Time-Series Associations between Public Interest in COVID-19 Variants and National Vaccination Rate: A Google Trends Analysis
Abstract
:1. Introduction
1.1. Infodemiology in the Context of the COVID-19 Pandemic
1.2. Facilitating and Impeding Influences of Information-Seeking Coping on the Vaccination Rate
1.3. Emergence of New COVID-19 Variants and the Vaccination Rate
1.4. Overview of the Present Study
2. Materials and Methods
2.1. Study Design and Tool
2.2. Query Terms
2.3. Data Collection
2.4. Indicators of Interest
2.5. Data Analysis
3. Results
3.1. Between-Country Comparisons of the Vaccination Rate
3.2. Between-Country Comparisons of Google Search Trends
3.3. Time-Series Cross-Correlation between Google Search Queries and Vaccination Rates
4. Discussion
4.1. Predominance of Positive Search Query–Vaccination Associations
4.2. Occurrence of Positive Search Query–Vaccination Associations Prior to Negative Associations
4.3. Recommended Information Strategies for Combating the COVID-19 Infodemic
4.4. Research Limitations and Future Research Directions
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randall, A.K.; Leon, G.; Basili, E.; Martos, T.; Boiger, M.; Baldi, M.; Hocker, L.; Kline, K.; Masturzi, A.; Aryeetey, R. Coping with global uncertainty: Perceptions of COVID-19 psychological distress, relationship quality, and dyadic coping for romantic partners across 27 countries. J. Soc. Pers. Relatsh 2022, 39, 3–33. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, H.-y.; Ebrahimi, O.V. Adjustment to a “new normal:” Coping flexibility and mental health issues during the COVID-19 pandemic. Front. Psychiatry 2021, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Inglesby, T.V. Public health measures and the reproduction number of SARS-CoV-2. JAMA 2020, 323, 2186–2187. [Google Scholar] [CrossRef]
- Lindner, C.; Kotta, I.; Marschalko, E.E.; Szabo, K.; Kalcza-Janosi, K.; Retelsdorf, J. Increased Risk Perception, Distress Intolerance and Health Anxiety in Stricter Lockdowns: Self-Control as a Key Protective Factor in Early Response to the COVID-19 Pandemic. Int. J. Environ. Res. 2022, 19, 5098. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, H.-Y.; Chan, L. Multiple forms of mass anxiety in Coronavirus Disease-2019 pandemic. J. Affect. Disord. 2021, 291, 338–343. [Google Scholar] [CrossRef]
- Asmundson, G.J.G.; Taylor, S. How health anxiety influences responses to viral outbreaks like COVID-19: What all decision-makers, health authorities, and health care professionals need to know. J. Affect. Disord. 2020, 71, 102211. [Google Scholar] [CrossRef]
- Jungmann, S.M.; Witthöft, M. Health anxiety, cyberchondria, and coping in the current COVID-19 pandemic: Which factors are related to coronavirus anxiety? J. Affect. Disord. 2020, 73, 102239. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cheng, C. Role of COVID-19 anxiety and community risk factors on physical distancing practice. Behav. Sci. 2022, 12, 110. [Google Scholar] [CrossRef]
- Dsouza, D.D.; Quadros, S.; Hyderabadwala, Z.J.; Mamun, M.A. Aggregated COVID-19 suicide incidences in India: Fear of COVID-19 infection is the prominent causative factor. Psychiatry Res. 2020, 290, 113145. [Google Scholar] [CrossRef]
- Jung, H.; Albarracín, D. Concerns for others increase the likelihood of vaccination against influenza and COVID-19 more in sparsely rather than densely populated areas. Proc. Natl. Acad. Sci. USA 2021, 118, e2007538118. [Google Scholar] [CrossRef]
- Tang, L.; Zou, W. Health information consumption under COVID-19 lockdown: An interview study of residents of Hubei Province, China. Health Commun. 2021, 36, 74–80. [Google Scholar] [CrossRef]
- Vasilievna, G.A. Informational behavior in the COVID-19 pandemic: Psychological predictors. Int. J. Cogn. Res. Sci. Eng. Educ. 2020, 8, 59–67. [Google Scholar]
- Ying, W.; Cheng, C. Public emotional and coping responses to the COVID-19 infodemic: A review and recommendations. Front. Psychiatry 2021, 2319, 755938. [Google Scholar] [CrossRef]
- Miceli, M.; Castelfranchi, C. Anxiety as an “epistemic” emotion: An uncertainty theory of anxiety. Anxiety Stress Coping 2005, 18, 291–319. [Google Scholar] [CrossRef]
- Wang, X.; Shi, J.; Kong, H. Online health information seeking: A review and meta-analysis. Health Commun. 2021, 36, 1163–1175. [Google Scholar] [CrossRef]
- Eysenbach, G. Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J. Med. Internet Res. 2009, 11, e1157. [Google Scholar] [CrossRef]
- Mavragani, A. Infodemiology and infoveillance: Scoping review. J. Med. Internet Res. 2020, 22, e16206. [Google Scholar] [CrossRef]
- Bento, A.I.; Nguyen, T.; Wing, C.; Lozano-Rojas, F.; Ahn, Y.-Y.; Simon, K. Evidence from Internet search data shows information-seeking responses to news of local COVID-19 cases. Proc. Natl. Acad. Sci. USA 2020, 117, 11220–11222. [Google Scholar] [CrossRef]
- Vijay, V.; Field, C.R.; Gollnow, F.; Jones, K.K. Using internet search data to understand information seeking behavior for health and conservation topics during the COVID-19 pandemic. Biol. Conserv. 2021, 257, 109078. [Google Scholar] [CrossRef]
- Wong, Y.C.; Lau, S.Y.; Wang To, K.K.; Mok, B.W.Y.; Li, X.; Wang, P.; Deng, S.; Woo, K.F.; Du, Z.; Li, C. Natural transmission of bat-like severe acute respiratory syndrome coronavirus 2 without proline-arginine-arginine-alanine variants in Coronavirus Disease 2019 patients. Clin. Infect. Dis. 2020, 73, e437–e444. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, Q.; Zhang, Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 2020, 30, 1346–1351.e2. [Google Scholar] [CrossRef]
- Lwin, M.O.; Lu, J.; Sheldenkar, A.; Schulz, P.J.; Shin, W.; Gupta, R.; Yang, Y. Global sentiments surrounding the COVID-19 pandemic on Twitter: Analysis of Twitter trends. JMIR Public Health Surveill. 2020, 6, e19447. [Google Scholar] [CrossRef]
- Bodner, E.; Bergman, Y.S.; Ben-David, B.; Palgi, Y. Vaccination anxiety when vaccinations are available: The role of existential concerns. Stress Health 2021, 38, 111–118. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Associated Press-NORC Center for Public Affairs Expectations for a COVID-19 Vaccine. Available online: http://www.apnorc.org/projects/Pages/Expectations-for-a-COVID-19-Vaccine.aspx (accessed on 18 April 2022).
- Kafura, C.; Friedhoff, K.; Helm, B. Global Public Opinion Shows Mixed Reaction to Vaccines as Virus Surges; Chicago Council on Global Affairs: Chicago, IL, USA, 2020. [Google Scholar]
- Zimmerman, R.K. Helping patients with ethical concerns about COVID-19 vaccines in light of fetal cell lines used in some COVID-19 vaccines. Vaccine 2021, 39, 4242–4244. [Google Scholar] [CrossRef]
- Garcia, L.L.; Yap, J.F.C. The role of religiosity in COVID-19 vaccine hesitancy. J. Public Health 2021, 43, e529–e530. [Google Scholar] [CrossRef]
- Cheng, C.; Lau, H.B.; Chan, M.S. Coping flexibility and psychological adjustment to stressful life changes: A meta-analytic review. Psychol. Bull. 2014, 140, 1582–1607. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, R.S.; Folkman, S. Transactional theory and research on emotions and coping. Eur. J. Pers. 1987, 1, 141–169. [Google Scholar] [CrossRef]
- Cheng, C.; Ebrahimi, O.V.; Lau, Y. Maladaptive coping with the infodemic and sleep disturbance in the COVID-19 pandemic. J. Sleep Res. 2020, 30, e13235. [Google Scholar] [CrossRef]
- Shatzmiller, S.; Lapidot, I.; Zats, G.; Krieger, R.; Buzhansky, L. Modern vaccines-mRNA based technology-The great hope to eradicate and cure COVID 19. Virus 2020, 3, 5. [Google Scholar]
- Vziatysheva, V. How fake news spreads online? Int. J. Media Inf. Lit. 2020, 5, 217–226. [Google Scholar]
- Ghaddar, A.; Khandaqji, S.; Awad, Z.; Kansoun, R. Conspiracy beliefs and vaccination intent for COVID-19 in an infodemic. PLoS ONE 2022, 17, e0261559. [Google Scholar] [CrossRef] [PubMed]
- Puri, N.; Coomes, E.A.; Haghbayan, H.; Gunaratne, K. Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases. Hum. Vaccines Immunother. 2020, 16, 2586–2593. [Google Scholar] [CrossRef]
- Cheng, C.; Lau, Y. Social media addiction during COVID-19-mandated physical distancing: Relatedness needs as motives. Int. J. Environ. Res. Public Health 2022, 19, 4621. [Google Scholar] [CrossRef]
- Cheng, C.; Lau, Y.; Luk, J.W. Social capital–accrual, escape-from-self, and time-displacement effects of internet use during the COVID-19 stay-at-home period: Prospective, quantitative survey study. J. Med. Internet Res. 2020, 22, e22740. [Google Scholar] [CrossRef]
- Wilson, S. Media and vaccine hesitancy. BMJ Glob. Health 2020, 5, e004206. [Google Scholar] [CrossRef]
- Siebenhaar, K.U.; Köther, A.K.; Alpers, G.W. Dealing with the COVID-19 infodemic: Distress by information, information avoidance, and compliance with preventive measures. Front. Psychol. 2020, 11, 2981. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, C. Infodemic vs. pandemic factors associated to public anxiety in the early stage of the COVID-19 outbreak: A cross-sectional study in China. Front. Public Health 2021, 9, 723648. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Call for Action: Managing the Infodemic. Available online: https://www-who-int.eproxy.lib.hku.hk/news/item/11-12-2020-call-for-action-managing-the-infodemic (accessed on 18 April 2022).
- Schwarz, N.; Jalbert, M. When fake news feels true. In The Psychology of Fake News: Accepting, Sharing, and Correcting Misinformation; Greifeneder, R., Jalbert, M., Newman, E., Schwarz, N., Eds.; Routledge: London, UK, 2020; pp. 73–89. [Google Scholar]
- Teyssou, E.; Delagrèverie, H.; Visseaux, B.; Lambert-Niclot, S.; Brichler, S.; Ferre, V.; Marot, S.; Jary, A.; Todesco, E.; Schnuriger, A. The Delta SARS-CoV-2 variant has a higher viral load than the Beta and the historical variants in nasopharyngeal samples from newly diagnosed COVID-19 patients. J. Infect. 2021, 83, E1–E3. [Google Scholar] [CrossRef]
- World Health Organization Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 25 February 2022).
- Shahar, G.; Aharonson-Daniel, L.; Greenberg, D.; Shalev, H.; Malone, P.S.; Tendler, A.; Grotto, I.; Davidovitch, N. Changes in general and virus-specific anxiety during the spread of COVID-19 in Israel: A seven-wave longitudinal study. Am. J. Epidemiol. 2021, 191, 49–62. [Google Scholar] [CrossRef]
- Yasmin, F.; Dapke, K.; Khalid, M.R.; Naz, H.; Naz, F.; Admani, B.; Asghar, M.S.; Awan, S.; Phadke, R.; Saleem, M. Generalized anxiety disorder and depressive symptoms among Pakistani population during the second wave of the COVID-19 pandemic: A regression analysis. Am. J. Trop. Med. Hyg. 2021, 105, 915–923. [Google Scholar] [CrossRef]
- OurWorldInData.org Share of People Vaccinated against COVID-19. 30 September 2021. Available online: https://ourworldindata.org/coronavirus (accessed on 3 October 2021).
- Sheikh, A.; McMenamin, J.; Taylor, B.; Robertson, C. SARS-CoV-2 Delta VOC in Scotland: Demographics, risk of hospital admission, and vaccine effectiveness. Lancet 2021, 397, 2461–2462. [Google Scholar] [CrossRef]
- Statcounter Search Engine Market Share Worldwide. Available online: https://gs.statcounter.com/search-engine-market-share (accessed on 29 September 2021).
- Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The use of google trends in health care research: A systematic review. PLoS ONE 2014, 9, e109583. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, H.A.; Mylonakis, E. Google trends: A web-based tool for real-time surveillance of disease outbreaks. Clin. Infect. Dis. 2009, 49, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins Coronavirus Resource Center Coronavirus COVID-19 Global Cases. Available online: https://coronavirus.jhu.edu/map.html (accessed on 15 October 2021).
- Campbell, F.; Archer, B.; Laurenson-Schafer, H.; Jinnai, Y.; Konings, F.; Batra, N.; Pavlin, B.; Vandemaele, K.; Van Kerkhove, M.D.; Jombart, T. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill. 2021, 26, 2100509. [Google Scholar] [CrossRef]
- Najman, N.; Kistan, K.; Novianti, I. The relationship on health education against anxiety concerning COVID-19 transmission. Int. J. Health Sci. 2020, 4, 69–74. [Google Scholar] [CrossRef]
- Sherman, S.M.; Smith, L.E.; Sim, J.; Amlôt, R.; Cutts, M.; Dasch, H.; Rubin, G.J.; Sevdalis, N. COVID-19 vaccination intention in the UK: Results from the COVID-19 vaccination acceptability study (CoVAccS), a nationally representative cross-sectional survey. Hum. Vaccines Immunother. 2021, 17, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Sv, P.; Tandon, J.; Hinduja, H. Indian citizen’s perspective about side effects of COVID-19 vaccine–A machine learning study. Diabetes Metab. Syndr. 2021, 15, 102172. [Google Scholar] [CrossRef]
- Eibensteiner, F.; Ritschl, V.; Nawaz, F.A.; Fazel, S.S.; Tsagkaris, C.; Kulnik, S.T.; Crutzen, R.; Klager, E.; Völkl-Kernstock, S.; Schaden, E. People’s willingness to vaccinate against COVID-19 despite their safety concerns: Twitter poll analysis. J. Med. Internet Res. 2021, 23, e28973. [Google Scholar] [CrossRef]
- Lyu, J.C.; Han, E.L.; Luli, G.K. Topics and sentiments in COVID-19 vaccine-related discussion on Twitter. J. Med. Internet Res. 2021, 23, e24435. [Google Scholar] [CrossRef]
- Tang, L.; Douglas, S.; Laila, A. Social media responses to COVID-19: Among sheeples and antivaxxers: Social media responses to COVID-19 vaccine news posted by Canadian news organizations, and recommendations to counter vaccine hesitancy. Can. Commun. Dis. Rep. 2021, 47, 524. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Novavax Inc. Novavax Confirms High Levels of Efficacy against Original and Variant COVID-19 Strains in United Kingdom and South Africa Trials. Available online: https://ir.novavax.com/2021-03-11-Novavax-Confirms-High-Levels-of-Efficacy-Against-Original-and-Variant-COVID-19-Strains-in-United-Kingdom-and-South-Africa-Trials (accessed on 18 April 2022).
- Doroftei, B.; Ciobica, A.; Ilie, O.-D.; Maftei, R.; Ilea, C. Mini-review discussing the reliability and efficiency of COVID-19 vaccines. Diagnostics 2021, 11, 579. [Google Scholar] [CrossRef]
- Grady, D.; Mazzei, P. Doctor’s Death after Covid Vaccine Is Being Investigated. Available online: https://www.nytimes.com/2021/01/12/health/covid-vaccine-death.html (accessed on 18 April 2022).
- India Today Govt Confirms First Death due to Covid-19 Vaccine. Available online: https://www.indiatoday.in/coronavirus-outbreak/video/govt-confirms-first-death-due-to-covid-19-vaccine-1815038-2021-06-15 (accessed on 25 February 2022).
- Tversky, A.; Kahneman, D. Judgment under uncertainty: Heuristics and biases. In Rationality in Action: Contemporary Approaches; Moser, P.K., Ed.; Cambridge University: New York, NY, USA, 1990; pp. 171–188. [Google Scholar]
- An, S. Antidepressant direct-to-consumer advertising and social perception of the prevalence of depression: Application of the availability heuristic. Health Commun. 2008, 23, 499–505. [Google Scholar] [CrossRef]
- Pomara, C.; Sessa, F.; Ciaccio, M.; Dieli, F.; Esposito, M.; Giammanco, G.M.; Garozzo, S.F.; Giarratano, A.; Prati, D.; Rappa, F. COVID-19 vaccine and death: Causality algorithm according to the WHO eligibility diagnosis. Diagnostics 2021, 11, 955. [Google Scholar] [CrossRef]
- van der Meer, T.G.L.A.; Jin, Y. Seeking formula for misinformation treatment in public health crises: The effects of corrective information type and source. Health Commun. 2020, 35, 560–575. [Google Scholar] [CrossRef] [Green Version]
- Farooq, F.; Rathore, F.A. COVID-19 vaccination and the challenge of infodemic and disinformation. J. Korean Med. Sci. 2021, 36, e78. [Google Scholar] [CrossRef]
- MacDonald, N.E. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention Selected Adverse Events Reported after COVID-19 Vaccination. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html (accessed on 18 April 2022).
- Nour, M.; Chen, J.; Allman-Farinelli, M. Young adults’ engagement with a self-monitoring app for vegetable intake and the impact of social media and gamification: Feasibility study. JMIR Form. Res. 2019, 3, e13324. [Google Scholar] [CrossRef]
- Deodhar, S.; Bisset, K.R.; Chen, J.; Ma, Y.; Marathe, M.V. An interactive, web-based high performance modeling environment for computational epidemiology. ACM Trans. Manag. Inf. Syst. 2014, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Stevens, H. Why Outbreaks Like Coronavirus Spread Exponentially, and How to “Flatten the Curve”. Available online: https://www.washingtonpost.com/graphics/2020/world/corona-simulator/ (accessed on 18 April 2022).
- Wang, Y.; Wu, L.; Luo, L.; Zhang, Y.; Dong, G. Short-term Internet search using makes people rely on search engines when facing unknown issues. PLoS ONE 2017, 12, e0176325. [Google Scholar] [CrossRef] [PubMed]
- Tate, M.A. Web Wisdom: How to Evaluate and Create Information Quality on the Web, 3rd ed.; CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
- Atkinson, S.; Lee, K. Design and implementation of a study room reservation system: Lessons from a pilot program using Google Calendar. Coll Res. Libr. 2018, 79, 916. [Google Scholar] [CrossRef]
- Rubin, R. COVID-19 vaccine nasal spray. JAMA 2021, 326, 1138. [Google Scholar] [CrossRef] [PubMed]
- van Oosterhout, C.; Hall, N.; Ly, H.; Tyler, K.M. COVID-19 evolution during the pandemic—Implications of new SARS-CoV-2 variants on disease control and public health policies. Virulence 2021, 12, 507–508. [Google Scholar] [CrossRef] [PubMed]
Country | Nominal GDP per Capita 1 | Estimated Population 2 | Number of Internet Users 2 | Internet Penetration Rate 2 | Google Market Share 3 |
---|---|---|---|---|---|
UK | USD 46,200 | 66,959,016 | 63,544,106 | 95% | 92% |
India | USD 2,116 | 1393,409,038 | 755,820,000 | 54% | 99% |
South Africa | USD 6,861 | 60,041,994 | 34,545,165 | 58% | 92% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C. Time-Series Associations between Public Interest in COVID-19 Variants and National Vaccination Rate: A Google Trends Analysis. Behav. Sci. 2022, 12, 223. https://doi.org/10.3390/bs12070223
Cheng C. Time-Series Associations between Public Interest in COVID-19 Variants and National Vaccination Rate: A Google Trends Analysis. Behavioral Sciences. 2022; 12(7):223. https://doi.org/10.3390/bs12070223
Chicago/Turabian StyleCheng, Cecilia. 2022. "Time-Series Associations between Public Interest in COVID-19 Variants and National Vaccination Rate: A Google Trends Analysis" Behavioral Sciences 12, no. 7: 223. https://doi.org/10.3390/bs12070223
APA StyleCheng, C. (2022). Time-Series Associations between Public Interest in COVID-19 Variants and National Vaccination Rate: A Google Trends Analysis. Behavioral Sciences, 12(7), 223. https://doi.org/10.3390/bs12070223