Exploring Job-Related Factors and Exercise Intentions in Relation to Overall Physical Activity and Its Subdivisions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Recruitment
2.2. Measures
2.2.1. Job-Related Factors
2.2.2. Burnout
2.2.3. Exercise Intentions
2.2.4. Level of Physical Activity
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Preventing Noncommunicable Diseases in the Workplace through Diet and Physical Activity: WHO/World Economic Forum Report of a Joint Event; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behavior. Available online: https://apps.who.int/iris/handle/10665/336656 (accessed on 15 March 2024).
- Sports Administration, Ministry of Education. 2023 Sports Status Survey Report; Shih Hsin University: Taipei, Taiwan, 2023.
- Health Promotion Administration, Ministry of Health and Welfare, Taiwan. Taiwan’s Obesity Prevention and Management Strategy; Health Promotion Administration, Ministry of Health and Welfare: Taipei, Taiwan, 2018.
- Batt, M.E. Physical activity interventions in the workplace: The rationale and future direction for workplace wellness. Br. J. Sports Med. 2009, 43, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Pronk, N.P.; Kottke, T.E. Physical activity promotion as a strategic corporate priority to improve worker health and business performance. Prev. Med. 2009, 49, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, L.M.; Chiavegato, L.D.; Carvalho, C.R.F.; Braz, J.R.; Nunes Cabral, C.M.; Padula, R.S. Are blue-collar workers more physically active than white-collar at work? Arch. Environ. Occup. Health 2021, 76, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D. The effects of shift work on free-living physical activity and sedentary behavior. Prev. Med. 2015, 76, 43–47. [Google Scholar] [CrossRef]
- Monnaatsie, M.; Biddle, S.J.; Khan, S.; Kolbe-Alexander, T. Physical activity and sedentary behaviour in shift and non-shift workers: A systematic review and meta-analysis. Prev. Med. Rep. 2021, 24, 101597. [Google Scholar] [CrossRef]
- Wu, H.-T.; Liao, C.-M. Participation in Physical Activities for 9 to 15 year-old Taiwan Students’ Gender and Age Differences in Motives. Phys. Educ. J. 2011, 44, 407–422. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Chen, H.-H.; Mo, J.-U. Relationships among Physical Activity Levels, Functional Fitness Test and Sleep Quality for the Middle-age and Elderly Adults. Natl. Pingtung Univ. J. 2012, 15, 128–143. [Google Scholar]
- Hemmingsson, E.; Ekelund, U. Is the association between physical activity and body mass index obesity dependent? Int. J. Obes. 2007, 31, 663–668. [Google Scholar] [CrossRef]
- Cooper, A.R.; Page, A.; Fox, K.R.; Misson, J. Physical activity patterns in normal, overweight and obese individuals using minute-by-minute accelerometry. Eur. J. Clin. Nutr. 2000, 54, 887–894. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ). Available online: https://drive.google.com/file/d/1gehdq1-04eSWfbxscwtzXa1MUlD8Mffa/view (accessed on 15 March 2024).
- Crowther, M.E.; Ferguson, S.A.; Reynolds, A.C. Longitudinal studies of sleep, physical activity and nutritional intake in shift workers: A scoping review. Sleep Med. Rev. 2022, 63, 101612. [Google Scholar] [CrossRef]
- Esquirol, Y.; Bongard, V.; Mabile, L.; Jonnier, B.; Soulat, J.M.; Perret, B. Shift work and metabolic syndrome: Respective impacts of job strain, physical activity, and dietary rhythms. Chronobiol. Int. 2009, 26, 544–559. [Google Scholar] [CrossRef] [PubMed]
- Dishman, R.K.; Washburn, R.A.; Schoeller, D.A. Measurement of physical activity. Quest 2001, 53, 295–309. [Google Scholar] [CrossRef]
- Castillo-Retamal, M.; Hinckson, E.A. Measuring physical activity and sedentary behaviour at work: A review. Work 2011, 40, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Bélanger-Gravel, A.; Godin, G.; Amireault, S. A meta-analytic review of the effect of implementation intentions on physical activity. Health Psychol. Rev. 2013, 7, 23–54. [Google Scholar] [CrossRef]
- Kompf, J. Implementation intentions for exercise and physical activity: Who do they work for? A systematic review. J. Phys. Act. Health 2020, 17, 349–359. [Google Scholar] [CrossRef]
- Nigg, C.R.; Geller, K.S.; Motl, R.W.; Horwath, C.C.; Wertin, K.K.; Dishman, R.K. A research agenda to examine the efficacy and relevance of the transtheoretical model for physical activity behavior. Psychol. Sport Exerc. 2011, 12, 7–12. [Google Scholar] [CrossRef]
- Prochaska, J.O.; DiClemente, C.C.; Norcross, J.C. In search of how people change: Applications to addictive behaviors. Am. Psychol. 1992, 47, 1102–1114. [Google Scholar] [CrossRef]
- Cheng, H.-I.; Hsu, W.-T.; Wang, W.-H.; Li, R.-H.; Tang, F.-C.; Huang, S.-L. Health Behavior Models and Regular Exercise Levels Among Workers in Taiwan. J. Multidiscip. Healthc. 2023, 16, 4149–4159. [Google Scholar] [CrossRef]
- Health Promotion Administration, Ministry of Health and Welfare, Taiwan. The Measurement of Body Mass Index. Available online: http://health99.hpa.gov.tw/OnlinkHealth/Onlink_BMI.aspx (accessed on 15 March 2024).
- National Statistics, R.O.C. (Taiwan). Standard Occupational Classification. Available online: http://eng.stat.gov.tw/ct.asp?xItem=5015&ctNode=1528&mp=5 (accessed on 15 March 2024).
- Kristensen, T.S.; Borritz, M.; Villadsen, E.; Christensen, K.B. The Copenhagen Burnout Inventory: A new tool for the assessment of burnout. Work Stress 2005, 19, 192–207. [Google Scholar] [CrossRef]
- Schumann, A.; Estabrooks, P.; Nigg, C.; Hill, J. Validation of the stages of change with mild, moderate, and strenuous physical activity behavior, intentions, and self-efficacy. Int. J. Sports Med. 2003, 24, 363–365. [Google Scholar] [CrossRef]
- Hu, G.; Pekkarinen, H.; Hänninen, O.; Yu, Z.; Guo, Z.; Tian, H. Commuting, leisure-time physical activity, and cardiovascular risk factors in China. Med. Sci. Sports Exerc. 2002, 34, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Qiao, Q.; Silventoinen, K.; Eriksson, J.G.; Jousilahti, P.; Lindström, J.; Valle, T.T.; Nissinen, A.; Tuomilehto, J. Occupational, commuting, and leisure-time physical activity in relation to risk for Type 2 diabetes in middle-aged Finnish men and women. Diabetologia 2003, 46, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Hu, G.; Bidel, S.; Lindström, J.; Jousilahti, P. Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA 2004, 291, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Albanes, D.; Conway, J.M.; Taylor, P.R.; Moe, P.W.; Judd, J. Validation and comparison of eight physical activity questionnaires. Epidemiology 1990, 1, 65–71. [Google Scholar] [CrossRef]
- Sallis, J.F.; Haskell, W.L.; Wood, P.D.; Fortmann, S.P.; Rogers, T.; Blair, S.N.; Paffenbarger, R.S., Jr. Physical activity assessment methodology in the Five-City Project. Am. J. Epidemiol. 1985, 121, 91–106. [Google Scholar] [CrossRef]
- Couraeya, K.S.; McAuley, E. Predicting physical activity from intention: Conceptual and methodological issues. J. Sport Exerc. Psychol. 1993, 15, 50–62. [Google Scholar] [CrossRef]
- Schwarzer, R. Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Appl. Psychol. 2008, 57, 1–29. [Google Scholar] [CrossRef]
- Rhodes, R.E.; de Bruijn, G.J. How big is the physical activity intention–behaviour gap? A meta-analysis using the action control framework. Br. J. Health Psychol. 2013, 18, 296–309. [Google Scholar] [CrossRef]
- McEachan, R.R.C.; Conner, M.; Taylor, N.J.; Lawton, R.J. Prospective prediction of health-related behaviours with the theory of planned behaviour: A meta-analysis. Health Psychol. Rev. 2011, 5, 97–144. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Cox, A.; Sayar, R. What predicts the physical activity intention–behavior gap? A systematic review. Ann. Behav. Med. 2022, 56, 1–20. [Google Scholar] [CrossRef]
- Troped, P.J.; Saunders, R.P.; Pate, R.R.; Reininger, B.; Addy, C.L. Correlates of recreational and transportation physical activity among adults in a New England community. Prev. Med. 2003, 37, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Frank, L.D.; Saelens, B.E.; Kraft, M.K. Active transportation and physical activity: Opportunities for collaboration on transportation and public health research. Transp. Res. Part A Policy Pract. 2004, 38, 249–268. [Google Scholar] [CrossRef]
- Loef, B.; Van Der Beek, A.J.; Holtermann, A.; Hulsegge, G.; Van Baarle, D.; Proper, K.I. Objectively measured physical activity of hospital shift workers. Scand. J. Work. Environ. Health 2018, 44, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Torquati, L.; Mielke, G.I.; Brown, W.J.; Kolbe-Alexander, T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose–response relationship. Scand. J. Work. Environ. Health 2018, 44, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, A.; Marott, J.L.; Gyntelberg, F.; Søgaard, K.; Suadicani, P.; Mortensen, O.S.; Prescott, E.; Schnohr, P. Does the benefit on survival from leisure time physical activity depend on physical activity at work? A prospective cohort study. PLoS ONE 2013, 8, e54548. [Google Scholar] [CrossRef]
- Kirk, M.A.; Rhodes, R.E. Occupation correlates of adults’ participation in leisure-time physical activity: A systematic review. Am. J. Prev. Med. 2011, 40, 476–485. [Google Scholar] [CrossRef]
- Gal, D.L.; Santos, A.-C.; Barros, H. Leisure-time versus full-day energy expenditure: A cross-sectional study of sedentarism in a Portuguese urban population. BMC Public Health 2005, 5, 1–7. [Google Scholar] [CrossRef]
- McCormack, G.; Giles-Corti, B.; Milligan, R. Demographic and individual correlates of achieving 10,000 steps/day: Use of pedometers in a population-based study. Health Promot. J. Aust. 2006, 17, 43–47. [Google Scholar] [CrossRef]
Variables | Total (n = 400) | Low Level (n = 20, 5.0%) | Moderate Level (n = 105, 26.3%) | High Level (n = 275, 68.8%) | χ2 | p | Effect Size |
---|---|---|---|---|---|---|---|
n (%) | n (%) a | n (%) a | n (%) a | ||||
Gender | 47.1 | <0.001 | 0.343 | ||||
female | 41 (10.3) | 0 (0.0) | 29 (70.7) | 12 (29.3) | |||
male | 359 (89.8) | 20 (5.6) | 76 (21.2) | 263 (73.3) | |||
Marital status | 1.0 | 0.601 | 0.050 | ||||
not-married | 138 (34.5) | 5 (3.6) | 35 (25.4) | 98 (71.0) | |||
married | 262 (65.5) | 15 (5.7) | 70 (26.7) | 177 (67.6) | |||
Education | 12.8 | 0.012 | 0.127 | ||||
senior high | 63 (15.8) | 4 (6.3) | 10 (15.9) | 49 (77.8) | |||
graduate | 307 (76.8) | 12 (3.9) | 83 (27.0) | 212 (69.1) | |||
postgraduate | 30 (7.5) | 4 (13.3) | 12 (40.0) | 14 (46.7) | |||
BMI | 8.6 | 0.198 | 0.104 | ||||
underweight | 6 (1.5) | 0 (0.0) | 3 (50.0) | 3 (50.0) | |||
ideal weight | 136 (34.3) | 6 (4.4) | 46 (33.8) | 84 (61.8) | |||
overweight | 126 (31.8) | 8 (6.3) | 27 (21.4) | 91 (72.2) | |||
obesity | 128 (32.3) | 6 (4.7) | 29 (22.7) | 93 (72.7) | |||
Occupation | 14.9 | 0.001 | 0.193 | ||||
white-collar | 323 (80.8) | 19 (5.9) | 96 (29.7) | 208 (64.4) | |||
blue-collar | 77 (19.3) | 1 (1.3) | 9 (11.7) | 67 (87.0) | |||
Shift work | 15.8 | <0.001 | 0.199 | ||||
without | 287 (71.8) | 14 (4.9) | 91 (31.7) | 182 (63.4) | |||
with | 113 (28.3) | 6 (5.3) | 14 (12.4) | 93 (82.3) |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 Age | – | |||||||
2 Working hours | 0.113 * | – | ||||||
3 Work-related burnout | −0.068 | 0.154 ** | – | |||||
4 Exercise intentions | −0.005 | 0.012 | −0.052 | – | ||||
5 Overall PA | −0.067 | −0.117 * | −0.045 | 0.211 ** | – | |||
6 Leisure-time PA | −0.056 | −0.009 | −0.067 | 0.529 ** | 0.471 ** | – | ||
7 Transportation PA | −0.014 | −0.019 | −0.018 | 0.179 ** | 0.457 ** | 0.118 * | – | |
8 Work-related PA | −0.151 ** | −0.063 | −0.005 | −0.085 | 0.452 ** | 0.003 | −0.007 | – |
Mean | 37.72 | 44.00 | 41.16 | 2.65 | 2.64 | 1.75 | 1.94 | 1.74 |
Standard deviation | 6.14 | 4.27 | 14.34 | 0.96 | 0.58 | 0.89 | 0.59 | 0.70 |
Skewness | −0.16 | 0.73 | 0.19 | −0.19 | −1.34 | 0.51 | 0.02 | 0.41 |
Kurtosis | −0.04 | 1.20 | 0.60 | −0.90 | 0.81 | −1.56 | −0.17 | −0.93 |
Variables | Overall PA | Leisure-Time PA | Transportation PA | Work-Related PA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | β | B | SE | β | B | SE | β | B | SE | β | |||||
Constant | 2.597 | 0.378 | 0.059 | 0.531 | 2.286 | 0.412 | 1.098 | 0.423 | ||||||||
Gender | 0.334 | 0.093 | 0.176 | *** | 0.401 | 0.131 | 0.136 | ** | −0.115 | 0.101 | −0.059 | 0.563 | 0.104 | 0.243 | *** | |
Education | −0.084 | 0.059 | −0.069 | 0.148 | 0.083 | 0.079 | −0.111 | 0.064 | −0.089 | −0.157 | 0.066 | −0.106 | * | |||
Occupation | 0.212 | 0.072 | 0.146 | ** | 0.074 | 0.101 | 0.033 | 0.072 | 0.078 | 0.048 | 0.419 | 0.080 | 0.236 | *** | ||
Shift work | 0.083 | 0.065 | 0.065 | −0.057 | 0.092 | −0.029 | −0.115 | 0.071 | −0.087 | 0.364 | 0.073 | 0.234 | *** | |||
Working hours | −0.016 | 0.007 | −0.119 | * | −0.007 | 0.009 | −0.033 | −0.003 | 0.007 | −0.022 | −0.006 | 0.007 | −0.039 | |||
Work-related burnout | −0.001 | 0.002 | −0.033 | −0.002 | 0.003 | −0.040 | 0.000 | 0.002 | −0.008 | −0.001 | 0.002 | −0.027 | ||||
Exercise intentions | 0.146 | 0.028 | 0.243 | *** | 0.489 | 0.040 | 0.523 | *** | 0.109 | 0.031 | 0.176 | *** | −0.013 | 0.032 | −0.017 | |
Adjusted R2 | 0.132 | 0.290 | 0.032 | 0.277 | ||||||||||||
F | 9.706 | *** | 24.300 | *** | 2.874 | ** | 22.733 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.-H.; Hsu, W.-T.; Cheng, H.-I.; Li, R.-H.; Huang, S.-L.; Tang, F.-C. Exploring Job-Related Factors and Exercise Intentions in Relation to Overall Physical Activity and Its Subdivisions. Behav. Sci. 2024, 14, 912. https://doi.org/10.3390/bs14100912
Wang W-H, Hsu W-T, Cheng H-I, Li R-H, Huang S-L, Tang F-C. Exploring Job-Related Factors and Exercise Intentions in Relation to Overall Physical Activity and Its Subdivisions. Behavioral Sciences. 2024; 14(10):912. https://doi.org/10.3390/bs14100912
Chicago/Turabian StyleWang, Wei-Hsun, Wei-Ting Hsu, Hsin-I Cheng, Ren-Hau Li, Shu-Ling Huang, and Feng-Cheng Tang. 2024. "Exploring Job-Related Factors and Exercise Intentions in Relation to Overall Physical Activity and Its Subdivisions" Behavioral Sciences 14, no. 10: 912. https://doi.org/10.3390/bs14100912
APA StyleWang, W. -H., Hsu, W. -T., Cheng, H. -I., Li, R. -H., Huang, S. -L., & Tang, F. -C. (2024). Exploring Job-Related Factors and Exercise Intentions in Relation to Overall Physical Activity and Its Subdivisions. Behavioral Sciences, 14(10), 912. https://doi.org/10.3390/bs14100912