Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measures
2.3. Data Preprocessing
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Preventing Suicide: A Global Imperative; WHO: Geneva, Switzerland, 2014.
- Franklin, J.C.; Ribeiro, J.D.; Fox, K.R.; Bentley, K.H.; Kleiman, E.M.; Huang, X.; Musacchio, K.M.; Jaroszewski, A.C.; Chang, B.P.; Nock, M.K. Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychol. Bull. 2017, 143, 187–232. [Google Scholar] [CrossRef] [PubMed]
- Klonsky, E.D.; May, A.M.; Saffer, B.Y. Suicide, Suicide Attempts, and Suicidal Ideation. Annu. Rev. Clin. Psychol. 2016, 12, 307–330. [Google Scholar] [CrossRef] [PubMed]
- Arsenault-Lapierre, G.; Kim, C.; Turecki, G. Psychiatric diagnoses in 3275 suicides: A meta-analysis. BMC Psychiatry 2004, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Brådvik, L. Suicide Risk and Mental Disorders. Int. J. Environ. Res. Public Health 2018, 15, 2028. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, K. The Effectiveness of Predicting Suicidal Ideation through Depressive Symptoms and Social Isolation Using Machine Learning Techniques. J. Pers. Med. 2022, 12, 516. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.D.; Huang, X.; Fox, K.R.; Franklin, J.C. Depression and hopelessness as risk factors for suicide ideation, attempts and death: Meta-analysis of longitudinal studies. Br. J. Psychiatry 2018, 212, 279–286. [Google Scholar] [CrossRef]
- Pyszczynski, T.; Greenberg, J. Self-regulatory perseveration and the depressive self-focusing style: A self-awareness theory of reactive depression. Psychol. Bull. 1987, 102, 122–138. [Google Scholar] [CrossRef]
- Zimmermann, J.; Brockmeyer, T.; Hunn, M.; Schauenburg, H.; Wolf, M. First-person Pronoun Use in Spoken Language as a Predictor of Future Depressive Symptoms: Preliminary Evidence from a Clinical Sample of Depressed Patients. Clin. Psychol. Psychother. 2017, 24, 384–391. [Google Scholar] [CrossRef]
- Durkheim, É. Suicide, a Study in Sociology; Free Press: Glencoe, IL, USA, 1951. [Google Scholar]
- Rude, S.; Gortner, E.-M.; Pennebaker, J. Language use of depressed and depression-vulnerable college students. Cogn. Emot. 2004, 18, 1121–1133. [Google Scholar] [CrossRef]
- Pennebaker, J.W.; Mehl, M.R.; Niederhoffer, K.G. Psychological Aspects of Natural Language Use: Our Words, Our Selves. Annu. Rev. Psychol. 2003, 54, 547–577. [Google Scholar] [CrossRef]
- Pennebaker, J.W.; King, L.A. Linguistic styles: Language use as an individual difference. J. Personal. Soc. Psychol. 1999, 77, 1296–1312. [Google Scholar] [CrossRef]
- Brockmeyer, T.; Zimmermann, J.; Kulessa, D.; Hautzinger, M.; Bents, H.; Friederich, H.C.; Herzog, W.; Backenstrass, M. Me, myself, and I: Self-referent word use as an indicator of self-focused attention in relation to depression and anxiety. Front. Psychol. 2015, 6, 1564. [Google Scholar] [CrossRef]
- Bucci, W.; Freedman, N. The language of depression. Bull. Menninger. Clin. 1981, 45, 334–358. [Google Scholar]
- Fast, L.A.; Funder, D.C. Personality as manifest in word use: Correlations with self-report, acquaintance report, and behavior. J. Personal. Soc. Psychol. 2008, 94, 334–346. [Google Scholar] [CrossRef]
- Homan, S.; Gabi, M.; Klee, N.; Bachmann, S.; Moser, A.M.; Michel, S.; Bertram, A.M.; Maatz, A.; Seiler, G.; Stark, E.; et al. Linguistic features of suicidal thoughts and behaviors: A systematic review. Clin. Psychol. Rev. 2022, 95, 102161. [Google Scholar] [CrossRef]
- Xu, Z.; Chan, C.S.; Fung, J.; Tsang, C.; Zhang, Q.; Xu, Y.; Cheung, F.; Cheng, W.; Chan, E.; Yip, P.S. Developing and validating a parser-based suicidality detection model in text-based mental health services. J. Affect. Disord. 2023, 335, 228–232. [Google Scholar] [CrossRef]
- Tackman, A.M.; Sbarra, D.A.; Carey, A.L.; Donnellan, M.B.; Horn, A.B.; Holtzman, N.S.; Edwards, T.M.S.; Pennebaker, J.W.; Mehl, M.R. Depression, negative emotionality, and self-referential language: A multi-lab, multi-measure, and multi-language-task research synthesis. J. Personal. Soc. Psychol. 2019, 116, 817–834. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Pan, S.; Li, X.; Cambria, E.; Long, G.; Huang, Z. Suicidal Ideation Detection: A Review of Machine Learning Methods and Applications. IEEE Trans. Comput. Soc. Syst. 2021, 8, 214–226. [Google Scholar] [CrossRef]
- Li, T.M.; Chen, J.; Law, F.O.; Li, C.T.; Chan, N.Y.; Chan, J.W.; Chau, S.W.; Liu, Y.; Li, S.X.; Zhang, J.; et al. Detection of Suicidal Ideation in Clinical Interviews for Depression Using Natural Language Processing and Machine Learning: Cross-Sectional Study. JMIR Med. Inform. 2023, 11, e50221. [Google Scholar] [CrossRef] [PubMed]
- Parsapoor, M.; Koudys, J.W.; Ruocco, A.C. Suicide risk detection using artificial intelligence: The promise of creating a benchmark dataset for research on the detection of suicide risk. Front. Psychiatry 2023, 14, 1186569. [Google Scholar] [CrossRef] [PubMed]
- Sueki, H. The association of suicide-related Twitter use with suicidal behaviour: A cross-sectional study of young internet users in Japan. J. Affect. Disord. 2015, 170, 155–160. [Google Scholar] [CrossRef]
- Nock, M.K.; Millner, A.J.; Ross, E.L.; Kennedy, C.J.; Al-Suwaidi, M.; Barak-Corren, Y.; Castro, V.M.; Castro-Ramirez, F.; Lauricella, T.; Murman, N.; et al. Prediction of Suicide Attempts Using Clinician Assessment, Patient Self-report, and Electronic Health Records. JAMA Netw. Open 2022, 5, e2144373. [Google Scholar] [CrossRef] [PubMed]
- Oseguera, O.; Rinaldi, A.; Tuazon, J.; Cruz, A.C. Automatic Quantification of the Veracity of Suicidal Ideation in Counseling Transcripts; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Pestian, J.; Matykiewicz, P.; Grupp-Phelan, J.; Lavanier, S.A.; Combs, J.; Kowatch, R. Using Natural Language Processing to Classify Suicide Notes; Association for Computational Linguistics: Columbus, OH, USA, 2008. [Google Scholar]
- Pestian, J.; Nasrallah, H.; Matykiewicz, P.; Bennett, A.; Leenaars, A. Suicide Note Classification Using Natural Language Processing: A Content Analysis. Biomed. Inform. Insights 2010, 3, BII.S4706. [Google Scholar] [CrossRef]
- De Choudhury, M.; Kıcıman, E. The Language of Social Support in Social Media and its Effect on Suicidal Ideation Risk. In Proceedings of the Eleventh International AAAI Conference on Web and Social Media, Montreal, QC, Canada, 15–18 May 2017; pp. 32–41. [Google Scholar]
- Coppersmith, G.; Dredze, M.; Harman, C.; Hollingshead, K.; Mitchell, M. CLPsych 2015 Shared Task: Depression and PTSD on Twitter; Association for Computational Linguistics: Denver, CO, USA, 2015. [Google Scholar]
- Huang, X.; Zhang, L.; Chiu, D.; Liu, T.; Li, X.; Zhu, T. Detecting Suicidal Ideation in Chinese Microblogs with Psychological Lexicons. In Proceedings of the 2014 IEEE 11th Intl Conference on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conference on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conference on Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, 9–12 December 2014. [Google Scholar]
- Huang, X.; Li, X.; Zhang, L.; Liu, T.; Chiu, D.; Zhu, T. Topic Model for Identifying Suicidal Ideation in Chinese Microblog. In Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation, Shanghai, China, 30 October–1 November 2015. [Google Scholar]
- Ryu, S.; Lee, H.; Lee, D.K.; Kim, S.W.; Kim, C.E. Detection of Suicide Attempters among Suicide Ideators Using Machine Learning. Psychiatry Investig. 2019, 16, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.; Martinez, J.H.; Young, D.; Chelminski, I.; Dalrymple, K. Severity classification on the Hamilton depression rating scale. J. Affect. Disord. 2013, 150, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Xue, N.; Xia, F.; Chiou, F.D.; Palmer, M. The Penn Chinese TreeBank: Phrase structure annotation of a large corpus. Nat. Lang. Eng. 2005, 11, 207–238. [Google Scholar] [CrossRef]
- De Marneffe, M.C.; Dozat, T.; Silveira, N.; Haverinen, K.; Ginter, F.; Nivre, J.; Manning, C.D. Universal Stanford Dependencies: A Cross-Linguistic Typology; European Language Resources Association (ELRA): Reykjavik, Iceland, 2014. [Google Scholar]
- Wang, L.; Tu, Z.; Zhang, X.; Liu, S.; Li, H.; Way, A.; Liu, Q. A novel and robust approach for pro-drop language translation. Mach. Transl. 2017, 31, 65–87. [Google Scholar] [CrossRef]
- Malgaroli, M.; Hull, T.D.; Zech, J.M.; Althoff, T. Natural language processing for mental health interventions: A systematic review and research framework. Transl. Psychiatry 2023, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Pestian, J.; Santel, D.; Sorter, M.; Bayram, U.; Connolly, B.; Glauser, T.; DelBello, M.; Tamang, S.; Cohen, K. A Machine Learning Approach to Identifying Changes in Suicidal Language. Suicide Life-Threat. Behav. 2020, 50, 939–947. [Google Scholar] [CrossRef]
- Nock, M.K.; Borges, G.; Bromet, E.J.; Alonso, J.; Angermeyer, M.; Beautrais, A.; Bruffaerts, R.; Chiu, W.T.; De Girolamo, G.; Gluzman, S.; et al. Cross-national prevalence and risk factors for suicidal ideation, plans and attempts. Br. J. Psychiatry 2008, 192, 98–105. [Google Scholar] [CrossRef]
Subtype of FPSP | Tokenized Text | Dependency Syntax Tree |
---|---|---|
Subjective case | 我 想 自殺 I want suicide ‘I want to commit suicide’ | |
Objective case | 大家 都 好 憎 我 Everyone also very hate me ‘Everyone hates me’ | |
Dative case | 佢 俾 我 一個 機會 He give me a chance ‘He gave me a chance’ | |
Possessive case | 想 自殺 係 我 嘅 諗法 Want suicide is my ‘associative’ idea ‘Wanting to commit suicide is my idea’ |
Condition | Suicidal (n = 38) | Non-Suicidal (n = 281) |
---|---|---|
Age (mean, SD) | 50.95 (15.24) | 53.46 (11.16) |
Gender (n, %) | ||
Male | 15 (39.47%) | 122 (43.42%) |
Female | 23 (60.53%) | 159 (56.58%) |
Current depression (n, %) | ||
Yes (HDRS score ≥ 8) | 37 (97.37%) | 83 (29.54%) |
No | 1 (2.63%) | 198 (70.46%) |
Lifetime affective disorder (n, %) | ||
Yes | 34 (89.47%) | 159 (56.58%) |
No | 4 (10.53%) | 122 (43.42%) |
Features | Overall Mean (SD) | Non-Suicidal Group Mean (SD) | Suicidal Group Mean (SD) | OR (95% CI) | p |
---|---|---|---|---|---|
Total FPSP | 2.23 (1.54) | 2.15 (1.52) | 2.79 (1.55) | 1.00 (0.97, 1.02) | 0.91 |
Possessive (FPSP) | 0.25 (0.29) | 0.24 (0.29) | 0.32 (0.26) | 0.98 (0.87, 1.11) | 0.77 |
Subjective (FPSP) | 1.78 (1.24) | 1.73 (1.23) | 2.14 (1.27) | 1.00 (0.97, 1.03) | 0.94 |
Objective (FPSP) | 0.17 (0.22) | 0.15 (0.21) | 0.30 (0.25) | 1.20 (2.57, 3.47) | 0.02 * |
Dative (FPSP) | 0.03 (0.08) | 0.03 (0.08) | 0.04 (0.07) | 0.72 (0.48, 1.07) | 0.10 |
FPPP | 0.02 (0.07) | 0.02 (0.07) | 0.03 (0.06) | 1.51 (0.72, 1.83) | 0.55 |
Verb | 20.61 (2.69) | 20.49 (2.76) | 21.50 (1.82) | 1.00 (0.99, 1.02) | 0.39 |
Preposition | 0.97 (0.62) | 0.96 (0.63) | 1.06 (0.48) | 1.00 (0.95, 1.05) | 0.99 |
Temporal Noun | 0.86 (0.64) | 0.86 (0.65) | 0.89 (0.56) | 0.98 (0.94, 1.03) | 0.52 |
Etcetera | 0.02 (0.07) | 0.02 (0.07) | 0.01 (0.03) | 0.77 (0.48, 1.23) | 0.28 |
Interjection | 4.52 (1.96) | 4.64 (2.00) | 3.62 (1.29) | 0.99 (0.97, 1.00) | 0.21 |
Passive Marker | 0.001 (0.01) | 0.001 (0.007) | 0.003 (0.02) | 2.88 (2.54, 3.45) | 0.49 |
Model | AUC (95% CI) | p | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F1 Score (%) |
---|---|---|---|---|---|---|---|---|
Logistic Regression | 0.57 (0.50, 0.64) | 0.04 * | 64.3 | 66.6 | 47.4 | 90.3 | 16.1 | 76.7 |
Support Vector Machine | 0.57 (0.50, 0.63) | 0.045 * | 64.0 | 66.2 | 47.4 | 90.3 | 15.9 | 76.4 |
Gradient Boosting | 0.56 (0.49, 0.62) | 0.09 | 64.3 | 66.9 | 44.7 | 90.9 | 15.5 | 75.3 |
Random Forest | 0.55 (0.48, 0.62) | 0.13 | 60.8 | 62.6 | 47.4 | 89.8 | 14.6 | 73.7 |
Decision Tree | 0.54 (0.46, 0.61) | 0.36 | 72.4 | 78.3 | 29.0 | 89.1 | 15.3 | 83.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Yi, S.; Chen, J.; Chan, K.Y.; Chan, J.W.Y.; Chan, N.Y.; Li, S.X.; Wing, Y.K.; Li, T.M.H. Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts. Behav. Sci. 2024, 14, 225. https://doi.org/10.3390/bs14030225
Huang R, Yi S, Chen J, Chan KY, Chan JWY, Chan NY, Li SX, Wing YK, Li TMH. Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts. Behavioral Sciences. 2024; 14(3):225. https://doi.org/10.3390/bs14030225
Chicago/Turabian StyleHuang, Rong, Siqi Yi, Jie Chen, Kit Ying Chan, Joey Wing Yan Chan, Ngan Yin Chan, Shirley Xin Li, Yun Kwok Wing, and Tim Man Ho Li. 2024. "Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts" Behavioral Sciences 14, no. 3: 225. https://doi.org/10.3390/bs14030225
APA StyleHuang, R., Yi, S., Chen, J., Chan, K. Y., Chan, J. W. Y., Chan, N. Y., Li, S. X., Wing, Y. K., & Li, T. M. H. (2024). Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts. Behavioral Sciences, 14(3), 225. https://doi.org/10.3390/bs14030225