Rich Get Richer: Extraversion Statistically Predicts Reduced Internet Addiction through Less Online Anonymity Preference and Extraversion Compensation
Abstract
:1. Introduction
2. Methods
2.1. Sample and Procedure
2.2. Measures
2.2.1. Preference for Online Anonymity Questionnaire
2.2.2. The Online and Offline Integration Scale (OOIS)
2.2.3. Internet Addiction Test (IAT)
2.2.4. Extraversion and Online Extraversion Compensation
2.3. Statistical Analysis
3. Results
3.1. Preliminary Analyses
3.2. Testing for Mediating Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Preference for Online Anonymity Questionnaire
- Friends I meet online know my true identity. (R)
- The username I use on the social networking sites has nothing to do with my real identity.
- I am used to using my real photos as avatars on social platforms. (R)
- I often use fake gender, age or location on online platforms.
- I like to express different opinions to others online in an anonymous way.
- I typically use my real name on online social-networking sites. (R)
- I mostly use my real identity in discussions of social topics on the internet. (R)
- Compared to being anonymous, I am more accustomed to using my real name to talk about different opinions with others on the internet. (R)
- I prefer to use online service platforms that require a real-name account. (R)
- I use an anonymous identity to participate in social discussions on the internet.
References
- Beard, K.W.; Wolf, E.M. Modification in the proposed diagnostic criteria for Internet addiction. Cyberpsychol. Behav. 2001, 4, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, G.K.; Abdalla, A.A.; Mohamed, A.M.; Mohamede, L.A.; Shamaaf, H.A. Relation between internet gaming addiction and comorbid psychiatric disorders and emotion avoidance among adolescents: A cross-sectional study. Psychiatry Res. 2022, 312, 114584. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L. The impact of social media use types and social media addiction on subjective well-being of college students: A comparative analysis of addicted and non-addicted students. Comput. Hum. Behav. Rep. 2021, 4, 100122. [Google Scholar] [CrossRef]
- Castro-Calvo, J.; Cervigón-Carrasco, V.; Ballester-Arnal, R.; Giménez-García, C. Cognitive processes related to problematic pornography use (ppu): A systematic review of experimental studies. Addict. Behav. Rep. 2021, 13, 100345. [Google Scholar] [CrossRef]
- Stanković, M.; Nešić, M.; Čičević, S.; Shi, Z. Association of smartphone use with depression, anxiety, stress, sleep quality, and internet addiction. Empirical evidence from a smartphone application. Personal. Individ. Differ. 2021, 168, 110342. [Google Scholar] [CrossRef]
- Suárez-Perdomo, A.; Ruiz-Alfonso, Z.; Garcés-Delgado, Y. Profiles of undergraduates’ networks addiction: Difference in academic procrastination and performance. Comput. Educ. 2022, 181, 104459. [Google Scholar] [CrossRef]
- Tian, Y.; Qin, N.; Cao, S.; Gao, F. Reciprocal associations between shyness, self-esteem, loneliness, depression and Internet addiction in Chinese adolescents. Addict. Res. Theory 2020, 29, 98–110. [Google Scholar] [CrossRef]
- Engel, G.L. The Need for a New Medical Model: A Challenge for Biomedicine. Science 1977, 196, 129–136. [Google Scholar] [CrossRef]
- De Nardi, L.; Carpentieri, V.; Pascale, E.; Pucci, M.; Addario, C.; Cerniglia, L.; Adriani, W.; Cimino, S. Involvement of DAT1 Gene on Internet Addiction: Cross-Correlations of Methylation Levels in 5′-UTR and 3′-UTR Genotypes, Interact with Impulsivity and Attachment-Driven Quality of Relationships. Int. J. Environ. Res. Public Health 2020, 17, 7956. [Google Scholar] [CrossRef]
- Tereshchenko, S.; Kasparov, E. Neurobiological Risk Factors for the Development of Internet Addiction in Adolescents. Behav. Sci. 2019, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Ren, P.; Chiu, M.M.; Wang, C.; Lei, H. The Relationship Between Self-Control and Internet Addiction Among Students: A Meta-Analysis. Front. Psychol. 2021, 12, 735755. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Scheer, B.; Yeh, C.-H.; Ohno, S.; Nam, J.K. Associations of Personality Traits with Internet Addiction: A Cross-Cultural Meta-Analysis with a Multilingual Approach. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 777–798. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-S.; Park, S.M.; Roh, M.-S.; Lee, J.-Y.; Park, C.-B.; Hwang, J.Y.; Gwak, A.R.; Jung, H.Y. Dysfunctional inhibitory control and impulsivity in Internet addiction. Psychiatry Res. 2014, 215, 424–428. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, Y.; Sui, Y.; Zhang, D.; Shi, J.; Wang, P.; Meng, W.; Si, Y. Relationships Between Social Support, Loneliness, and Internet Addiction in Chinese Postsecondary Students: A Longitudinal Cross-Lagged Analysis. Front. Psychol. 2018, 9, 1707. [Google Scholar] [CrossRef] [PubMed]
- Cannito, L.; Annunzi, E.; Viganò, C.; Dell’Osso, B.; Vismara, M.; Sacco, P.L.; Palumbo, R.; D’Addario, C. The Role of Stress and Cognitive Absorption in Predicting Social Network Addiction. Brain Sci. 2022, 12, 643. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Han, X.; Jin, C.; Yan, Y.; Potenza, M.N. Are males more likely to be addicted to the internet than females? A meta-analysis involving 34 global jurisdictions. Comput. Hum. Behav. 2019, 99, 86–100. [Google Scholar] [CrossRef]
- Xin, M.; Xing, J.; Pengfei, W.; Houru, L.; Mengcheng, W.; Hong, Z. Online activities, prevalence of Internet addiction and risk factors related to family and school among adolescents in China. Addict. Behav. Rep. 2018, 7, 14–18. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.L.; Lv, F.L.; Qin, N.B.; Chen, P.P. Associations Among the Big Five Personality Traits, Maladaptive Cognitions, and Internet Addiction Across Three Time Measurements in 3 Months During the COVID-19 Pandemic. Front. Psychol. 2021, 12, 1479. [Google Scholar] [CrossRef]
- Bernal-Ruiz, C.; Rosa-Alcazar, A.I. The Relationship Between Problematic Internet Use, WhatsApp and Personality. Eur. J. Psychol. 2022, 18, 6–18. [Google Scholar] [CrossRef]
- Eysenck, H.J.; Eysenck, S.B.G. Manual of the Eysenck Personality Inventory; University of London Press: London, UK, 1964. [Google Scholar]
- Kayiş, A.R.; Satici, S.A.; Yilmaz, M.F.; Şimşek, D.; Ceyhan, E.; Bakioğlu, F. Big five-personality trait and internet addiction: A meta-analytic review. Comput. Hum. Behav. 2016, 63, 35–40. [Google Scholar] [CrossRef]
- Gao, L.; Zhai, S.; Xie, H.; Liu, Q.; Niu, G.; Zhou, Z. Big five personality traits and problematic mobile phone use: A meta-analytic review. Curr. Psychol. 2020, 41, 3093–3110. [Google Scholar] [CrossRef]
- Kraut, R.; Kiesler, S.; Boneva, B.; Cummings, J.; Helgeson, V.; Crawford, A.; Helgesonn, V.; Crawfordx, A.; Helgesonx, V.; Crawfordx, A. Internet Paradox Revisited. J. Soc. Issues 2002, 58, 49–74. [Google Scholar] [CrossRef]
- Moshkovitz, K.; Hayat, T. The rich get richer: Extroverts’ social capital on twitter. Technol. Soc. 2021, 65, 101551. [Google Scholar] [CrossRef]
- Ellison, N.B.; Steinfield, C.; Lampe, C. The Benefits of Facebook “Friends:” Social Capital and College Students’ Use of Online Social Network Sites. J. Comput. Mediat. Commun. 2007, 12, 1143–1168. [Google Scholar] [CrossRef] [Green Version]
- Toma, C.L. Online dating and psychological wellbeing: A social compensation perspective. Curr. Opin. Psychol. 2022, 46, 101331. [Google Scholar] [CrossRef] [PubMed]
- Ran, G.; Li, J.; Zhang, Q.; Niu, X. The association between social anxiety and mobile phone addiction: A three-level meta-analysis. Comput. Hum. Behav. 2022, 130, 107198. [Google Scholar] [CrossRef]
- Reer, F.; Krämer, N.C. The Connection Between Introversion/Extraversion and Social Capital Outcomes of Playing World of Warcraft. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 97–103. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, H.-Y.; Sigerson, L.; Chau, C.-L. Do the socially rich get richer? A nuanced perspective on social network site use and online social capital accrual. Psychol. Bull. 2019, 145, 734–764. [Google Scholar] [CrossRef]
- Pouwels, J.L.; Keijsers, L.; Odgers, C. Who benefits most from using social media, the socially rich or the socially poor? Curr. Opin. Psychol. 2022, 47, 101351. [Google Scholar] [CrossRef]
- Peter, J.; Valkenburg, P.M.; Schouten, A.P. Developing a Model of Adolescent Friendship Formation on the Internet. CyberPsychol. Behav. 2005, 8, 423–430. [Google Scholar] [CrossRef]
- Lin, X.; Su, W.; Potenza, M.N. Development of an Online and Offline Integration Hypothesis for Healthy Internet Use: Theory and Preliminary Evidence. Front. Psychol. 2018, 9, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suler, J.R. Psychology of the Digital Age: Humans Become Electric; Cambridge University Press: New York, NY, USA, 2016. [Google Scholar]
- Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z. Social Networking Addiction: An Overview of Preliminary Findings. In Behavioral Addictions; Rosenberg, K.P., Feder, L.C., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 119–141. [Google Scholar] [CrossRef]
- Young, K.S.; Pistner, M.; O’Mara, J.; Buchanan, J. Cyber-disorders: The mental health concern for the new millennium. CyberPsychol. Behav. 2000, 3, 475–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mckenna, K.Y.A.; Bargh, J.A. Plan 9 From Cyberspace: The Implications of the Internet for Personality and Social Psychology. Personal. Soc. Psychol. Rev. 2000, 4, 57–75. [Google Scholar] [CrossRef]
- Young, K.S. Caught in the Net: How to Recognize the Signs of Internet Addiction and a Winning Strategy for Recovery; John Wiley and Sons, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Blumer, T.; Döring, N. Are we the same online? The expression of the five factor personality traits on the computer and the Internet. Cyberpsychology 2012, 6, 5. [Google Scholar] [CrossRef]
- Amichai-Hamburger, Y.; Etgar, S. Personality and Internet use: The case of introversion and extroversion. In The Oxford Handbook of Cyberpsychology; Attrill-Smith, A., Fullwood, C., Keep, M., Kuss, D.J., Eds.; Oxford University Press: New York, NY, USA, 2019; pp. 57–73. [Google Scholar] [CrossRef]
- Joinson, A.N. Understanding the Psychology of Internet Behavior: Virtual Worlds, Real Lives; Palgrave Macmillan: London, UK, 2003. [Google Scholar]
- Zhu, L. A Study on the Relationship between Realistic Personality and Internet Personality of College Students with Internet Addiction. Master’s Thesis, Central China Normal University, Wuhan, China, 2008. [Google Scholar]
- Boomsma, A. The robustness of LISREL against small sample sizes in factor analysis models. In Systems under Indirect Observation: Causality, Structure, Prediction; Joreskog, K.G., Wold, H., Eds.; Elsevier: Amsterdam, The Netherlands, 1982; pp. 149–173. [Google Scholar]
- Wang, Y.A.; Rhemtulla, M. Power Analysis for Parameter Estimation in Structural Equation Modeling: A Discussion and Tutorial. Adv. Methods Pract. Psychol. Sci. 2021, 4, 1–17. [Google Scholar] [CrossRef]
- Bentler, P.M.; Chou, C.-P. Practical Issues in Structural Modeling. Sociol. Methods Res. 1987, 16, 78–117. [Google Scholar] [CrossRef]
- Geng, J.; Han, L.; Gao, F.; Jou, M.; Huang, C.-C. Internet addiction and procrastination among Chinese young adults: A moderated mediation model. Comput. Hum. Behav. 2018, 84, 320–333. [Google Scholar] [CrossRef]
- Widyanto, L.; McMurran, M. The psychometric properties of the Internet Addiction Test. CyberPsychol. Behav. 2004, 7, 443–450. [Google Scholar] [CrossRef]
- Widyanto, L.; Griffiths, M.D.; Brunsden, V. A psychometric comparison of the Internet Addiction Test, the Internet-Related Problem Scale, and self-diagnosis. Cyberpsychol. Behav. Soc. Netw. 2010, 14, 141–149. [Google Scholar] [CrossRef]
- Qian, M.; Wu, G.; Zhu, R.; Zhang, S. Development of the Revised Eysenck Personality Questionnaire Short Scale for Chinese (EPQ-RSC). Acta Psychol. Sin. 2000, 32, 317–323. [Google Scholar]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2002. [Google Scholar]
- Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modeling A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Amichai-Hamburger, Y. Internet and personality. Comput. Hum. Behav. 2002, 18, 1–10. [Google Scholar] [CrossRef]
- Christopherson, K.M. The positive and negative implications of anonymity in Internet social interactions: “On the Internet, Nobody Knows You’re a Dog”. Comput. Hum. Behav. 2007, 23, 3038–3056. [Google Scholar] [CrossRef]
- Eklund, L. Bridging the online/offline divide: The example of digital gaming. Comput. Hum. Behav. 2015, 53, 527–535. [Google Scholar] [CrossRef]
- Johnson, M. Going Offline: Personality and its Effects on the Transition of Online Relationships to the Offline World. Bachelor’s Thesis, University of Northern Iowa, Cedar Falls, IA, USA, 2013. [Google Scholar]
- Snodgrass, J.G.; Lacy, M.G.; Ii, H.J.F.D.; Fagan, J. Enhancing one life rather than living two: Playing MMOs with offline friends. Comput. Hum. Behav. 2011, 27, 1211–1222. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, T. The Relationship between Adolescents’ Extraversion/Agreeableness, Internet Service Preference, and Internet Addiction. Psychol. Dev. Educ. 2007, 2, 42–48. [Google Scholar]
- Mitchell, M.E.; Lebow, J.R.; Uribe, R.; Grathouse, H.; Shoger, W. Internet use, happiness, social support and introversion: A more fine grained analysis of person variables and internet activity. Comput. Hum. Behav. 2011, 27, 1857–1861. [Google Scholar] [CrossRef]
- Clark-Gordon, C.V.; Bowman, N.D.; Goodboy, A.K.; Wright, A. Anonymity and Online Self-Disclosure: A Meta-Analysis. Commun. Rep. 2019, 32, 98–111. [Google Scholar] [CrossRef]
- Zywica, J.; Danowski, J. The Faces of Facebookers: Investigating Social Enhancement and Social Compensation Hypotheses; Predicting Facebook™ and Offline Popularity from Sociability and Self-Esteem, and Mapping the Meanings of Popularity with Semantic Networks. J. Comput. Mediat. Commun. 2008, 14, 1–34. [Google Scholar] [CrossRef]
- Kayne, A.; Lee-McFadden, B. Online self and discrepancy: Who we are online, offline, and hoping to be. In Proceedings of the Konferensi Nasional Peneliti Muda Indonesia UHAMKA, Jakarta, Indonesia, 20–22 April 2017; pp. 85–91. [Google Scholar]
- Campbell, A.J.; Cumming, S.R.; Hughes, I. Internet Use by the Socially Fearful: Addiction or Therapy? CyberPsychol. Behav. 2006, 9, 69–81. [Google Scholar] [CrossRef]
- Green, R.; Delfabbro, P.H.; King, D.L. Avatar identification and problematic gaming: The role of self-concept clarity. Addict. Behav. 2021, 113, 106694. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, J.; Duan, W.; He, L. Peer relationship increasing the risk of social media addiction among Chinese adolescents who have negative emotions. Curr. Psychol. 2021, 1–9. [Google Scholar] [CrossRef]
- Bilgin, M.; Şahin, İ.; Togay, A. Social media addiction in adolescents and parent-adolescent relationship. Educ. Sci. 2020, 45, 263–281. [Google Scholar] [CrossRef]
- Dailey, S.L.; Howard, K.; Roming, S.M.P.; Ceballos, N.; Grimes, T. A biopsychosocial approach to understanding social media addiction. Hum. Behav. Emerg. Technol. 2020, 2, 158–167. [Google Scholar] [CrossRef] [Green Version]
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1. Extraversion | 1 | |||||||
2. Preference for online anonymity | −0.39 ** | 1 | ||||||
3. Extraversion compensation | −0.50 ** | 0.19 ** | 1 | |||||
4. Online-offline integration | 0.33 ** | −0.25 ** | −0.26 ** | 1 | ||||
5. Self-identity integration | 0.26 ** | −0.15 ** | −0.28 ** | 0.74 ** | 1 | |||
6. Relationship integration | 0.27 ** | −0.31 ** | −0.18 ** | 0.73 ** | 0.36 ** | 1 | ||
7. Social function integration | 0.18 ** | −0.07 | −0.11 * | 0.70 ** | 0.29 ** | 0.21 ** | 1 | |
8. Internet addiction | −0.17 ** | 0.15 ** | 0.19 ** | −0.50 ** | −0.38 ** | −0.26 ** | −0.46 ** | 1 |
M | 7.15 | 40.14 | −0.08 | 42.47 | 14.94 | 13.46 | 14.06 | 48.86 |
SD | 3.14 | 7.18 | 2.93 | 5.26 | 2.27 | 2.55 | 2.46 | 11.73 |
Path | Effect | 95%CI |
---|---|---|
Direct effect | ||
Extraversion → internet addiction | 0.04 | −0.06, 0.12 |
Indirect effects | −0.21 | −0.28, −0.14 |
Extraversion → preference for online anonymity → internet addiction | −0.01 | −0.04, 0.03 |
Extraversion → extraversion compensation → internet addiction | −0.04 | −0.08, 0.01 |
Extraversion → online-offline integration → internet addiction | −0.10 | −0.15, −0.05 |
Extraversion → preference for online anonymity → online-offline integration → internet addiction | −0.04 | −0.06, −0.02 |
Extraversion → extraversion compensation → online-offline integration → internet addiction | −0.03 | −0.05, −0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Su, W.; Han, X.; Potenza, M.N. Rich Get Richer: Extraversion Statistically Predicts Reduced Internet Addiction through Less Online Anonymity Preference and Extraversion Compensation. Behav. Sci. 2022, 12, 193. https://doi.org/10.3390/bs12060193
Zhang S, Su W, Han X, Potenza MN. Rich Get Richer: Extraversion Statistically Predicts Reduced Internet Addiction through Less Online Anonymity Preference and Extraversion Compensation. Behavioral Sciences. 2022; 12(6):193. https://doi.org/10.3390/bs12060193
Chicago/Turabian StyleZhang, Shaozhen, Wenliang Su, Xiaoli Han, and Marc N. Potenza. 2022. "Rich Get Richer: Extraversion Statistically Predicts Reduced Internet Addiction through Less Online Anonymity Preference and Extraversion Compensation" Behavioral Sciences 12, no. 6: 193. https://doi.org/10.3390/bs12060193
APA StyleZhang, S., Su, W., Han, X., & Potenza, M. N. (2022). Rich Get Richer: Extraversion Statistically Predicts Reduced Internet Addiction through Less Online Anonymity Preference and Extraversion Compensation. Behavioral Sciences, 12(6), 193. https://doi.org/10.3390/bs12060193