda, J.A. The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing”. Brain Res. 2005, 50, 57–68. [Google Scholar] [CrossRef]
- Lam, K.J.Y.; Bastiaansen, M.C.M.; Dijkstra, T.; Rueschemeyer, S.A. Making sense: Motor activation and action plausibility during sentence processing. Lang. Cogn. Neurosci. 2017, 32, 590–600. [Google Scholar] [CrossRef]
- Moreno, I.; de Vega, M.; León, I. Understanding action language modulates oscillatory mu and beta rhythms in the same way as observing actions. Brain Cogn. 2013, 82, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Behmer, L.P.; Jantzen, K.J. Reading sheet music facilitates sensorimotor mudesynchronization in musicians. Clin. Neurophysiol. 2011, 122, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Quandt, L.C.; Marshall, P.J.; Bouquet, C.A.; Shipley, T.F. Somatosensory experiences with action modulate alpha and beta power during subsequent action observation. Brain Res. 2013, 1534, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Lemhöfer, K.; Broersma, M. Introducing LexTALE: A quick and valid Lexical Test for Advanced Learners of English. Behav. Res. 2012, 44, 325–343. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Schaller, F.; Weiss, S.; Müller, H.M. EEG beta-power changes reflect motor involvement in abstract action language processing. Brain Lang. 2017, 168, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Cuellar, M.; Bowers, A.; Harkrider, W.A.; Wilson, M.; Saltuklaroglu, T. Mu suppression as an index of sensorimotor contributions to speech processing: Evidence from continuous EEG signals. Int. J. Psychophysiol. 2012, 85, 242–248. [Google Scholar]
- Mollo, G.; Pulvermüller, F.; Hauk, O. Movement priming of EEG/MEG brain responses for action-words characterizes the link between language and action. Cortex 2016, 74, 262–276. [Google Scholar] [CrossRef]
- Blanco-Elorrieta, E.; Caramazza, A. A common selection mechanism at each linguistic level in bilingual and monolingual language production. Cognition 2021, 213, 104625. [Google Scholar] [CrossRef]
- Dijkstra, T.O.N.; Wahl, A.; Buytenhuijs, F.; Van Halem, N.; Al-Jibouri, Z.; De Korte, M.; Rekké, S. Multilink: A computational model for bilingual word recognition and word translation. Bilinguali. Lang. Cogn. 2019, 22, 657–679. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Forster, K.; Nicol, J.; Nakamura, K. The role of polysemy in masked semantic and translation priming. J. Mem. Lang. 2004, 51, 1–22. [Google Scholar] [CrossRef]
- Kroll, J.F.; Stewart, E. Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. J. Mem. Lang. 1994, 33, 149–174. [Google Scholar] [CrossRef]
- Van Hell, J.G.; De Groot, A.M.B. Conceptual representation in bilingual memory: Effects of concreteness and cognate status in word association. Bilinguali. Lang. Cogn. 1998, 1, 193–211. [Google Scholar] [CrossRef]
- Dijkstra, T.; Van Heuven, W.J. The architecture of the bilingual word recognition system: From identification to decision. Bilingualism 2002, 5, 175–197. [Google Scholar] [CrossRef]
- Dijkstra, T.; van Heuven, W.J.B.; Grainger, J. Simulating cross-language competition with the bilingual interactive activation model. Psychol. Belg. 1998, 38, 177–196. [Google Scholar] [CrossRef]
- Costa, A.; Pannunzi, M.; Deco, G.; Pickering, M.J. Do bilinguals automatically activate their native language when they are not using it? Cogn. Sci. 2017, 41, 1629–1644. [Google Scholar] [CrossRef] [PubMed]
- Hahne, A. What’s different in second-language processing? Evidence from event-related brain potentials. J. Psychol. Res. 2001, 30, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Spalek, K.; Hoshino, N.; Wu, Y.J.; Damian, M.; Thierry, G. Speaking two languages at once: Unconscious native word form access in second language production. Cognition 2014, 133, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Kühne, K.; Gianelli, C. Is Embodied Cognition Bilingual? Current Evidence and Perspectives of the Embodied Cognition Approach to Bilingual Language Processing. Front. Psychol. 2019, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Kroll, J.F.; Van Hell, J.G.; Tokowicz, N.; Green, D.W. The revised hierarchical model: A critical review and assessment. Bilinguali. Lang. Cogn. 2010, 13, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Merino, B.; Glaser, D.E.; Grèzes, J.; Passingham, R.E.; Haggard, P. Action observation and acquired motor skills: An FMRI study with expert dancers. Cereb. Cortex 2005, 15, 1243–1249. [Google Scholar] [CrossRef]
- Quandt, L.C.; Marshall, P.J.; Bouquet, C.A.; Young, T.; Shipley, T.F. Experience with novel actions modulates frontal α EEG desynchronization. Neurosci. Lett. 2011, 499, 37–41. [Google Scholar] [CrossRef]
- Hernandez, A.E.; Li, P. Age of acquisition: Its neural and computational mechanisms. Psychol. Bull. 2007, 133, 638–650. [Google Scholar] [CrossRef]
Type | Familiarity | Concreteness | Valence | Imageability | Action Relatedness |
---|---|---|---|---|---|
L1 action verbs | 6.23 (0.41) | 5.94 (0.42) | 2.91 (0.62) | 6.38 (0.32) | 5.99 (0.33) |
L1 abstract verbs | 6.27 (0.30) | 2.27 (0.56) | 2.70 (0.38) | 2.49 (0.22) | 2.31 (0.57) |
L2 action verbs | 6.12 (0.21) | 5.76 (0.33) | 2.90 (0.50) | 5.97 (0.21) | 5.63 (0.37) |
L2 abstract verbs | 6.08 (0.28) | 2.23 (0.46) | 3.01 (0.48) | 2.56 (0.47) | 2.49 (0.44) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, S.; Peng, Y.; Yang, X.; Yang, J. The Role of the Motor System in L1 and L2 Action Verb Processing for Chinese Learners of English: Evidence from Mu Rhythm Desynchronization. Behav. Sci. 2024, 14, 268. https://doi.org/10.3390/bs14040268
Zhang Y, Chen S, Peng Y, Yang X, Yang J. The Role of the Motor System in L1 and L2 Action Verb Processing for Chinese Learners of English: Evidence from Mu Rhythm Desynchronization. Behavioral Sciences. 2024; 14(4):268. https://doi.org/10.3390/bs14040268
Chicago/Turabian StyleZhang, Yuqing, Shifa Chen, Yule Peng, Xin Yang, and Junjie Yang. 2024. "The Role of the Motor System in L1 and L2 Action Verb Processing for Chinese Learners of English: Evidence from Mu Rhythm Desynchronization" Behavioral Sciences 14, no. 4: 268. https://doi.org/10.3390/bs14040268
APA StyleZhang, Y., Chen, S., Peng, Y., Yang, X., & Yang, J. (2024). The Role of the Motor System in L1 and L2 Action Verb Processing for Chinese Learners of English: Evidence from Mu Rhythm Desynchronization. Behavioral Sciences, 14(4), 268. https://doi.org/10.3390/bs14040268