The Association of the Gut Microbiota with Clinical Features in Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion/Exclusion Criteria
2.3. Review Process
3. Results
4. Discussion
4.1. Diversity
4.2. Negative Symptom Severity and Overall Symptom Severity
4.3. Limitations and Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cloutier, M.; Aigbogun, M.S.; Guerin, A.; Nitulescu, R.; Ramanakumar, A.V.; Kamat, S.A.; DeLucia, M.; Duffy, R.; Legacy, S.N.; Henderson, C.; et al. The Economic Burden of Schizophrenia in the United States in 2013. J. Clin. Psychiatry 2016, 77, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Haro, J.M.; Altamura, C.; Corral, R.; Elkis, H.; Evans, J.; Krebs, M.O.; Zink, M.; Malla, A.; Méndez, J.I.; Bernasconi, C.; et al. Understanding the course of persistent symptoms in schizophrenia: Longitudinal findings from the pattern study. Psychiatry Res. 2018, 267, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.E.; Liu, J.; Tu, X.; Palmer, B.W.; Eyler, L.T.; Jeste, D.V. A widening longevity gap between people with schizophrenia and general population: A literature review and call for action. Schizophr. Res. 2018, 196, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Zeng, B.; Liu, M.; Chen, J.; Pan, J.; Han, Y.; Liu, Y.; Cheng, K.; Zhou, C.; Wang, H.; et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 2019, 5, eaau8317. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Hathaway, H.; Kosciolek, T.; Knight, R.; Jeste, D.V. Gut microbiome in serious mental illnesses: A systematic review and critical evaluation. Schizophr. Res. 2021, 234, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Strassnig, M.; Singh Brar, J.; Ganguli, R. Dietary fatty acid and antioxidant intake in community-dwelling patients suffering from schizophrenia. Schizophr. Res. 2005, 76, 343–351. [Google Scholar] [CrossRef]
- Hills, R.; Pontefract, B.; Mishcon, H.; Black, C.; Sutton, S.; Theberge, C. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [Green Version]
- Cussotto, S.; Strain, C.R.; Fouhy, F.; Strain, R.G.; Peterson, V.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology 2019, 236, 1671–1685. [Google Scholar] [CrossRef] [PubMed]
- Cussotto, S.; Clarke, G.; Dinan, T.G.; Cryan, J.F. Psychotropics and the Microbiome: A Chamber of Secrets. Psychopharmacology 2019, 236, 1411–1432. [Google Scholar] [CrossRef] [Green Version]
- Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.-N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice: Commensal microbiota and stress response. J. Physiol. 2004, 558, 263–275. [Google Scholar] [CrossRef]
- Bastiaanssen, T.F.S.; Cowan, C.S.M.; Claesson, M.J.; Dinan, T.G.; Cryan, J.F. Making Sense of the Microbiome in Psychiatry. Int. J. Neuropsychopharmacol. 2019, 22, 37–52. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef]
- Stilling, R.M.; Ryan, F.J.; Hoban, A.E.; Shanahan, F.; Clarke, G.; Claesson, M.J.; Dinan, T.G.; Cryan, J.F. Microbes & neurodevelopment—Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav. Immun. 2015, 50, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Severance, E.G.; Prandovszky, E.; Castiglione, J.; Yolken, R.H. Gastroenterology Issues in Schizophrenia: Why the Gut Matters. Curr. Psychiatry Rep. 2015, 17, 27. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.J.; Lynch, D.B.; Murphy, K.; Ulaszewska, M.; Jeffery, I.; O’Shea, C.A.; Watkins, C.; Dempsey, E.M.; Mattivi, F.; Tuohy, K.; et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Gareau, M.G.; Wine, E.; Rodrigues, D.M.; Cho, J.H.; Whary, M.T.; Philpott, D.J.; MacQueen, G.M.; Sherman, P.M. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011, 60, 307–317. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Chung, J.; Battaglia, T.; Henderson, N.; Jay, M.; Li, H.; Lieber, A.D.; Wu, F.; Perez-Perez, G.I.; Chen, Y.; et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 2016, 8, 343ra82. [Google Scholar] [CrossRef] [Green Version]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Ferrario, C.; Van Sinderen, D.; Ventura, M. Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ. Microbiol. 2017, 19, 1379–1390. [Google Scholar] [CrossRef] [Green Version]
- Nasrallah, H. The daunting heterogeneity of schizophrenia: Hundreds of biotypes and dozens of theories. Curr. Psychiatry 2018, 17, 4–7. [Google Scholar]
- Tuena, C.; Semonella, M.; Fernández-Alvarez, J.; Colombo, D.; Cipresso, P. Predictive Precision Medicine: Towards the Computational Challenge. In P5 eHealth: An Agenda for the Health Technologies of the Future; Springer: Cham, Switzerland, 2019; pp. 71–86. [Google Scholar] [CrossRef] [Green Version]
- Bretler, T.; Weisberg, H.; Koren, O.; Neuman, H. The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med. 2019, 17, 112. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.; Maukonen, J.; Hyytiäinen, T.; Kieseppä, T.; Orešič, M.; Sabunciyan, S.; Mantere, O.; Saarela, M.; Yolken, R.; Suvisaari, J. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr. Res. 2017, 192, 398–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.T.; Kosciolek, T.; Maldonado, Y.; Daly, R.E.; Martin, A.S.; McDonald, D.; Knight, R.; Jeste, D.V. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr. Res. 2019, 204, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhuo, M.; Huang, X.; Huang, Y.; Zhou, J.; Xiong, D.; Li, J.; Liu, Y.; Pan, Z.; Li, H.; et al. Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ 2020, 8, e9574. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, J.; Wang, H.; Luo, J.; Wang, Z.; Chen, G.; Jiang, D.; Cao, R.; Huang, H.; Luo, D.; et al. Profiling the differences of gut microbial structure between schizophrenia patients with and without violent behaviors based on 16S rRNA gene sequencing. Int. J. Leg. Med. 2020, 135, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Monahan, J.; Steadman, H.J.; Silver, E.; Appelbaum, P.S.; Robbins, P.C.; Mulvey, E.P.; Roth, L.H.; Grisso, T.; Banks, S.M. Rethinking Risk Assessment: The MacArthur Study of Mental Disorder and Violence; Oxford University Press: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Manchia, M.; Fontana, A.; Panebianco, C.; Paribello, P.; Arzedi, C.; Cossu, E.; Garzilli, M.; Montis, M.; Mura, A.; Pisanu, C.; et al. Involvement of Gut Microbiota in Schizophrenia and Treatment Resistance to Antipsychotics. Biomedicines 2021, 9, 875. [Google Scholar] [CrossRef]
- Kane, J.; Honigfeld, G.; Singer, J.; Meltzer, H. Clozapine for the Treatment-Resistant Schizophrenic. Arch. Gen. Psychiatry 1988, 45, 789–796. [Google Scholar] [CrossRef]
- Zhu, C.; Zheng, M.; Ali, U.; Xia, Q.; Wang, Z.; Chenlong; Yao, L.; Chen, Y.; Yan, J.; Wang, K.; et al. Association Between Abundance of Haemophilus in the Gut Microbiota and Negative Symptoms of Schizophrenia. Front. Psychiatry 2021, 12. [Google Scholar] [CrossRef]
- Biddle, A.; Stewart, L.; Blanchard, J.L.; Leschine, S. Untangling the Genetic Basis of Fibrolytic Specialization by Lachnospiraceae and Ruminococcaceae in Diverse Gut Communities. Diversity 2013, 5, 627–640. [Google Scholar] [CrossRef]
- Flowers, S.A.; Evans, S.J.; Ward, K.M.; McInnis, M.G.; Ellingrod, V.L. Interaction between Atypical Antipsychotics and the Gut Microbiome in a Bipolar Disease Cohort. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 261–267. Available online: http://www.ncbi.nlm.nih.gov/pubmed/28035686 (accessed on 19 January 2019). [CrossRef]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Asif, H.; Dai, L.; He, Y.; Zheng, W.; Wang, D.; Ren, H.; Tang, J.; Li, C.; Jin, K.; et al. Alteration of the gut microbiome in first-episode drug-naïve and chronic medicated schizophrenia correlate with regional brain volumes. J. Psychiatr. Res. 2020, 123, 136–144. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, P.; Wang, Y.; Liu, Y.; Li, X.; Kumar, B.U.; Hei, G.; Lv, L.; Huang, X.-F.; Fan, X.; et al. Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr. Res. 2018, 201, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, R.W. Persistent Negative Symptoms in Schizophrenia: An Overview. Schizophr. Bull. 2007, 33, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gorbovskaya, I.; Hahn, M.; Müller, D. The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment. Nutrients 2021, 13, 1152. [Google Scholar] [CrossRef] [PubMed]
Design, N | Results in Diversity between SCZ/HC | Results in Clinical Characteristics | Major Limitations | Reference |
---|---|---|---|---|
Case– control with prospective cohort component at 12 months FEP (n = 28) HC (n = 16) | None reported | Lachnospiraceae, Bacteroides spp. and Lactobacillus correlated with increased psychotic symptoms. Lachnospiraceae, Ruminococcaceae, spp. associated with negative symptoms. Lactobacillus correlated with increased positive symptoms. Decreased GAF correlated to Ruminococcaceae, Bacteroides, spp. Lactobacillus. Microbiota clustering at intake correlated with remission at 12 months follow-up. | Small sample size, no alpha or beta diversity reported, remission model only attempted to correlate 5 bacterial families, lack of detailed dietary information | Schwarz et al., 2018 |
Case–control, cross-sectional SCZ (n = 25) HC (n = 25) | Alpha: no difference Beta: significant difference | Ruminococcaceae abundance correlated with decreased negative symptoms, and Bacteroides with worse depressive symptoms. Increased genus Coprococcus associated with increased CHD risk. Phylum Cyanobacteria correlated to later disease onset, without relation to disease duration. Self-reported mental well-being correlated with phylum Verrucomicrobia. | Small sample size, no causality established, not AP naive | Nguyen et al., 2019 |
Cross-sectional (also included animal component not reviewed here) SCZ (n = 63) HC (n = 69) | Alpha: SCZ lower alpha diversity than HC Beta: significant difference | Symptom severity correlated positively with Bacteroidaceae, Streptococcaceae, Lachnospiracea and negatively with Veillonellaceae. | Within humans, no temporal relationship, not AP naive | Zheng et al., 2019 |
Case–control SCZ (n = 82) HC (n = 80) | Alpha: no difference Beta: significant difference | Succinivibrio correlated with overall symptom severity as well as the general psychopathology. Corynebacterium negatively correlated to the severity of negative symptoms. | Not AP naïve, all SCZ group inpatients, but not HC, no causality established | Li et al., 2020 |
Case–control, cross- sectional SCZ with violence (n = 26) SCZ w/o violence (n = 16) | Alpha: no difference Beta: no difference | Violent features were correlated to an increased abundance of (p_Bacteroidetes, c_Bacteroidia, o_Bacteroidales, f_Prevotellaceae, s_Bacteroides_uniformis), and decreased abundance of (p_Actinobacteria, c_unidentified_Actinobacteria, o_Bifidobacteriales, f_Enterococcaceae, f_Veillonellaceae, f_Bifidobacteriaceae, g_Enterococcus, g_Candidatus_Saccharimonas, g_Bifidobacterium, and s_Bifidobacterium_pseudocatenulatum). | SCZ not AP naïve, small sample size, no causality established, only history of violence assessed, lack of diet information | Chen et al., 2021 |
Case–control, cross- sectional SCZ (n = 38), incl. 18 TR, treatment resistant, and 20 R, responsive. HC (n = 20) | Alpha: no difference in SCZ vs. HC Beta: significant difference No diversity measures for TR vs. R. | Treatment resistance associated with increased phyla Candidatus Saccharibacteria, and Tenericutes Genera Actynomyces and Porphyromonas. Absent in TRS but present in R were families Flavobacteriaceaea and Enterococcaceae, and species Flintibacter butyricus. | Small sample size, no causality established, not AP naïve, lacking longer-term dietary information | Manchia et al., 2021 |
Case–control, cross- sectional Acute (n = 42) Remission (n = 40) HC (n = 44) | Alpha: no difference between 3 groups Beta: acute group distinct from control and remission groups | Haemophilus positively correlated with negative psychiatric symptoms, Corprococcus negatively correlated with negative symptoms, abundance of Haemophilus positively correlated to excitement, cognition, and depression. | Relatively small sample size, no causality established, no information about diet collected, SCZ hospitalized | Zhu et al., 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocera, A.; Nasrallah, H.A. The Association of the Gut Microbiota with Clinical Features in Schizophrenia. Behav. Sci. 2022, 12, 89. https://doi.org/10.3390/bs12040089
Nocera A, Nasrallah HA. The Association of the Gut Microbiota with Clinical Features in Schizophrenia. Behavioral Sciences. 2022; 12(4):89. https://doi.org/10.3390/bs12040089
Chicago/Turabian StyleNocera, Annamarie, and Henry A. Nasrallah. 2022. "The Association of the Gut Microbiota with Clinical Features in Schizophrenia" Behavioral Sciences 12, no. 4: 89. https://doi.org/10.3390/bs12040089
APA StyleNocera, A., & Nasrallah, H. A. (2022). The Association of the Gut Microbiota with Clinical Features in Schizophrenia. Behavioral Sciences, 12(4), 89. https://doi.org/10.3390/bs12040089