Changes in Human Electroencephalographic Activity in Response to Agastache rugosa Essential Oil Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation
2.2. Steam Distillation Extraction
2.3. GC–MS Analysis of A. rugosa Essential Oil
2.4. Odor Evaluation
2.5. EEG Study
2.5.1. Subjects
2.5.2. Experimental Design
2.5.3. EEG Recordings
2.5.4. Fragrance Administration
2.5.5. Data Analysis
3. Results
3.1. Chemical Composition of the Essential Oil from the Aerial Parts of A. Rugosa
3.2. Effect of A. Rugosa Essential Oil on Human EEG Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Cooke, B.; Ernst, E. Aromatherapy: A systematic review. Br. J. Gen. Pract. 2000, 50, 493–496. [Google Scholar] [PubMed]
- Yim, V.W.C.; Ng, A.K.Y.; Tsang, H.W.H.; Leung, A.Y. A review on the effects of aromatherapy for patients with depressive symptoms. J. Altern. Complement. Med. 2009, 15, 187–195. [Google Scholar] [CrossRef]
- Angelucci, F.L.; Silva, V.V.; Pizzol, C.D.; Spir, L.G.; Praes, C.E.; Maibach, H. Physiological effect of olfactory stimuli inhalation in humans: An overview. Int. J. Cosmet. Sci. 2014, 36, 117–123. [Google Scholar] [CrossRef]
- Chen, M.C.; Fang, S.H.; Fang, L. The effects of aromatherapy in relieving symptoms related to job stress among nurses. Int. J. Nurs. Pract. 2015, 21, 87–93. [Google Scholar] [CrossRef]
- Kim, M.; Sowndhararajan, K.; Kim, T.; Kim, J.E.; Yang, J.E.; Kim, S. Gender differences in electroencephalographic activity in response to the earthy odorants geosmin and 2-methylisoborneol. Appl. Sci. 2017, 7, 876. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.; Sowndhararajan, K.; Kim, S. Influence of binasal and uninasal inhalations of essential oil of Abies koreana twigs on electroencephalographic activity of human. Behav. Neurol. 2016, 2016, 9250935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Chhoeun, T.B.; Kim, T.; Sowndhararajan, K.; Kim, S. The gender variation on the electroencephalographic activity in response to the exposure of black pepper essential oil from Kampong Cham. Cambodia. Flavour Fragr. J. 2019, 35, 284–293. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Cho, H.; Yu, B.; Song, J.; Kim, S. Effect of inhalation of essential oil from Inula helenium L. root on electroencephalographic (EEG) activity of human. Eur. J. Integr. Med. 2016, 8, 453–457. [Google Scholar] [CrossRef]
- 10. Kim, M.; Sowndhararajan, K.; Choi, H.J.; Park, S.J.; Kim, S. Olfactory stimulation effect of aldehydes, nonanal, and decanal on the human electroencephalographic activity. According to nostril variation. Biomedicines 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Heinbockel, T. The effects of essential oils and terpenes in relation to their routes of intake and application. Int. J. Mol. Sci. 2020, 21, 1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowndhararajan, K.; Kim, S. Influence of fragrances on human psychophysiological activity: With special reference to human electroencephalographic response. Sci. Pharm. 2016, 84, 724–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandharakool, S.; Koomhin, P.; Sinlapasorn, J.; Suanjan, S.; Phungsai, J.; Suttipromma, N.; Songsamoe, S.; Matan, N.; Sattayakhom, A. Effects of tangerine essential oil on brain waves, moods, and sleep onset latency. Molecules 2020, 25, 4865. [Google Scholar] [CrossRef] [PubMed]
- Ko, L.W.; Su, C.H.; Yang, M.H.; Liu, S.Y.; Su, T.P. A pilot study on essential oil aroma stimulation for enhancing slow-wave EEG in sleeping brain. Sci. Rep. 2021, 11, 1078. [Google Scholar] [CrossRef]
- Desai, R.; Tailor, A.; Bhat, T. Effects of yoga on brain waves and structural activation: A review. Complement. Ther. Clin. Pract. 2015, 21, 112–118. [Google Scholar] [CrossRef]
- Navarra, T. Encyclopedia of Vitamins, Minerals and Supplements, 2nd ed.; Facts On File: New York, NY, USA, 2004. [Google Scholar]
- Lee, Y.; Lim, H.W.; Ryu, I.W.; Huang, Y.H.; Park, M.; Chi, Y.M.; Lim, C.J. Anti-inflammatory, barrier-protective, and antiwrinkle properties of Agastache rugosa Kuntze in human epidermal keratinocytes. BioMed Res. Int. 2020, 2020, 1759067. [Google Scholar] [CrossRef]
- Seo, H.; Kim, C.; Kim, M.B.; Hwang, J.K. Anti-photoaging effect of Korean mint (Agastache rugosa Kuntze) extract on UVB-irradiated human dermal fibroblasts. Prev. Nutr. Food Sci. 2019, 24, 442–448. [Google Scholar] [CrossRef]
- Bae, K. The Medicinal Plants of Korea; Kyo-Hak Publishing: Seoul, Korea, 2000; p. 432. [Google Scholar]
- Lee, H.K.; Oh, S.R.; Kim, J.I.; Kim, J.W.; Lee, C.O.J. Agastaquinone, a new cytotoxic diterpenoid quinone from Agastache rugosa. J. Nat. Prod. 1995, 58, 1718–1721. [Google Scholar] [CrossRef]
- Cao, P.; Xie, P.; Wang, X.; Wang, J.; Wel, J.; Kang, W.Y. Chemical constituents and coagulation activity of Agastache rugosa. BMC Complement. Altern. Med. 2017, 17, 93. [Google Scholar] [CrossRef] [Green Version]
- Shin, S. Essential oil compounds from Agastache rugosa as antifungal agents against Trichophyton species. Arch. Pharm. Res. 2004, 27, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.W.; Lee, Y.; Huang, Y.H.; Yoon, J.Y.; Lee, S.H.; Kim, K.; Lim, C.J. Enhancement of skin antioxidant and anti-inflammatory potentials of Agastache rugosa leaf extract by probiotic bacterial fermentation in human epidermal keratinocytes. Microbiol. Biotechnol. Lett. 2017, 45, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Abreu, O.; Torres-Piera, M.; García-Jiménez, S.; Ibarra-Barajas, M.; Villalobos-Molina, R.; Montes, S.; Rembao, D.; Estrada-Soto, S. Dose-dependent antihypertensive determination and toxicological studies of tilianin isolated from Agastache mexicana. J. Ethnopharmacol. 2013, 146, 187–191. [Google Scholar] [CrossRef]
- Guo, X.; Cao, W.; Yao, J.; Yuan, Y.; Hong, Y.; Wang, X.; Xing, J. Cardioprotective effects of tilianin in rat myocardial ischemia-reperfusion injury. Mol. Med. Rep. 2015, 11, 2227–2233. [Google Scholar] [CrossRef] [Green Version]
- Desta, K.T.; Kim, G.S.; Kim, Y.H.; Lee, W.S.; Lee, S.J.; Jin, J.S.; Elaty, A.M.A.; Shin, H.C.; Shim, J.H.; Shin, S.C. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomed. Chromatogr. 2016, 30, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.J.; Choi, J.H.; Oh, S.R.; Lee, H.K.; Park, J.H.; Lee, K.Y. Inhibition of cytokine-induced vascular cell adhesion molecule-1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. FEBS Lett. 2001, 495, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Lee, H.K.; Shin, C.G.; Huh, H. HIV integrase inhibitory activity of Agastache rugosa. Arch. Pharm. Res. 1999, 22, 520–523. [Google Scholar] [CrossRef]
- Lee, S.T.H.; Park, J.; Yoo, G. Demethyleugenol β-glucopyranoside isolated from Agastache rugosa decreases melanin synthesis via down-regulation of MITF and SOX9. J. Agric. Food Chem. 2016, 64, 7733–7742. [Google Scholar] [CrossRef]
- Haiyan, G.; Lijuan, H.; Shaoyu, L.; Chen, Z.; Ashraf, M.A. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi J. Biol. Sci. 2016, 23, 524–530. [Google Scholar] [CrossRef]
- Seo, Y.H.; Kang, S.Y.; Shin, J.S.; Ryu, S.M.; Lee, A.; Choi, G.; Moon, B.C.; Jang, D.S.; Shim, S.H.; Lee, D.; et al. Chemical constituents from the aerial parts of Agastache rugosa and their inhibitory activities on prostaglandin E2 production in lipopolysaccharide-treated RAW 264.7 macrophages. J. Nat. Prod. 2019, 82, 3379–3385. [Google Scholar] [CrossRef]
- Hwang, J.M.; Lee, M.H.; Lee, J.H.; Lee, J.H. Agastache rugosa extract and its bioactive compound tilianin suppress adipogenesis and lipogenesis on 3t3-l1 cells. Appl. Sci. 2021, 11, 7679. [Google Scholar] [CrossRef]
- Kim, J.M. Flavoral essential oil components in the stems of Agastache rugosa for aromatherapy. J. Korean Soc. Food Cult. 2021, 36, 317–324. [Google Scholar]
- Tuan, P.A.; Park, W.T.; Xu, H.; Park, N.I.; Park, S.U. Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J. Agric. Food Chem. 2011, 60, 5945–5951. [Google Scholar] [CrossRef]
- Lee, H.W.; Ryu, H.W.; Baek, S.C. Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-Omalonylglucoside) derivative from Agastache rugosa. Int. J. Biol. Macromol. 2017, 104, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lee, K.; Kang, M.A.; Kim, T.H.; Jang, H.J.; Ryu, H.W.; Oh, S.R.; Lee, H.J. Tilianin attenuates HDM-induced allergic asthma by suppressing Th2-immune responses via downregulation of IRF4 in dendritic cells. Phytomedicine 2021, 80, 153392. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Jang, J.M.; Park, W.T.; Uddin, M.R.; Chae, S.C.; Kim, H.H.; Park, S.U. Chemical composition of essential oils from flower and leaf of Korean mint, Agastache rugosa. Asian J. Chem. 2013, 25, 4361–4363. [Google Scholar] [CrossRef]
- Liu, W.; Yin, D.; Hou, X.; Wang, D.; Li, D.; Liu, J. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Sci. Rep. 2016, 6, 28591. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by gas Chromatography/Mass Spectrometry; Allured Publishing Co.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Kim, M.; Song, J.; Nishi, K.; Sowndhararajan, K.; Kim, S. Changes in the electroencephalographic activity in response to odors produced by organic compounds. J. Psychophysiol. 2020, 34, 35–49. [Google Scholar] [CrossRef]
- Fattinger, S.; Kurth, S.; Ringli, M.; Jenni, O.G.; Huber, R. Theta waves in children’s waking electroencephalogram resemble local aspects of sleep during wakefulness. Sci. Rep. 2017, 7, 11187. [Google Scholar] [CrossRef] [Green Version]
- Phneah, S.W.; Nisar, H. EEG-based alpha neurofeedback training for mood enhancement. Australas Phys. Eng. Sci. Med. 2017, 40, 325–336. [Google Scholar] [CrossRef]
- Xavier, G.; Ting, A.S.; Fauzan, N. Exploratory study of brain waves and corresponding brain regions of fatigue on-call doctors using quantitative electroencephalogram. J. Occup. Health. 2020, 62, e12121. [Google Scholar] [CrossRef] [PubMed]
- Posada-Quintero, H.F.; Reljin, N.; Bolkhovsky, J.B.; Orjuela-Cañón, A.D.; Chon, K.H. Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation. Front. Neurosci. 2019, 13, 1001. [Google Scholar] [CrossRef] [PubMed]
- Kropotov, J.D. Quantitative EEG, Event-Related Potentials and Neurotherapy; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Marlats, F.; Bao, G.; Chevallier, S.; Boubaya, M.; Djabelkhir-Jemmi, L.; Wu, Y.H.; Lenoir, H.; Rigaud, A.S.; Azabou, E. SMR/theta neurofeedback training improves cognitive performance and EEG activity in elderly with mild cognitive impairment: A pilot study. Front. Aging Neurosci. 2020, 12, 147. [Google Scholar] [CrossRef]
- Van Son, D.; de Rover, M.; De Blasio, F.M.; van der Does, W.; Barry, R.J.; Putman, P. Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Ann. N. Y. Acad. Sci. 2019, 1452, 52–64. [Google Scholar] [CrossRef]
- Tonner, P.H.; Bein, B. Classic electroencephalographic parameters: Median frequency, spectral edge frequency etc. Best Pract. Res. Clin. Anaesthesiol. 2006, 20, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Yamani, H.; Mantri, N.; Morrison, P.D.; Pang, E. Analysis of volatile organic compounds from leaves, flower spikes, and nectar of Australian grown Agastache rugosa. BMC Complementary Altern Med. 2014, 14, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.Q.; Liu, Q.Z.; Liu, Z.L.; Du, S.S.; Deng, Z.W. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules 2013, 18, 4170–4180. [Google Scholar] [CrossRef]
- Gong, H.; Li, S.; He, L.; Kasimu, R. Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China. BMC Complement. Altern. Med. 2017, 17, 95. [Google Scholar] [CrossRef] [Green Version]
- Dhouioui, M.; Boulila, A.; Chaabane, H.; Zina, M.S.; Casabianca, H. Seasonal changes in essential oil composition of Aristolochia longa L. ssp. paucinervis Batt. (Aristolochiaceae) roots and its antimicrobial activity. Ind. Crops Prod. 2016, 83, 301–306. [Google Scholar]
- Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv. Nutr. 2011, 2, 32–50. [Google Scholar] [CrossRef]
- Matsubara, E.; Fukagawa, M.; Okamoto, T.; Ohnuki, K.; Shimizu, K.; Kondo, R. The essential oil of Abies sibirica (Pinaceae) reduces arousal levels after visual display terminal work. Flavour Frag. J. 2011, 26, 204–210. [Google Scholar] [CrossRef]
- Lisman, J.E.; Idiart, M.A. Storage of 7 +/− 2 short–term memories in oscillatory subcycles. Science 1995, 267, 1512–1515. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.A.; Burke, J.F.; Haque, R.; Kahana, M.J.; Zaghloul, K.A. Decreases in theta and increases in high frequency activity underlie associative memory encoding. NeuroImage 2015, 114, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowndhararajan, K.; Seo, M.; Kim, M.; Kim, H.; Kim, S. Effect of essential oil and supercritical carbon dioxide extract from the root of Angelica gigas on human EEG activity. Complement. Ther. Clin. Pract. 2017, 28, 161–168. [Google Scholar] [CrossRef]
- Haehner, A.; Maass, H.; Croy, I.; Hummel, T. Influence of room fragrance on attention, anxiety and mood. Flavour Frag. J. 2017, 32, 24–28. [Google Scholar] [CrossRef]
No. | Indices | EEG Power Spectrum Indicators | Wavelength Range (Hz) | Condition |
---|---|---|---|---|
1 | AT | Absolute theta power spectrum | 4–8 | Drowsiness [42] |
2 | AA | Absolute alpha power spectrum | 8–13 | Relaxation [43] |
3 | AB | Absolute beta power spectrum | 13–30 | Concentration or Alertness [44] |
4 | AG | Absolute gamma power spectrum | 30–50 | High level of cognition [45] |
5 | ASA | Absolute slow alpha power spectrum | 8–11 | Relaxation |
6 | AFA | Absolute fast alpha power spectrum | 11–13 | Creative or focused [43] |
7 | ALB | Absolute low beta power spectrum | 12–15 | Attention or alert [46] |
8 | AMB | Absolute mid beta power spectrum | 15–20 | Concentration or attention [46] |
9 | AHB | Absolute high beta power spectrum | 20–30 | Stress or tension [46] |
10 | RT | Relative theta power spectrum | 4–8/4–50 | |
11 | RA | Relative alpha power spectrum | 8–13/4–50 | |
12 | RB | Relative beta power spectrum | 13–30/4–50 | |
13 | RG | Relative gamma power spectrum | 30–50/4–50 | |
14 | RFA | Relative fast alpha power spectrum | 11–13/4–50 | |
15 | RSA | Relative slow alpha power spectrum | 8–11/4–50 | |
16 | RLB | Relative low beta power spectrum | 12–15/4–50 | |
17 | RMB | Relative mid beta power spectrum | 15–20/4–50 | |
18 | RHB | Relative high beta power spectrum | 20–30/4–50 | |
19 | RST | Ratio of SMR to theta | 12–15/4–8 | Unfocused attention ~ vigilance [47] |
20 | RMT | Ratio of mid beta to theta | 15–20/4–8 | Focused attention ~ concentration [48] |
21 | RSMT | Ratio of (SMR ~ mid beta) to theta | 12–20/4–8 | Attention |
22 | RAHB | Ratio of alpha to high beta | 8–13/20–30 | Relaxation index |
23 | SEF50 | Spectral edge frequency 50% | 4–50 | Activity index [49] |
24 | SEF90 | Spectral edge frequency 90% | 4–50 | Stress index [49] |
25 | ASEF | Spectral edge frequency 50% of alpha spectrum band | 8–13 | Refreshment |
No. | Indices | Variation | Sites | Condition |
---|---|---|---|---|
1 | AT | Decreased (↓) | Fp1, Fp2, Af3, F7, F3, Fz, Fc5, T7, C3, Cp5, P3, P7, Po5, Po3, O1 | Drowsiness or meditation |
2 | RT | Af3, F7, Fz, C3, Cz, Cp5, Cp6, P7, P3, Po5, Po3, Po4, O1, O2 | ||
3 | RA | Increased (↑) | Cp5, Cp6, P8, P3, P4, Po5, Po6, Po3, Po4, O1, O2 | Stabilized brain |
4 | RSA | Po3, O1, O2 | Ready to concentrate | |
5 | SEF50 | Fp2, Af3, F3, Fz, Cp6 | Activity index | |
6 | ASEF | Cp6 | Refreshment index |
Indices | Site | No Odor (μV2) | A. rugosa Odor (μV2) | t Test | p Value * |
---|---|---|---|---|---|
AT | Fp1 | 16.071 ± 13.698 | 14.014 ± 11.474 | 2.428 | 0.020 |
Fp2 | 18.459 ± 14.207 | 16.477 ± 13.358 | 2.116 | 0.041 | |
Af3 | 17.304 ± 13.665 | 15.502 ± 12.132 | 3.105 | 0.004 | |
F7 | 11.556 ± 7.468 | 9.902 ± 7.125 | 3.267 | 0.002 | |
F3 | 17.589 ± 12.825 | 16.424 ± 11.760 | 2.735 | 0.010 | |
Fz | 21.160 ± 16.226 | 19.328 ± 14.260 | 2.687 | 0.011 | |
Fc5 | 11.551 ± 7.763 | 10.477 ± 7.476 | 3.072 | 0.004 | |
T7 | 7.296 ± 5.832 | 6.495 ± 5.051 | 2.789 | 0.008 | |
C3 | 14.259 ± 9.798 | 13.207 ± 9.649 | 3.032 | 0.004 | |
Cp5 | 11.325 ± 7.254 | 10.383 ± 7.036 | 2.543 | 0.015 | |
P7 | 9.158 ± 5.993 | 8.221 ± 6.304 | 2.996 | 0.005 | |
P3 | 14.635 ± 9.198 | 13.589 ± 9.564 | 3.231 | 0.003 | |
Po5 | 12.671 ± 7.783 | 11.444 ± 8.011 | 2.640 | 0.012 | |
Po3 | 15.224 ± 9.630 | 14.300 ± 9.697 | 2.327 | 0.026 | |
O1 | 12.706 ± 7.474 | 11.289 ± 7.177 | 2.856 | 0.007 | |
RT | Af3 | 0.293 ± 0.119 | 0.270 ± 0.105 | 2.362 | 0.024 |
F7 | 0.275 ± 0.099 | 0.254 ± 0.101 | 2.174 | 0.036 | |
Fz | 0.300 ± 0.119 | 0.278 ± 0.105 | 2.398 | 0.022 | |
C3 | 0.255 ± 0.094 | 0.231 ± 0.083 | 2.959 | 0.005 | |
Cz | 0.272 ± 0.103 | 0.253 ± 0.094 | 2.242 | 0.031 | |
Cp5 | 0.234 ± 0.086 | 0.213 ± 0.080 | 2.791 | 0.008 | |
Cp6 | 0.237 ± 0.096 | 0.213 ± 0.084 | 2.140 | 0.039 | |
P7 | 0.191 ± 0.090 | 0.171 ± 0.087 | 2.587 | 0.014 | |
P3 | 0.229 ± 0.094 | 0.205 ± 0.089 | 2.863 | 0.007 | |
Po5 | 0.170 ± 0.100 | 0.152 ± 0.095 | 2.400 | 0.022 | |
Po3 | 0.202 ± 0.102 | 0.184 ± 0.184 | 2.085 | 0.044 | |
Po4 | 0.200 ± 0.107 | 0.181 ± 0.099 | 2.087 | 0.044 | |
O1 | 0.183 ± 0.102 | 0.159 ± 0.093 | 2.712 | 0.010 | |
O2 | 0.193 ± 0.110 | 0.171 ± 0.097 | 2.141 | 0.039 |
Indices | Site | No Odor (μV2) | A. rugosa Odor (μV2) | t Test | p Value * |
---|---|---|---|---|---|
RA | Cp5 | 0.426 ± 0.136 | 0.453 ± 0.133 | −2.521 | 0.016 |
Cp6 | 0.454 ± 0.134 | 0.486 ± 0.133 | −2.330 | 0.025 | |
P8 | 0.492 ± 0.146 | 0.523 ± 0.149 | −2.419 | 0.021 | |
P3 | 0.474 ± 0.145 | 0.505 ± 0.147 | −2.239 | 0.031 | |
P4 | 0.489 ± 0.142 | 0.520 ± 0.142 | −2.226 | 0.032 | |
Po5 | 0.536 ± 0.168 | 0.561 ± 0.179 | −2.043 | 0.048 | |
Po6 | 0.536 ± 0.155 | 0.569 ± 0.153 | −2.410 | 0.021 | |
Po3 | 0.509 ± 0.156 | 0.541 ± 0.167 | −2.129 | 0.040 | |
Po4 | 0.522 ± 0.151 | 0.555 ± 0.161 | −2.156 | 0.038 | |
O1 | 0.508 ± 0.163 | 0.539 ± 0.179 | −2.412 | 0.021 | |
O2 | 0.498 ± 0.165 | 0.535 ± 0.165 | −2.556 | 0.015 | |
RSA | Po3 | 0.328 ± 0.173 | 0.356 ± 0.174 | −2.185 | 0.035 |
O1 | 0.349 ± 0.186 | 0.375 ± 0.192 | −2.099 | 0.043 | |
O2 | 0.343 ± 0.190 | 0.370 ± 0.183 | −2.050 | 0.047 | |
SEF50 | Fp2 | 10.521 ± 2.376 | 10.976 ± 2.740 | −2.333 | 0.025 |
Af3 | 10.076 ± 1.109 | 10.362 ± 1.190 | −2.833 | 0.007 | |
F3 | 10.141 ± 1.014 | 10.329 ± 1.103 | −2.406 | 0.021 | |
Fz | 9.935 ± 0.996 | 10.171 ± 1.030 | −2.457 | 0.019 | |
Cp6 | 10.747 ± 1.678 | 11.063 ± 1.871 | −2.234 | 0.032 | |
ASEF | Cp6 | 10.376 ± 0.630 | 10.492 ± 0.553 | −2.178 | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, M.; Jang, H.; Bo, S.; Kim, M.; Deepa, P.; Park, J.; Sowndhararajan, K.; Kim, S. Changes in Human Electroencephalographic Activity in Response to Agastache rugosa Essential Oil Exposure. Behav. Sci. 2022, 12, 238. https://doi.org/10.3390/bs12070238
Hong M, Jang H, Bo S, Kim M, Deepa P, Park J, Sowndhararajan K, Kim S. Changes in Human Electroencephalographic Activity in Response to Agastache rugosa Essential Oil Exposure. Behavioral Sciences. 2022; 12(7):238. https://doi.org/10.3390/bs12070238
Chicago/Turabian StyleHong, Minji, Hyejeong Jang, Sela Bo, Minju Kim, Ponnuvel Deepa, Jiyea Park, Kandhasamy Sowndhararajan, and Songmun Kim. 2022. "Changes in Human Electroencephalographic Activity in Response to Agastache rugosa Essential Oil Exposure" Behavioral Sciences 12, no. 7: 238. https://doi.org/10.3390/bs12070238
APA StyleHong, M., Jang, H., Bo, S., Kim, M., Deepa, P., Park, J., Sowndhararajan, K., & Kim, S. (2022). Changes in Human Electroencephalographic Activity in Response to Agastache rugosa Essential Oil Exposure. Behavioral Sciences, 12(7), 238. https://doi.org/10.3390/bs12070238