Determining Perceived Self-Efficacy for Preventing Dengue Fever in Two Climatically Diverse Mexican States: A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Respondents
2.2. Study Areas
2.3. Instruments
2.4. Data Collection and Preprocessing
2.5. Scoring Metrics
2.6. Analysis
3. Results
3.1. Knowledge about Factors Associated with DF
3.2. Knowledge, Attitude, and Practices Associated with Climate Change and DF
3.3. Self-Efficacy Scores Associated with the Mosquito Reduction Practices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez, J.D.; Garza, J.A.C.; Cuellar-Barboza, A. Going Viral 2019: Zika, Chikungunya, and Dengue. Dermatol. Clin. 2019, 37, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Khetarpal, N.; Khanna, I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J. Immunol. Res. 2016, 2016, 6803098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secretaría de Salud México. Programa De Acción Específico Del Programa De Prevención Y Control De Enfermedades Transmitidas Por Vectores E Intoxicación Por Veneno De Artrópodos 2020–2024. Available online: https://www.gob.mx/salud/documentos/programa-de-accion-especificao (accessed on 20 December 2021).
- Undurraga, E.A.; Betancourt-Cravioto, M.; Ramos-Castaneda, J.; Martinez-Vega, R.; Mendez-Galvan, J.; Gubler, D.J.; Guzman, M.G.; Halstead, S.B.; Harris, E.; Kuri-Morales, P.; et al. Economic and disease burden of dengue in Mexico. PLoS Negl. Trop. Dis. 2015, 9, e0003547. [Google Scholar] [CrossRef] [Green Version]
- Zubieta-Zavala, A.; López-Cervantes, M.; Salinas-Escudero, G.; Ramírez-Chávez, A.; Castañeda, J.R.; Hernández-Gaytán, S.I.; López Yescas, J.G.; Durán-Arenas, L. Economic impact of dengue in Mexico considering reported cases for 2012 to 2016. PLoS Negl. Trop. Dis. 2018, 12, e0006938. [Google Scholar] [CrossRef] [PubMed]
- Ladner, J.; Rodrigues, M.; Davis, B.; Besson, M.H.; Audureau, E.; Saba, J. Societal impact of dengue outbreaks: Stakeholder perceptions and related implications. A qualitative study in Brazil, 2015. PLoS Negl. Trop. Dis. 2017, 11, e0005366. [Google Scholar]
- Campbell, K.M.; Lin, C.D.; Iamsirithaworn, S.; Scott, T.W. The complex relationship between weather and dengue virus transmission in Thailand. Am. J. Trop. Med. Hyg. 2013, 89, 1066–1080. [Google Scholar] [CrossRef] [Green Version]
- Paz-Soldan, V.A.; Bauer, K.M.; Lenhart, A.; Cordova Lopez, J.J.; Elder, J.P.; Scott, T.W.; McCall, P.J.; Kochel, T.J.; Morrison, A.C. Experiences with insecticide-treated curtains: A qualitative study in Iquitos, Peru. BMC Public Health 2016, 16, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arellano, C.; Castro, L.; Diaz-Caravantes, R.E.; Ernst, K.C.; Hayden, M.; Reyes-Castro, P. Knowledge and Beliefs about Dengue Transmission and Their Relationship with Prevention Practices in Hermosillo, Sonora. Front Public Health 2015, 3, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harapan, H.; Michie, A.; Mudatsir, M.; Sasmono, R.T.; Imrie, A. Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Res. Notes 2019, 12, 350. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, J.R. The problem with dengue. Trans. R. Soc. Trop. Med. Hyg. 2005, 99, 643–646. [Google Scholar] [CrossRef]
- World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention, and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Gunasekara, T.D.C.P.; Velathanthiri, V.G.N.S.; Weerasekara, M.M.; Fernando, S.S.N.; Peelawattage, M.; Guruge, D.; Fernando, S. Knowledge, Attitudes and Practices Regarding Dengue Fever in a Suburban Community in Sri Lanka. 2015. Available online: http://www.dr.lib.sjp.ac.lk/handle/123456789/1852 (accessed on 20 December 2021).
- Al-Dubai, S.A.; Ganasegeran, K.; Mohanad Rahman, A.; Alshagga, M.A.; Saif-Ali, R. Factors affecting dengue fever knowledge, attitudes and practices among selected urban, semi-urban and rural communities in Malaysia. Southeast Asian J. Trop. Med. Public Health 2013, 44, 37–49. [Google Scholar] [PubMed]
- Mathur, D.; Patel, M.; Vyas, P.; Kaushal, R.; Dash, G.C.; Goel, A.D.; Bhardwaj, P.; Gupta, M.K.; Joshi, N.K. Revitalising community engagement and surveillance challenges for strengthening dengue control in Jodhpur, Western Rajasthan, India—A mixed method study. J. Infect. Public Health 2020, 13, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.P.; AbuBakar, S. Health beliefs and practices related to dengue fever: A focus group study. PLoS Negl. Trop. Dis. 2013, 7, e2310. [Google Scholar] [CrossRef] [PubMed]
- Causa, R.; Ochoa-Díaz-López, H.; Dor, A.; Rodríguez-León, F.; Solís-Hernández, R.; Pacheco-Soriano, A.L. Emerging arboviruses (dengue, chikungunya, and Zika) in Southeastern Mexico: Influence of socio-environmental determinants on knowledge and practices. Cad. Saude Publica 2020, 36, e00110519. [Google Scholar] [CrossRef] [PubMed]
- Toan, D.T.T.; Kien, V.D.; Giang, K.B.; Minh, H.V.; Wright, P. Perceptions of climate change and its impact on human health: An integrated quantitative and qualitative approach. Glob. Health Action 2014, 7, 23025. [Google Scholar] [CrossRef]
- Podder, D.; Paul, B.; Dasgupta, A.; Bandyopadhyay, L.; Pal, A.; Roy, S. Community perception and risk reduction practices toward malaria and dengue: A mixed-method study in slums of Chetla, Kolkata. Indian J. Public Health 2019, 63, 178–185. [Google Scholar] [CrossRef]
- Colón-González, F.J.; Lake, I.R.; Bentham, G. Climate variability and dengue fever in warm and humid Mexico. Am. J. Trop. Med. Hyg. 2011, 84, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Boussiala, M. Cook’s Distance. 2020. Available online: https://www.researchgate.net/publication/344522968_Cook%27s_Distance (accessed on 20 December 2021).
- Aerts, C.; Revilla, M.; Duval, L.; Paaijmans, K.; Chandrabose, J.; Cox, H.; Sicuri, E. Understanding the role of disease knowledge and risk perception in shaping preventive behavior for selected vector-borne diseases in Guyana. PLoS Negl. Trop. Dis. 2020, 14, e0008149. [Google Scholar] [CrossRef]
- Sheeran, P.; Maki, A.; Montanaro, E.; Avishai-Yitshak, A.; Bryan, A.; Klein, W.M.; Miles, E.; Rothman, A.J. The impact of changing attitudes, norms, and self-efficacy on health-related intentions and behavior: A meta-analysis. Health Psychol. 2016, 35, 1178–1188. [Google Scholar] [CrossRef]
- Barrett, C.; Cheung, K.L. Knowledge, socio-cognitive perceptions and the practice of hand hygiene and social distancing during the COVID-19 pandemic: A cross-sectional study of UK university students. BMC Public Health 2021, 21, 426. [Google Scholar] [CrossRef] [PubMed]
- Palomino Gonzalez, R.; Kadengye, T.; Mayega, R.W. The knowledge-risk-behaviour continuum among young Ugandans: What it tells us about SRH/HIV integration. BMC Public Health 2019, 19 (Suppl. 1), 604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koschollek, C.; Kuehne, A.; Müllerschön, J.; Amoah, S.; Batemona-Abeke, H.; Dela Bursi, T.; Mayamba, P.; Thorlie, A.; Mputu Tshibadi, C.; Wangare Greiner, V.; et al. Knowledge, information needs and behavior regarding HIV and sexually transmitted infections among migrants from sub-Saharan Africa living in Germany: Results of a participatory health research survey. PLoS ONE 2020, 15, e0227178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, H.; Furukawa, T.A.; Hayashi, S.U.; Goto, A.; Izumi, K.; Hayashino, Y.; Noda, M.; J-DOIT2 Study Group. Risk perception, self-efficacy, trust for physician, depression, and behavior modification in diabetic patients. J. Health Psychol. 2020, 25, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Rigau-Pérez, J.G.; Puerto Rico Association of Epidemiologists. Clinical manifestations of dengue hemorrhagic fever in Puerto Rico, 1990–1991. Rev. Panam. Salud Publica 1997, 1, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu-Helmersson, J.; Stenlund, H.; Wilder-Smith, A.; Rocklöv, J. Vectorial capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLoS ONE 2014, 9, e89783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocklöv, J.; Quam, M.B.; Sudre, B.; German, M.; Kraemer, M.U.; Brady, O.; Bogoch, I.I.; Liu-Helmersson, J.; Wilder-Smith, A.; Semenza, J.C.; et al. Assessing Seasonal Risks for the Introduction and Mosquito-borne Spread of Zika Virus in Europe. EBioMedicine 2016, 9, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurman, T.; Ballard Sara, A.; Villanueva Lorenzo, F.; Luis, D.; Hunter, G.; Maloney, S.; Fujita-Conrads, R.; Leontsini, E. The role of gender in Zika prevention behaviors in the Dominican Republic: Findings and programmatic implications from a qualitative study. PLoS Negl. Trop. Dis. 2020, 14, e0007994. [Google Scholar] [CrossRef] [PubMed]
- Apinjoh, T.O.; Anchang-Kimbi, J.K.; Mugri, R.N.; Tangoh, D.A.; Nyingchu, R.V.; Chi, H.F.; Tata, R.B.; Njumkeng, C.; Njua-Yafi, C.; Achidi, E.A. The effect of Insecticide Treated Nets (ITNs) on Plasmodium falciparum infection in rural and semi-urban communities in the south west region of Cameroon. PLoS ONE 2015, 10, e0116300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dormann, C.; Duda, K.; Hamainza, B.; Yewhalaw, D.; Hemingway, C.; Coleman, M.; Coleman, M.; Thomsen, E. Evaluation of a game-based training course to build capacity for insecticide resistance management in vector control programmes. PLoS ONE 2020, 15, e0240514. [Google Scholar] [CrossRef]
- Asingizwe, D.; Poortvliet, P.M.; van Vliet, A.J.; Koenraadt, C.J.; Ingabire, C.M.; Mutesa, L.; Leeuwis, C. What do people benefit from a citizen science programme? Evidence from a Rwandan citizen science programme on malaria control. Malar. J. 2020, 19, 283. [Google Scholar] [PubMed]
States | Measures to Eliminate Mosquito (n (%)) | |||||
---|---|---|---|---|---|---|
Took Measures | Did Not Take Measures | Not Sure | p-Value | |||
Colima | Age (years) a | 37.3 ± 11.7 | 37.4 ± 14.8 | 27 ± 4.0 | ||
Gender b | Male | 46 (86.79%) | 6 (11.32%) | 1 (1.89%) | 0.2095 | |
Female | 73 (92.41%) | 3 (3.80%) | 3 (3.80%) | |||
Residence Area b | Rural | 6 (100%) | 0 (%) | 0 (%) | 0.7094 | |
Urban | 113 (89.68%) | 9 (7.14%) | 4 (3.17%) | |||
Duration of stay b | 3 years or less | 22 (88.00%) | 1 (4.00%) | 2 (8.00%) | 0.2359 | |
Above 3 years | 97 (90.65%) | 8 (7.48%) | 2 (1.87%) | |||
Kind of Home b | Single-family home | 84 (89.36%) | 7 (7.45%) | 3 (3.19%) | 0.8870 | |
*Others | 35 (92.11%) | 2 (5.26%) | 1 (2.63%) | |||
Number in Household b | Less than 3 | 27 (87.10%) | 3 (9.68%) | 1 (3.23%) | 0.8893 | |
3 or more | 74 (90.24%) | 6 (7.32%) | 2 (2.44%) | |||
Sonora | Age (years) a | 37.1 ± 13.0 | 26.7 ± 8.6 | 29.7 ± 12.3 | ||
Gender b | Male | 104 (80.62%) | 17 (13.18%) | 8 (6.20%) | 0.8633 | |
Female | 225 (82.72%) | 31 (11.40%) | 16 (5.88%) | |||
Residence Area b | Rural | 32 (78.05%) | 6 (14.63%) | 3 (7.32%) | 0.7807 | |
Urban | 297 (82.50%) | 42 (11.67%) | 21 (5.83%) | |||
Duration of stay b | 3 years or less | 32 (69.57%) | 9 (19.57%) | 5 (10.87%) | 0.0620 | |
Above 3 years | 297 (83.66%) | 39 (10.99%) | 19 (5.35%) | |||
Kind of Home b | Single-family home | 254 (83.83%) | 31 (10.23%) | 18 (5.94%) | 0.1639 | |
*Others | 75 (76.53%) | 17 (17.35%) | 6 (6.12%) | |||
Number in Household b | Less than 3 | 61 (81.33%) | 10 (13.33%) | 4 (5.33%) | 0.9851 | |
3 or more | 170 (82.13%) | 11 (5.31%) | 26 (12.56%) | |||
ꭞOther States | Age (years) a | 33.2 ± 10.6 | 29.0 ± 11.6 | 24.0 ± 2.8 | ||
Gender b | Male | 26 (86.67%) | 2 (6.67%) | 2 (6.67%) | 0.0509 | |
Female | 48 (81.36%) | 11 (18.64%) | - | |||
Residence Area b | Rural | 5 (83.33%) | 1 (16.67%) | 0 (0.00%) | 0.9216 | |
Urban | 69 (83.13%) | 12 (14.46%) | 2 (2.41%) | |||
Duration of stay b | 3 years or less | 8 (57.14%) | 4 (28.57%) | 2 (14.29%) | 0.0008 | |
Above 3 years | 66 (88.00%) | 9 (12.00%) | 0 (0%) | |||
Kind of Home b | Single-family home | 44 (84.62%) | 8 (15.38%) | 0 (0%) | 0.2351 | |
*Others | 30 (81.08%) | 5 (13.51%) | 2 (5.41%) | |||
Number in Household b | Less than 3 | 19 (82.61%) | 3 (13.04%) | 1 (4.35%) | 0.9078 | |
3 or more | 35 (85.37%) | 5 (12.20%) | 1 (2.44%) |
State | Variable | Knowledge about Climatic Factors Affecting Dengue Transmission | Measures Taken by Respondents in the Previous Year to Control Mosquitoes | Presence of Items in Respondent’s Yard | Frequency of Using Measures to Control Adult Mosquitoes | |
---|---|---|---|---|---|---|
Colima | Gender | Male | 2.34 (±1.29) (1.99, 2.69) | 9.88 (±1.62) (9.21, 10.55) | 1.85 (±1.29) (1.49, 2.21) | 1.62 (±1.21) (1.29, 1.96) |
Female | 2.06 (±1.54) (1.72, 2.40) | 10.36 (±2.00) (9.58, 11.13) | 1.79 (±1.42) (1.46, 2.13) | 1.72 (±1.47) (1.39, 2.05) | ||
T-test p-value | 0.2827 | 0.3482 | 0.8358 | 0.6853 | ||
Residence Area | Rural | 2.08 (±1.44) (1.16, 3.00) | 10.00 (±2.06) (8.42, 11.58) | 2.58 (±1.08) (1.89, 3.27) | 1.75 (±1.86) (0.57, 2.93) | |
Urban | 2.18 (±1.45) (1.92, 2.45) | 10.13 (±1.80) (9.60, 10.70) | 1.73 (±1.37) (1.48, 1.99) | 1.68 (±1.32) (1.44, 1.91) | ||
T-test p-value | 0.8200 | 0.8148 | 0.0399 | 0.8570 | ||
Kind of Home | Single-family home | 2.20 (±1.42) (1.91, 2.49) | 10.12 (±1.45) (9.6, 10.62) | 1.82 (±1.43) (1.52, 2.11) | 1.50 (±1.25) (1.24, 1.76) | |
*Others | 2.11 (±1.52) (1.61, 2.61) | 10.16 (±2.41) (9.00, 11.32) | 1.82 (±1.19) (1.41, 2.24) | 2.13 (±1.55) (1.62, 2.64) | ||
T-test p-value | 0.7285 | 0.9476 | 0.9701 | 0.0156 | ||
Sonora | Gender | Male | 2.47 (±1.56) (2.20, 2.74) | 9.41 (±2.33) (8.72, 10.11) | 2.60 (±1.67) (2.29, 2.90) | 1.78 (±1.52) (1.51, 2.04) |
Female | 2.02 (±1.44) (1.85, 2.19) | 9.66 (±2.32) (9.17, 10.16) | 2.40 (±1.44) (2.22, 2.58) | 1.90 (±1.55) (1.72, 2.09) | ||
T-test p-value | 0.0049 | 0.5574 | 0.2538 | 0.4463 | ||
Residence Area | Rural | 2.23 (±1.43) (1.92, 2.55) | 8.81 (±3.06) (7.60, 10.03) | 2.53 (±1.39) (2.20, 2.84) | 1.83 (±1.51) (1.50, 2.16) | |
Urban | 2.15 (±1.51) (1.98, 2.31) | 9.77 (±2.06) (9.37, 10.17) | 2.45 (±1.55) (2.27, 2.63) | 1.87 (±1.55) (1.70, 2.03) | ||
T-test p-value | 0.6381 | 0.0555 | 0.6975 | 0.8474 | ||
Kind of Home | Single-family home | 2.16 (±1.47) (2.00, 2.33) | 9.59 (±2.22) (9.15, 10.03) | 2.51 (±1.49) (2.33, 2.68) | 1.88 (±1.50) (1.71, 2.05) | |
*Others | 2.16 (±1.55) (1.85, 2.47) | 9.53 (±2.65) (8.58, 10.49) | 2.35 (±1.61) (2.11, 2.68) | 1.81 (±1.66) (1.47, 2.14) | ||
T-test p-value | 0.9896 | 0.9013 | 0.3893 | 0.6889 | ||
Other States | Gender | Male | 2.20 (±1.32) (1.71, 2.69) | 9.22 (±2.39) (7.39, 11.05) | 2.53 (±1.59) (1.94, 3.13) | 2.27 (±1.39) (1.75, 2.78) |
Female | 2.41 (±1.39) (2.04, 2.77) | 9.87 (±2.00) (8.76, 10.97) | 2.09 (±1.37) (1.72, 2.45) | 2.20 (±1.57) (1.79, 2.61) | ||
T-test p-value | 0.5023 | 0.4838 | 0.1788 | 0.8526 | ||
Residence Area | Rural | 1.82 (±1.37) (1.21, 2.42) | 8.20 (±1.64) (6.16, 10.24) | 2.43 (±1.83) (1.59, 3.26) | 2.05 (±1.21) (1.51, 2.58) | |
Urban | 2.51 (±1.33) (2.18, 2.83) | 10.00 (±2.11) (8.98, 11.02) | 2.18 (±1.50) (1.92, 2.58) | 2.18 (±1.55) (1.84, 2.51) | ||
T-test p-value | 0.0391 | 0.0918 | 0.5073 | 0.5229 | ||
Kind of Home | Single-family home | 2.48 (±1.39) (2.09, 2.87) | 9.80 (±2.11) (8.63, 10.97) | 2.22 (±1.61) (1.76, 2.68) | 2.29 (±1.53) (1.86, 2.71) | |
*Others | 2.13 (±1.32) (1.70, 2.57) | 9.33 (±2.24) (7.61, 11.05) | 2.28 (±1.23) (1.86, 2.70) | 2.14 (±1.49) (1.64, 2.63) | ||
T-test p-value | 0.2411 | 0.6131 | 0.8571 | 0.6386 |
Variable | DF Diagnosis in the Past Year (n (%)) | ||||
---|---|---|---|---|---|
Demographic Variable | Yes | No | Do Not Know | p-Value | |
Gender | Male | 19 (8.96%) | 192 (90.57%) | 1 (0.47%) | 0.5942 |
Female | 32 (7.80%) | 373 (90.98%) | 5 (91.22%) | ||
Residence Area | Rural | 2 (3.77%) | 51 (96.23%) | 0 (0.00%) | 0.3450 |
Urban | 49 (8.61%) | 514 (90.33%) | 6 (1.05%) | ||
State | Colima | 29 (21.97%) | 103 (78.03%) | 0 (0.00%) | <0.0001 |
Sonora | 8 (2.00%) | 388 (96.76%) | 5 (1.25%) | ||
Other states | 14 (15.73%) | 74 (83.15%) | 1 (1.12%) | ||
Variable | Availability of HealthCare providers (n (%)) | ||||
Demographic Variable | Yes | No | Do not know | p-value | |
Gender | Male | 173 (81.60%) | 17 (8.02%) | 22 (10.38%) | 0.2602 |
Female | 322 (78.54%) | 27 (6.59%) | 61 (14.88%) | ||
Residence Area | Rural | 32 (60.38%) | 10 (18.87%) | 11 (20.75%) | 0.0003 |
Urban | 463 (81.37%) | 34 (5.98%) | 72 (12.65%) | ||
State | Colima | 101 (76.52%) | 7 (5.30%) | 24 (18.18%) | 0.3421 |
Sonora | 322 (80.30%) | 29 (7.23%) | 50 (12.47%) | ||
Other states | 72 (76.52%) | 8 (8.99%) | 9 (10.11%) | ||
Variable | Any neighbor diagnosed with DF (n (%)) | ||||
Demographic Variable | Yes | No | Do not know | p-value | |
Gender | Male | 24 (11.32%) | 86 (40.57%) | 102 (48.11%) | 0.7485 |
Female | 55 (13.41%) | 165 (40.24%) | 190 (46.34%) | ||
Residence Area | Rural | 5 (9.43%) | 28 (52.83%) | 20 (37.74%) | 0.1519 |
Urban | 74 (13.01%) | 223 (39.19%) | 272 (47.80%) | ||
State | Colima | 31 (23.48%) | 37 (28.03%) | 64 (48.48%) | <0.0001 |
Sonora | 32 (7.98%) | 177 (44.14%) | 192 (47.88%) | ||
Other states | 16 (17.98%) | 37 (41.57%) | 36 (40.45%) |
Independent Variables | OR (95% CI) | p-Value |
---|---|---|
Gender | ||
Female | 1.040 (0.603–1.792) | 0.8890 |
Male | Ref | - |
Age | 1.064 (1.036–1.092) | <0.0001 |
Self-efficacy | 1.020 (1.007–1.033) | 0.0024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annan, E.; Angulo-Molina, A.; Yaacob, W.F.W.; Kline, N.; Lopez-Lemus, U.A.; Haque, U. Determining Perceived Self-Efficacy for Preventing Dengue Fever in Two Climatically Diverse Mexican States: A Cross-Sectional Study. Behav. Sci. 2022, 12, 94. https://doi.org/10.3390/bs12040094
Annan E, Angulo-Molina A, Yaacob WFW, Kline N, Lopez-Lemus UA, Haque U. Determining Perceived Self-Efficacy for Preventing Dengue Fever in Two Climatically Diverse Mexican States: A Cross-Sectional Study. Behavioral Sciences. 2022; 12(4):94. https://doi.org/10.3390/bs12040094
Chicago/Turabian StyleAnnan, Esther, Aracely Angulo-Molina, Wan Fairos Wan Yaacob, Nolan Kline, Uriel A. Lopez-Lemus, and Ubydul Haque. 2022. "Determining Perceived Self-Efficacy for Preventing Dengue Fever in Two Climatically Diverse Mexican States: A Cross-Sectional Study" Behavioral Sciences 12, no. 4: 94. https://doi.org/10.3390/bs12040094
APA StyleAnnan, E., Angulo-Molina, A., Yaacob, W. F. W., Kline, N., Lopez-Lemus, U. A., & Haque, U. (2022). Determining Perceived Self-Efficacy for Preventing Dengue Fever in Two Climatically Diverse Mexican States: A Cross-Sectional Study. Behavioral Sciences, 12(4), 94. https://doi.org/10.3390/bs12040094