The Contribution of Cognitive Factors to Compulsive Buying Behaviour: Insights from Shopping Habit Changes during the COVID-19 Pandemic
Abstract
:1. Introduction
1.1. Background
1.2. Review Section
1.3. Rationale and Hypotheses
2. Materials and Methods
2.1. Participants
2.2. Materials and Procedure
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473, Erratum in Lancet 2020, 395, 496. [Google Scholar] [CrossRef] [Green Version]
- Site Online Global Money Week. 2021. Available online: https://globalmoneyweek.org/ (accessed on 1 April 2021).
- Anwari, N.; Ahmed, M.T.; Islam, M.R.; Hadiuzzaman, M.; Amin, S. Exploring the travel behavior changes caused by the COVID-19 crisis: A case study for a developing country. Transp. Res. Interdiscip. Perspect. 2021, 9, 100334. [Google Scholar] [CrossRef]
- Yao, W.; Yu, J.; Yang, Y.; Chen, N.; Jin, S.; Hu, Y.; Bai, C. Understanding travel behavior adjustment under COVID-19. Commun. Transp. Res. 2022, 2, 100068. [Google Scholar] [CrossRef]
- Ahmad, A.R.; Murad, H.R. The Impact of Social Media on Panic During the COVID-19 Pandemic in Iraqi Kurdistan: Online Questionnaire Study. J. Med. Internet Res. 2020, 22, 19556. [Google Scholar] [CrossRef]
- Horton, R. Offline: COVID-19 is not a pandemic. Lancet 2020, 396, 874. [Google Scholar] [CrossRef]
- Aboujaoude, E. Compulsive buying disorder: A review and update. Curr. Pharm. Des. 2014, 20, 4021–4025. [Google Scholar] [CrossRef]
- Black, D.W. Compulsive Shopping. In Behavioral Addictions: DSM-5 and Beyond; Petry, N., Ed.; Oxford University Press: Oxford, UK, 2016; pp. 125–156. [Google Scholar]
- Maraz, A.; Griffiths, M.D.; Demetrovics, Z. The prevalence of compulsive buying: A meta-analysis. Addiction 2016, 111, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Villella, C.; Martinotti, G.; Di Nicola, M.; Cassano, M.; La Torre, G.; Gliubizzi, M.D.; Messeri, I.; Petruccelli, F.; Bria, P.; Janiri, L.; et al. Behavioural addictions in adolescents and young adults: Results from a prevalence study. J. Gambl. Stud. 2011, 27, 203–214. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 5th ed.; American Psychiatric Association: Arlington, TX, USA, 2013. [Google Scholar]
- Maraz, A.; Eisinger, A.; Hende, B.; Urbán, R.; Paksi, B.; Kun, B.; Kökönyei, G.; Griffiths, M.D.; Demetrovics, Z. Measuring compulsive buying behaviour: Psychometric validity of three different scales and prevalence in the general population and in shopping centres. Psychiatry Res. 2015, 225, 326–334. [Google Scholar] [CrossRef] [Green Version]
- Piquet-Pessôa, M.; Ferreira, G.M.; Melca, I.A.; Fontenelle, L.F. DSM-5 and the Decision Not to Include Sex, Shopping or Stealing as Addictions. Curr. Addict. Rep. 2014, 1, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Black, D.W. A review of compulsive buying disorder. World Psychiatry 2007, 6, 14–18. [Google Scholar]
- Trotzke, P.; Starcke, K.; Mueller, A.; Brand, M. Pathological Buying Online as a Specific Form of Internet Addiction: A Model-Based Experimental Investigation. PLoS ONE 2015, 10, e0140296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, M.; Young, K.S.; Laier, C.; Wölfling, K.; Potenza, M.N. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci. Biobehav. Rev. 2016, 71, 252–266. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Wegmann, E.; Stark, R.; Müller, A.; Wölfling, K.; Robbins, T.W.; Potenza, M.N. The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neurosci. Biobehav. Rev. 2019, 104, 1–10. [Google Scholar] [CrossRef]
- Satyavani, B.; Chalam, G.V. Online Impulse Buying Behaviour—A Suggested Approach. IOSR-JBM 2018, 20, 77–83. [Google Scholar]
- Chan, T.K.H.; Cheung, C.M.K.; Lee, Z.W.Y. The state of online impulse-buying research: A literature analysis. Inf. Manag. 2017, 54, 204–217. [Google Scholar] [CrossRef]
- Schiebener, J.; Brand, M. Decision making under objective risk conditions—A review of cognitive and emotional correlates, strategies, feedback processing, and external influences. Neuropsychol. Rev. 2015, 25, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Noël, X.; van der Linden, M.; Bechara, A. The neurocognitive mechanisms of decision-making, impulse control, and loss of willpower to resist drugs. Psychiatry (Edgmont) 2006, 3, 30–41. [Google Scholar] [PubMed]
- Bechara, A. Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nat. Neurosci. 2005, 8, 1458–1463. [Google Scholar] [CrossRef]
- Volkow, N.D.; Morales, M. The brain on drugs: From reward to addiction. Cell 2015, 162, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Virvilaité, R.; Saladiené, V.; Žvinklytė, J. The impact of external and internal stimuli on impulsive purchasing. Econ. Manag. 2011, 16, 1329–1336. [Google Scholar]
- Piron, F. Defining Impulse Purchasing. In Advances in Consumer Research; Rebecca, H.H., Michael, R.S., Eds.; Association for Consumer Research: Provo, UT, USA, 1991; pp. 509–514. [Google Scholar]
- Gupta, S.; Heng, X.; Sahu, V. Impact of store size on impulse purchase. J. Mark. Manag. 2009, 8, 7–22. [Google Scholar]
- Schiffman, L.; Kanuk, L. Consumer Behavior; Prentice Hall: New Delhi, India, 2010. [Google Scholar]
- Dholakia, U.M. Temptation and resistance: An integrated model of consumption impulse formation and enactment. Psychol. Mark. 2000, 17, 955–982. [Google Scholar] [CrossRef]
- Wells, J.D.; Parboteeah, V.; Valacich, J.S. Online impulse buying: Understanding the interplay between consumer impulsiveness and website quality. J. Assoc. Inf. Syst. 2011, 12, 32–56. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Men, J.; Yang, F.; Gong, X. Understanding impulse buying in mobile commerce: An investigation into hedonic and utilitarian browsing. Int. J. Inf. Manag. 2019, 48, 151–160. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Hu, F. Website attributes in urging online impulse purchase: An empirical investigation on consumer perceptions. Decis. Support Syst. 2013, 55, 829–837. [Google Scholar] [CrossRef]
- Muruganantham, G.; Bhakat, R.S. A review of impulse buying behavior. Int. J. Res. Mark. 2013, 5, 149. [Google Scholar]
- Lucas, M.; Koff, E. Body image, impulse buying, and the mediating role of negative affect. Pers. Individ. Differ. 2017, 105, 330–334. [Google Scholar] [CrossRef]
- Nagar, K. Drivers of E-store patronage intentions: Choice overload, internet shopping anxiety, and impulse purchase tendency. J. Internet Commer. 2016, 15, 97–124. [Google Scholar] [CrossRef]
- Bandyopadhyay, N. The role of self-esteem, negative affect and normative influence in impulse buying: A study from India. Mark. Intell. Plan. 2016, 34, 523–539. [Google Scholar] [CrossRef]
- Liu, P.; He, J.; Li, A. Upward social comparison on social network sites and impulse buying: A moderated mediation model of negative affect and rumination. Comput. Hum. Behav. 2019, 96, 133–140. [Google Scholar] [CrossRef]
- Aparecida Lehmann, T.; Krug, J.; Falaster, C.D. Consumer purchase decision: Factors that influence impulsive purchasing. Rev. Brasil. Mark. 2019, 18, 196–219. [Google Scholar] [CrossRef]
- Bratko, D.; Butkovic, A.; Bosnjak, M. Twin study of impulsive buying and its overlap with personality. J. Individ. Differ. 2013, 34, 8–14. [Google Scholar] [CrossRef]
- Verplanken, B.; Herabadi, A. Individual differences in impulse buying tendency: Feeling and no thinking. Eur. J. Pers. 2001, 15, 71–83. [Google Scholar] [CrossRef]
- Dittmar, H.; Beattie, J.; Friese, S. Objects, decision considerations and self-image in men’s and women’s impulse purchases. Acta Psychiatr. 1996, 93, 187–206. [Google Scholar] [CrossRef]
- Mattila, A.S.; Wirtz, J. The role of store environmental stimulation and social factors on impulse purchasing. J. Serv. Mark. 2008, 22, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Sneath, J.Z.; Lacey, R.; Kennett-Hensel, P.A. Coping with a Natural Disaster: Losses, Emotions, and Impulsive and Compulsive Buying. Mark. Lett. 2009, 20, 45–60. [Google Scholar] [CrossRef]
- Brunelle, C.; Grossman, H. Predictors of online compulsive buying: The role of personality and mindfulness. Pers. Individ. Differ. 2022, 185, 111237. [Google Scholar] [CrossRef]
- Müller, A.; Steins-Loeber, S.; Trotzke, P.; Vogel, B.; Georgiadou, E.; Zwaan, M.D. Online shopping in treatment-seeking patients with buying-shopping disorder. Compr. Psychiat. 2019, 94, 152120. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, C.E.; Watt, M.C.; Weaver, A.D.; Murphy, K.A. “I fear, therefore, I shop!” Exploring anxiety sensitivity in relation to compulsive buying. Pers. Individ. Differ. 2017, 104, 37–42. [Google Scholar] [CrossRef]
- Lindheimer, N.; Nicolai, J.; Moshagen, M. General rather than specific: Cognitive deficits in suppressing task irrelevant stimuli are associated with buying-shopping disorder. PLoS ONE 2020, 15, e0237093. [Google Scholar] [CrossRef]
- Heffernan, T.; Hamilton, C.; Neave, N. Compulsive shopping behaviour and executive dysfunction in young adults. Appl. Neuropsychol. Adult 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.S.; Chen, R.T.; Liu, M.M.; Zheng, D.H. Monetary reward discounting, inhibitory control, and trait impulsivity in young adults with internet gaming disorder and nicotine dependence. Front. Psychiatry 2021, 12, 628933. [Google Scholar] [CrossRef] [PubMed]
- Fontenelle, L.F.; Oostermeijer, S.; Harrison, B.J.; Pantelis, C.; Ycel, M. Obsessive-compulsive disorder, impulse control disorders and drug addiction: Common features and potential treatments. Drugs 2011, 71, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Black, D.W. Compulsive shopping: A review and update. Curr. Opin. Psychol. 2022, 46, 101321. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.G.; Bruce, R.A. Decision-making style: The development and assessment of a new measure. Educ. Psychol. Meas. 1995, 55, 818–831. [Google Scholar] [CrossRef]
- Gambetti, E.; Giusberti, F. Personality, decision-making styles and investments. J. Behav. Exp. Econ. 2019, 80, 14–24. [Google Scholar] [CrossRef]
- Grable, J.E.; Joo, S.H. Environmental and biophysical factors associated with financial risk tolerance. J. Financial Couns. Plan. 2004, 15, 1–8. [Google Scholar]
- Muhammad, N.M.N.; Abdullah, M. Investment decision-making style: Are Malaysian investors rational decision makers? Interdiscip. J. Contemp. Res. Bus. 2009, 1, 96–108. [Google Scholar]
- Jamal, A.A.A.; Ramlan, W.K.; Pazim, K.H.; Budin, D.S.A. Decision-making style and investment success of retail investors in Malaysia. Int. J. Bus. Soc. 2014, 5, 311–322. [Google Scholar]
- Russ, F.A.; McNeilly, K.M.; Comer, J.M. Leadership, decision making and performance of sales managers: A multi-level approach. J. Pers. Sell. Sales Manag. 1996, 16, 1–15. [Google Scholar]
- Loo, R. A psychometric evaluation of the general decision-making style inventory. Pers. Individ. Differ. 2000, 29, 895–905. [Google Scholar] [CrossRef]
- Smelter, N.J.; Baltes, P.B. Analytic Induction. In International Encyclopedia of the Social & Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Sandi, C. Stress and cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2013, 4, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Qualtrics, Provo, UT, USA. 2005. Available online: https://www.qualtrics.com (accessed on 1 May 2020).
- Gambetti, E.; Fabbri, M.; Bensi, L.; Tonetti, L. A contribution to the Italian validation of the General Decision-making Style Inventory. Pers. Individ. Differ. 2008, 44, 842–852. [Google Scholar] [CrossRef]
- Thunholm, P. Decision-making style: Habit, style, or both? Pers. Individ. Differ. 2004, 36, 931–944. [Google Scholar] [CrossRef]
- Vallat-Azouvi, C.; Pradat-Diehl, P.; Azouvi, P. The Working Memory Questionnaire: A scale to assess everyday life problems related to deficits of working memory in brain injured patients. Neuropsychol. Rehabil. 2012, 22, 634–649. [Google Scholar] [CrossRef]
- Guariglia, P.; Giaimo, F.; Palmiero, M.; Piccardi, L. Normative data and validation of the Italian translation of the Working Memory Questionnaire (WMQ). Appl. Neuropsychol. Adult 2019, 27, 376–389. [Google Scholar] [CrossRef]
- Broadbent, D.E.; Cooper, P.F.; FitzGerald, P.; Parkes, K.R. The cognitive failures questionnaire (CFQ) and its correlates. Br. J. Clin. Psychol. 1982, 21, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ponsford, J.; Kinsella, G. The use of a rating scale of attentional behaviour. Neuropsychol. Rehabil. 1991, 1, 241–257. [Google Scholar] [CrossRef]
- Faber, R.J.; O’Guinn, T.C. A Clinical Screener for Compulsive Buying. J. Consum. Res. 1992, 19, 459–469. [Google Scholar] [CrossRef]
- Cole, L.; Sherrell, D. Comparing scales to measure compulsive buying: An exploration of their dimensionality. ACR N. Am. Adv. 1995, 22, 419–427. [Google Scholar]
- D’Astous, A. An inquiry into the compulsive side of “normal” consumers. J. Consum. Policy. 1990, 13, 15–31. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Beck Depression Inventory, 2nd ed.; (BDI-II) APA PsycTests; American Psychological Association: Washington, DC, USA, 1996. [Google Scholar]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.H.; Armoogum, J.; Nguyen Thi, B. Factors Affecting the Growth of E-Shopping over the COVID-19 Era in Hanoi, Vietnam. Sustainability 2021, 13, 9205. [Google Scholar] [CrossRef]
- Wang, X.; Wong, Y.D.; Qi, G.; Yuen, K.F. Contactless channel for shopping and delivery in the context of social distancing in response to COVID-19 pandemic. Electron. Commer. Res. Appl. 2021, 48, 101075. [Google Scholar] [CrossRef]
- Delmastro, M.; Zamariola, G. Depressive symptoms in response to COVID-19 and lockdown: A cross-sectional study on the Italian population. Sci. Rep. 2020, 10, 22457. [Google Scholar] [CrossRef]
- Kimiagari, S.; Malafe, N.S.A. The role of cognitive and affective responses in the relationship between internal and external stimuli on online impulse buying behavior. J. Retail. Consum. Serv. 2021, 61, 102567. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P. The nature and organization of individual differences in executive functions: Four general conclusions. Curr. Dir. Psychol. 2012, 21, 8–14. [Google Scholar] [CrossRef]
- Munakata, Y.; Herd, S.A.; Chatham, C.H.; Depue, B.E.; Banich, M.T.; O’Reilly, R.C. A unified framework for inhibitory control. Trends Cogn. Sci. 2011, 15, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Mashburn, C.A.; Tsukahara, J.S.; Engle, R.W. Individual Differences in Attention Control. In Working Memory: The State of the Science; Logie, R.H., Camos, V., Cowan, N., Eds.; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Al-Saad, M.S.H.; Al-Jabri, B.; Almarzouki, A.F. A review of working memory training in the management of attention deficit hyperactivity disorder. Front. Behav. Neurosci. 2021, 15, 686873. [Google Scholar] [CrossRef] [PubMed]
- Sunstein, C.R. Why Nudge? The Politics of Libertarian Paternalism; Yale University Press: New Haven, CT, USA, 2014. [Google Scholar]
- Halpern, S.D. Using default options and other nudges to improve critical care. Crit. Care Med. 2018, 46, 460–464. [Google Scholar] [CrossRef]
- Gambetti, E.; Zucchelli, M.M.; Nori, R.; Giusberti, F. Default rules in investment decision-making: Trait anxiety and decision-making styles. Financ. Innov. 2022, 8, 1–26. [Google Scholar] [CrossRef]
- Thaler, R.H.; Sunstein, C.R. Nudge: Improving Decisions About Health, Wealth, and Happiness; Yale University Press: New Haven, CT, USA, 2008; pp. 1356–1360. [Google Scholar]
- Wansink, B.; Just, D.R.; Hanks, A.S.; Smith, L.E. Pre-sliced fruit in school cafeterias: Children’s selection and intake. Am. J. Prev. Med. 2013, 44, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Okeke, F.; Sobolev, M.; Dell, N.; Estrin, D. Good vibrations: Can a digital nudge reduce digital overload? In Proceedings of the MobileHCI ’18: 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, Barcelona, Spain, 3–6 September 2018. [Google Scholar] [CrossRef]
- Xu, C.; Siegrist, M.; Hartmann, C. The application of virtual reality in food consumer behavior research: A systematic review. Trends Food Sci. Technol. 2021, 16, 533–544. [Google Scholar] [CrossRef]
- De Dios Ortúzar, J. Future transportation: Sustainability, complexity and individualization of choices. Communic. Trans. Res. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Gao, K.; Yang, Y.; Qu, X. Diverging effects of subjective prospect values of uncertain time and money. Communic. Trans. Res. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Parker, K.; Minkin, R.; Bennett, J. Economic Fallout from COVID-19 Continues to Hit Lower-Income Americans the Hardest; Pew Research Center; Available online: https://www.pewresearch.org/social-trends/2020/09/24/economic-fallout-from-covid-19-continues-to-hit-lower-income-americans-the-hardest (accessed on 24 September 2020).
Males (N = 40) | Females (N = 65) | |
---|---|---|
Age | 35.18 (10.69) | 36.15 (10.34) |
Education | 14.40 (3.33) | 14.54 (3.25) |
BDI II scale | 8.35 (10.91) | 9.23 (8.89) |
Questions | Scoring |
---|---|
Did you use to shop online before/during COVID-19 | Yes (1) No (0) |
How many times did you shop online per week before/during COVID-19? | 0 times per week (1) 1–2 times per week (2) 3–5 times per week (3) 5–10 times per week (4) more than 10 times per week (5) |
How many items did you buy online before/during COVID-19? | 1 item (1) 1–2 items (2) 3–5 items (3) 5–10 items (4) more than 10 items (5) |
How much did you spend shopping online before/during COVID-19? | 5–10 euros (1) 15–50 euros (2) 50–10 euros (3) 100–300 euros (4) more than 300 euro (5) |
F (df) | R2 | Beta | p | |
---|---|---|---|---|
STEP 1 | ||||
age, sex, education and financial income | 1.07 (4104) | 0.04 | 0.37 | |
STEP 2 | ||||
depression | 2.22 (5104) | 0.10 | 0.057 | |
STEP 3 | ||||
working memory deficit total score, | 10.91 (6104) | 0.40 | −0.55 | <0.001 |
depression, | −0.22 | <0.05 | ||
age | 0.22 | <0.05 |
F (df) | R2 | Beta | p | |
---|---|---|---|---|
STEP 1 | ||||
age, sex, education and financial income | 1.07 (4104) | 0.04 | 0.37 | |
STEP 2 | ||||
depression | 2.22 (5104) | 0.10 | 0.057 | |
STEP 3 | ||||
11.38 (8104) | 0.48 | <0.001 | ||
Working memory Storage deficit | 0.17 | 0.33 | ||
Working memory Attention deficit | −0.28 | 0.11 | ||
Working memory Executive Function deficit, | −0.54 | <0.001 | ||
age | 0.26 | <0.05 |
F (df) | R2 | Beta | p | |
---|---|---|---|---|
STEP 1 | ||||
Age, sex, education and financial income | 1.07 (4104) | 0.04 | 0.37 | |
STEP 2 | ||||
Depression | 2.22 (5104) | 0.10 | 0.057 | |
STEP 3 | ||||
Decision-making styles scores: | 2.49 (10,104) | 0.21 | 0.01 | |
Dependent | −0.11 | 0.40 | ||
Intuitive | 0.25 | 0.08 | ||
Avoidant | −0.06 | 0.61 | ||
Spontaneous | −0.34 | 0.01 | ||
Rational, | −0.09 | 0.44 | ||
depression | −0.23 | <0.05 |
F (df) | R2 | Beta | p | |
---|---|---|---|---|
STEP 1 | ||||
Age, sex, education and financial income | 1.07 (4104) | 0.04 | 0.37 | |
STEP 2 | ||||
Depression | 2.22 (5104) | 0.10 | 0.057 | |
STEP 3 | ||||
11.38 (8104) | 0.48 | <0.001 | ||
Working memory Storage deficit | 0.17 | 0.33 | ||
Working memory Attention deficit | −0.28 | 0.11 | ||
Working memory Executive Function deficit, age | −0.54 0.26 | <0.001 <0.05 | ||
STEP 4 | ||||
Spontaneous decision-making style score | 10.31 (9104) | 0.49 | −0.09 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nori, R.; Zucchelli, M.M.; Piccardi, L.; Palmiero, M.; Bocchi, A.; Guariglia, P. The Contribution of Cognitive Factors to Compulsive Buying Behaviour: Insights from Shopping Habit Changes during the COVID-19 Pandemic. Behav. Sci. 2022, 12, 260. https://doi.org/10.3390/bs12080260
Nori R, Zucchelli MM, Piccardi L, Palmiero M, Bocchi A, Guariglia P. The Contribution of Cognitive Factors to Compulsive Buying Behaviour: Insights from Shopping Habit Changes during the COVID-19 Pandemic. Behavioral Sciences. 2022; 12(8):260. https://doi.org/10.3390/bs12080260
Chicago/Turabian StyleNori, Raffaella, Micaela Maria Zucchelli, Laura Piccardi, Massimiliano Palmiero, Alessia Bocchi, and Paola Guariglia. 2022. "The Contribution of Cognitive Factors to Compulsive Buying Behaviour: Insights from Shopping Habit Changes during the COVID-19 Pandemic" Behavioral Sciences 12, no. 8: 260. https://doi.org/10.3390/bs12080260
APA StyleNori, R., Zucchelli, M. M., Piccardi, L., Palmiero, M., Bocchi, A., & Guariglia, P. (2022). The Contribution of Cognitive Factors to Compulsive Buying Behaviour: Insights from Shopping Habit Changes during the COVID-19 Pandemic. Behavioral Sciences, 12(8), 260. https://doi.org/10.3390/bs12080260