Anthropometric Profile and Physical Activity Level as Predictors of Postural Balance in Overweight and Obese Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Anthropometric Profile
2.4. Physical Activity Level (PAL)
2.5. Static Postural Balance
2.6. Dynamic Postural Balance
2.7. Statistical Analysis
3. Results
3.1. Linear Regression Analysis for Static Postural Balance Variables in Eyes Open Test
3.2. Linear Regression Analysis for Static Postural Balance Variables in Eyes Closed
3.3. Linear Regression Analysis for Dynamic Postural Balance Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Obesity Federation. World Obesity Atlas 2022; World Obesity Federation: London, UK, 2022; pp. 58–66. [Google Scholar]
- Garrido-Miguel, M.; Oliveira, A.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Pozuelo-Carrascosa, D.; Soriano-Cano, A.; Martínez-Vizcaíno, V. Prevalence of Overweight and Obesity among European Preschool Children: A Systematic Review and Meta-Regression by Food Group Consumption. Nutrients 2019, 11, 1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-González, E.J.; Zamarripa-Jáuregui, R.G.; Carrillo-Martínez, J.M.; Guerrero-Romero, F.; Martínez-Aguilar, G. Prevalence of overweight and obesity in school-age children. Prevalencia de sobrepeso y obesidad en niños escolares. Gac. Med. Mex. 2020, 156, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2016, 17, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.C.; Challis, J.H.; Bartok, C.; Costigan, F.A.; Newell, K.M. O besity, Mechanical and Strength Relationships to Postural Control in Adolescence. Gait Posture 2012, 35, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Colné, P.; Frelut, M.L.; Pérès, G.; Thoumie, P. Postural Control in Obese Adolescents Assessed by Limits of Stability and Gait Initiation. Gait Posture 2008, 28, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, V.J.; Fink, P.W.; Lark, S.D.; Shultz, S.P. Mass Affects Lower Extremity Muscle Activity Patterns in Children’s Gait. Gait Posture 2013, 38, 609–613. [Google Scholar] [CrossRef]
- Horak, F.B. Postural Orientation and Equilibrium: What Do We Need to Know about Neural Control of Balance to Prevent Falls? Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef] [Green Version]
- Goulardins, J.B.; Rigoli, D.; Piek, J.P.; Kane, R.; Palácio, S.G.; Casella, E.B.; Nascimento, R.O.; Hasue, R.H.; Oliveira, J.A. The Relationship between Motor Skills, ADHD Symptoms, and Childhood Body Weight. Res. Dev. Disabil. 2016, 55, 279–286. [Google Scholar] [CrossRef]
- Butz, S.M.; Sweeney, J.K.; Roberts, P.L.; Rauh, M.J. Relationships Among Age, Gender, Anthropometric Characteristics, and Dynamic Balance in Children 5 to 12 Years Old. Pediatr. Phys. Ther. 2015, 27, 126–133. [Google Scholar] [CrossRef]
- Guzmán-Muñoz, E.; Valdés-Badilla, P.; Mendez-Rebolledo, G.; Concha-Cisternas, Y.; Castillo-Retamal, M. Relationship between Anthropometry and Balance of Postural Control in Children 6-9 Years Old. Nutr. Hosp. 2018, 36, 32–38. [Google Scholar] [CrossRef]
- Gunter, K.B.; Abi Nader, P.; John, D. Physical Activity Levels and Obesity Status of Oregon Rural Elementary School Children. Med. Sci. Sports Exerc. 2015, 47, 477. [Google Scholar] [CrossRef] [Green Version]
- Vale, S.M.C.G.; Santos, R.M.R.; da Soares-Miranda, L.M.C.; Moreira, C.M.M.; Ruiz, J.R.; Mota, J.A.S. Objectively Measured Physical Activity and Body Mass Index in Preschool Children. Int. J. Pediatr. 2010, 2010, 479439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán-Muñoz, E.; Valdés-Badilla, P.; Concha-Cisternas, Y.; Méndez-Rebolledo, G.; Castillo-Retamal, M. Methods for Measuring Physical Activity in Children and Their Relationship with Nutritional Status: A Narrative Review. Arch. Med. Deporte 2020, 37, 197–203. [Google Scholar]
- Schmutz, E.A.; Leeger-Aschmann, C.S.; Kakebeeke, T.H.; Zysset, A.E.; Messerli-Bürgy, N.; Stülb, K.; Arhab, A.; Meyer, A.H.; Munsch, S.; Puder, J.J.; et al. Motor Competence and Physical Activity in Early Childhood: Stability and Relationship. Front. Public Health 2020, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Salgado, J.J.; Delgado-Martín, J.L.; Blanco-Iglesias, O.; Aldecoa-Landesa, S. Basic guidelines for detecting sedentarism and recommendations for physical activity in primary care. Aten. Primaria 2015, 47, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Muros, J.J.; Cofre-Bolados, C.; Zurita-Ortega, F.; Castro-Sánchez, M.; Linares-Manrique, M.; Chacón-Cuberos, R. Relationship between Physical Fitness, Physical Activity, and Different Anthropometric Parameters in School Children in Santiago (Chile). Nutr. Hosp. 2016, 33, 110. [Google Scholar] [CrossRef]
- Guzmán-Muñoz, E.; Valdés-Badilla, P.; Castillo-Retamal, M. Postural Control in Children with Overweight and Obesity: A Review of Literature. Salud Uninorte 2021, 36, 471–488. [Google Scholar] [CrossRef]
- Gribble, P.A.; Hertel, J.; Plisky, P. Using the Star Excursion Balance Test to Assess Dynamic Postural-Control Deficits and Outcomes in Lower Extremity Injury: A Literature and Systematic Review. J. Athl. Train. 2012, 47, 339–357. [Google Scholar] [CrossRef] [Green Version]
- Dinkel, D.; Snyder, K.; Molfese, V.; Kyvelidou, A. Postural Control Strategies Differ in Normal Weight and Overweight Infants. Gait Posture 2017, 55, 167–171. [Google Scholar] [CrossRef]
- Villarrasa-Sapiña, I.; García-Massó, X.; Serra-Añó, P.; Garcia-Lucerga, C.; Gonzalez, L.-M.; Lurbe, E. Differences in Intermittent Postural Control between Normal-Weight and Obese Children. Gait Posture 2016, 49, 1–6. [Google Scholar] [CrossRef] [PubMed]
- de Neves, J.C.J.; de Souza, A.K.V.; Fujisawa, D.S. Controle Postural e Atividade Física Em Crianças Eutróficas, Com Sobrepeso e Obesas. Rev. Bras. Med. Esporte 2017, 23, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Barati, A.H.; Bagheri, A.; Azimi, R.; Darchini, M.A.; Nik, H.N. Comparison Balance and Footprint Parameters in Normal and Overweight Children. Int. J. Prev. Med. 2013, 4, S92–S97. [Google Scholar] [PubMed]
- Boucher, F.; Handrigan, G.A.; Mackrous, I.; Hue, O. Childhood Obesity Affects Postural Control and Aiming Performance during an Upper Limb Movement. Gait Posture 2015, 42, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Kakebeeke, T.H.; Lanzi, S.; Zysset, A.E.; Arhab, A.; Messerli-Bürgy, N.; Stuelb, K.; Leeger-Aschmann, C.S.; Schmutz, E.A.; Meyer, A.H.; Kriemler, S.; et al. Association between Body Composition and Motor Performance in Preschool Children. Obes. Facts 2017, 10, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Pajoutan, M.; Ghesmaty Sangachin, M.; Cavuoto, L.A. Central and Peripheral Fatigue Development in the Shoulder Muscle with Obesity during an Isometric Endurance Task. BMC Musculoskelet. Disord. 2017, 18, 314. [Google Scholar] [CrossRef]
- Dimitrova, N.A.; Dimitrov, G.V. Interpretation of EMG Changes with Fatigue: Facts, Pitfalls, and Fallacies. J. Electromyogr. Kinesiol. 2003, 13, 13–36. [Google Scholar] [CrossRef]
- Addison, O.; Drummond, M.J.; Lastayo, P.C.; Dibble, L.E.; Wende, A.R.; McClain, D.A.; Marcus, R.L. Intramuscular Fat and Inflammation Differ in Older Adults: The Impact of Frailty and Inactivity. J. Nutr. Health Aging 2014, 18, 532–538. [Google Scholar] [CrossRef]
- Mendez-Rebolledo, G.; Guzman-Muñoz, E.; Ramírez-Campillo, R.; Valdés-Badilla, P.; Cruz-Montecinos, C.; Morales-Verdugo, J.; Berral de la Rosa, F.J. Influence of Adiposity and Fatigue on the Scapular Muscle Recruitment Order. PeerJ 2019, 7, e7175. [Google Scholar] [CrossRef] [Green Version]
- DuBose, K.D.; Gross McMillan, A.; Wood, A.P.; Sisson, S.B. Joint Relationship Between Physical Activity, Weight Status, and Motor Skills in Children Aged 3 to 10 Years. Percept. Mot. Skills 2018, 125, 478–492. [Google Scholar] [CrossRef]
- Utesch, T.; Dreiskämper, D.; Naul, R.; Geukes, K. Understanding Physical (in-) Activity, Overweight, and Obesity in Childhood: Effects of Congruence between Physical Self-Concept and Motor Competence. Sci. Rep. 2018, 8, 5908. [Google Scholar] [CrossRef] [PubMed]
- Holfelder, B.; Schott, N. Relationship of Fundamental Movement Skills and Physical Activity in Children and Adolescents: A Systematic Review. Psychol. Sport Exerc. 2014, 15, 382–391. [Google Scholar] [CrossRef]
- Laukkanen, A.; Pesola, A.; Havu, M.; Sääkslahti, A.; Finni, T. Relationship between Habitual Physical Activity and Gross Motor Skills Is Multifaceted in 5- to 8-Year-Old Children: Physical Activity in Relation to Motor Skills. Scand. J. Med. Sci. Sports 2014, 24, e102–e110. [Google Scholar] [CrossRef] [PubMed]
- Logan, S.W.; Kipling Webster, E.; Getchell, N.; Pfeiffer, K.A.; Robinson, L.E. Relationship Between Fundamental Motor Skill Competence and Physical Activity During Childhood and Adolescence: A Systematic Review. Kinesiol. Rev. 2015, 4, 416–426. [Google Scholar] [CrossRef]
- Barry, V.W.; Baruth, M.; Beets, M.W.; Durstine, J.L.; Liu, J.; Blair, S.N. Fitness vs. fatness on all-cause mortality: A meta-analysis. Prog. Cardiovasc. Dis. 2014, 56, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Steindl, R.; Kunz, K.; Schrott-Fischer, A.; Scholtz, A. Effect of Age and Sex on Maturation of Sensory Systems and Balance Control. Dev. Med. Child Neurol. 2006, 48, 477. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Iwasaki, Y. Developmental Perspective of Sensory Organization on Postural Control. Brain Dev. 1995, 17, 111–113. [Google Scholar] [CrossRef]
- Lalonde, R.; Strazielle, C. Brain regions and genes affecting postural control. Prog. Neurobiol. 2007, 81, 45–60. [Google Scholar] [CrossRef]
- Karpowicz, K.; Krych, K.; Karpowicz, M.; Nowak, W.; Gronek, P. The relationship between CA repeat polymorphism of the IGF-1 gene and the structure of motor skills in young athletes. Acta Biochim Pol. 2018, 65, 43–50. [Google Scholar] [CrossRef]
Girls (n = 171) | Boys (n = 216) | Total (n = 387) | |
---|---|---|---|
Age (years) | 7.65 (1.12) | 7.90 (1.12) | 7.78 (1.12) |
PAL | 3.24 (0.91) | 3.55 (0.96) | 3.38 (0.95) |
Body mass (kg) | 33.89 (10.30) | 34.32 (9.71) | 34.13 (9.90) |
Height (cm) | 129.90 (9.73) | 130.65 (9.41) | 130.27 (9.48) |
BMI (kg/m2) | 19.82 (4.07) | 18.81 (3.46) | 19.81(3.71) |
WC (cm) | 63.05 (8.87) | 64.62 (8.38) | 63.92 (8.57) |
WHR | 0.83 (0.04) | 0.88 (0.03) | 0.85 (0.04) |
Sum of skinfolds (mm) | 101.05 (32.51) | 97.77 (37.94) | 99.51 (35.13) |
Fat mass (%) | 36.59 (4.92) | 35.68 (5.64) | 36.04 (5.31) |
Muscle mass (%) | 34.25 (4.26) | 34.06 (4.11) | 34.14 (4.15) |
Residual mass (%) | 11.05 (1.02) | 11.72 (1.05) | 11.42 (1.09) |
Bone mass (%) | 11.57 (0.97) | 11.59 (1.36) | 11.61 (1.21) |
Skin mass (%) | 6.88 (1.09) | 6.85 (1.03) | 6.86 (1.05) |
Endomorph | 5.65 (1.59) | 5.26 (1.66) | 5.49 (1.64) |
Mesomorph | 4.97 (1.38) | 5.22 (1.19) | 5.08 (1.28) |
Ectomorph | 1.59 (1.33) | 1.46 (1.20) | 1.52 (1.26) |
Girls (n = 171) | Boys (n = 216) | Total (n = 387) | |
---|---|---|---|
COP Variables | |||
Velocity ML OE (m/s) | 0.41 (0.20) | 0.58 (0.52) | 0.50 (0.42) |
Velocity AP OE (m/s) | 0.46 (0.14) | 0.59 (0.26) | 0.54 (0.22) |
Mean velocity OE (m/s) | 0.22 (0.01) | 0.24 (0.02) | 0.24 (0.20) |
Area OE (m2) | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) |
Velocity ML CE (m/s) | 0.50 (0.39) | 0.50 (0.24) | 0.50 (0.31) |
Velocity AP CE (m/s) | 0.71 (0.44) | 0.77 (0.64) | 0.75 (0.56) |
Mean velocity CE (m/s) | 0.27 (0.03) | 0.28 (0.01) | 0.27 (0.02) |
Area CE (m2) | 0.02 (0.01) | 0.02 (0.01) | 0.02 (0.01) |
mSEBT | |||
Anterior (%) | 58.55 (8.64) | 60.12 (8.05) | 59.82 (8.31) |
PM (%) | 76.12 (9.41) | 82.01 (11.41) | 79.02 (10.74) |
PL (%) | 60.18 (14.88) | 66.23 (11.6) | 63.57 (13.46) |
Variables | R2 | Coefficient B | p | CI95% | |
---|---|---|---|---|---|
Velocity ML(m/s) | 0.422 | ||||
Age | −0.231 | 0.001 | −0.345 | −0.117 | |
Gender a | 0.227 | 0.037 | 0.015 | 0.440 | |
Nutritional status b | 0.192 | 0.047 | 0.006 | 0.391 | |
Sum of skinfolds | 0.014 | 0.013 | 0.003 | 0.026 | |
Fat mass | 0.063 | 0.010 | 0.015 | 0.102 | |
Velocity AP (m/s) | 0.211 | ||||
Age | −0.074 | 0.039 | −0.144 | −0.004 | |
Gendera | 0.133 | 0.024 | 0.018 | 0.248 | |
Mean velocity (m/s) | 0.274 | ||||
Age | −0.005 | 0.022 | −0.009 | −0.001 | |
Gender a | 0.013 | 0.006 | 0.004 | 0.022 | |
Nutritional status b | 0.014 | 0.003 | 0.005 | 0.024 |
Variables | R2 | Coefficient B | p | CI95% | |
---|---|---|---|---|---|
Velocity ML (m/s) | 0.243 | ||||
Age | −0.075 | 0.026 | −0.141 | −0.009 | |
Nutritional status a | 0.238 | 0.003 | 0.082 | 0.394 | |
Velocity AP (m/s) | 0.269 | ||||
Nutritional status a | 1.000 | 0.003 | 0.355 | 1.645 | |
Ectomorph | −0.605 | 0.010 | −1.064 | −0.147 | |
Mean velocity (m/s) | 0.461 | ||||
Nutritional status a | 0.049 | 0.001 | 0.023 | 0.075 | |
Fat mass | 0.008 | 0.013 | 0.002 | 0.015 | |
Endomorph | 0.010 | 0.033 | 0.001 | 0.020 | |
Ectomorph | −0.012 | 0.040 | −0.025 | −0.002 |
Variables | R2 | Coefficient B | p | CI95% | |
---|---|---|---|---|---|
Anterior (%) | 0.389 | ||||
PAL | 5.161 | 0.009 | 1.332 | 8.990 | |
Nutritional status a | −2.713 | 0.033 | −5.195 | −0.232 | |
PM (%) | 0.565 | ||||
PAL | 6.544 | 0.013 | 1.458 | 11.630 | |
WHR | −13.947 | 0.010 | −19.549 | −8.346 | |
PL (%) | 0.564 | ||||
PAL | 12.540 | 0.001 | 6.850 | 18.231 | |
Nutritional status a | −6.545 | 0.031 | −12.460 | −0.630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán-Muñoz, E.; Mendez-Rebolledo, G.; Núñez-Espinosa, C.; Valdés-Badilla, P.; Monsalves-Álvarez, M.; Delgado-Floody, P.; Herrera-Valenzuela, T. Anthropometric Profile and Physical Activity Level as Predictors of Postural Balance in Overweight and Obese Children. Behav. Sci. 2023, 13, 73. https://doi.org/10.3390/bs13010073
Guzmán-Muñoz E, Mendez-Rebolledo G, Núñez-Espinosa C, Valdés-Badilla P, Monsalves-Álvarez M, Delgado-Floody P, Herrera-Valenzuela T. Anthropometric Profile and Physical Activity Level as Predictors of Postural Balance in Overweight and Obese Children. Behavioral Sciences. 2023; 13(1):73. https://doi.org/10.3390/bs13010073
Chicago/Turabian StyleGuzmán-Muñoz, Eduardo, Guillermo Mendez-Rebolledo, Cristián Núñez-Espinosa, Pablo Valdés-Badilla, Matías Monsalves-Álvarez, Pedro Delgado-Floody, and Tomás Herrera-Valenzuela. 2023. "Anthropometric Profile and Physical Activity Level as Predictors of Postural Balance in Overweight and Obese Children" Behavioral Sciences 13, no. 1: 73. https://doi.org/10.3390/bs13010073
APA StyleGuzmán-Muñoz, E., Mendez-Rebolledo, G., Núñez-Espinosa, C., Valdés-Badilla, P., Monsalves-Álvarez, M., Delgado-Floody, P., & Herrera-Valenzuela, T. (2023). Anthropometric Profile and Physical Activity Level as Predictors of Postural Balance in Overweight and Obese Children. Behavioral Sciences, 13(1), 73. https://doi.org/10.3390/bs13010073