Immediate Effects of Fine-Motor Training on Coordination and Dexterity of the Non-Dominant Hand in Healthy Adults: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Study Design and Methods
2.1. Study Design
2.2. Participants
2.3. Intervention Method
2.3.1. Experimental Group
2.3.2. Control Group
2.4. Research Tools
2.4.1. Coordination Assessment: Chopsticks Manipulation Test (CMT)
2.4.2. Dexterity Assessment: Purdue Pegboard Test (PPT)
2.5. Data Analysis
3. Results
3.1. General Characteristics of Participants
3.2. Changes in the Coordination of the Non-Dominant Hand
3.3. Changes in the Dexterity of the Non-Dominant Hand
3.4. Between-Group Comparison of Differences in Pre- and Post-Intervention Values of Coordination and Dexterity
4. Discussion
4.1. Brain Activation and Using Chopsticks
4.2. Effects of Fine-Motor Training Using a Mirror
4.3. Effects of Fine-Motor Training with Non-Dominant Hand
4.4. Implication
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boggio, P.S.; Castro, L.O.; Savagim, E.A.; Braite, R.; Cruz, V.C.; Rocha, R.R.; Rigonatti, S.P.; Silva, M.T.A.; Fregni, F. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci. Lett. 2006, 404, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Sperry, R.W. Left-brain, right-brain. Saturday Rev. 1975, 2, 30–32. [Google Scholar]
- Ramachandran, V.S.; Rogers-Ramachandran, D. Synaesthesia in Phantom Limbs Induced with Mirrors. Proc. Biol. Sci. 1996, 263, 377–386. [Google Scholar]
- Garry, M.; Loftus, A.; Summers, J. Mirror, mirror on the wall: Viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Exp. Brain Res. 2005, 163, 118–122. [Google Scholar] [CrossRef]
- Altschuler, E.L.; Wisdom, S.B.; Stone, L.; Foster, C.; Galasko, D.; E Llewellyn, D.M.; Ramachandran, V. Rehabilitation of hemiparesis after stroke with a mirror. Lancet 1999, 353, 2035–2036. [Google Scholar] [CrossRef]
- Louw, A.; Puentedura, E.J.; Reese, D.; Parker, P.; Miller, T.; Mintken, P.E. Immediate Effects of Mirror Therapy in Patients With Shoulder Pain and Decreased Range of Motion. Arch. Phys. Med. Rehabil. 2017, 98, 1941–1947. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, F.J.; Smorenburg, A.R.; Benham, A.; Ledebt, A.; Feltham, M.G.; Savelsbergh, G.J. Reflections on mirror therapy: A systematic review of the effect of mirror visual feedback on the brain. Neurorehabilit. Neural Repair 2015, 29, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Yavuzer, G.; Selles, R.; Sezer, N.; Sütbeyaz, S.; Bussmann, J.B.; Köseoğlu, F.; Atay, M.B.; Stam, H.J. Mirror therapy improves hand function in subacute stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2008, 89, 393–398. [Google Scholar] [CrossRef]
- Vogt, S.; Buccino, G.; Wohlschläger, A.M.; Canessa, N.; Shah, N.J.; Zilles, K.; Eickhoff, S.B.; Freund, H.-J.; Rizzolatti, G.; Fink, G.R. Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise. Neuroimage 2007, 37, 1371–1383. [Google Scholar] [CrossRef] [Green Version]
- Agnew, Z.K.; Wise, R.J.; Leech, R. Dissociating object directed and non-object directed action in the human mirror system; implications for theories of motor simulation. PLoS ONE 2012, 7, e32517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Fritzsch, C.; Bernarding, J.; Holtze, S.; Mauritz, K.H.; Brunetti, M.; Dohle, C. A comparison of neural mechanisms in mirror therapy and movement observation therapy. J. Rehabil. Med. 2013, 45, 410–413. [Google Scholar] [CrossRef] [Green Version]
- Shinoura, N.; Suzuki, Y.; Watanabe, Y.; Yamada, R.; Tabei, Y.; Saito, K.; Yagi, K. Mirror therapy activates outside of cerebellum and ipsilateral M1. NeuroRehabilitation 2008, 23, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Jack, D.; Boian, R.; Merians, A.S.; Tremaine, M.; Burdea, G.C.; Adamovich, S.V.; Recce, M.; Poizner, H. Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, M.; Negrini, S.; Carda, S.; Lanzotti, L.; Cisari, C.; Baricich, A. The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2013, 49, 311–317. [Google Scholar]
- Michielsen, M.E.; Selles, R.W.; van der Geest, J.N.; Eckhardt, M.; Yavuzer, G.; Stam, H.J.; Smits, M.; Ribbers, G.M.; Bussmann, J.B.J. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: A phase II randomized controlled trial. Neurorehabilit. Neural Repair 2011, 25, 223–233. [Google Scholar] [CrossRef]
- Johnston, J.A.; Bobich, L.R.; Santello, M. Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping. Neurosci. Lett. 2010, 474, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Sawamura, D.; Sakuraba, S.; Suzuki, Y.; Asano, M.; Yoshida, S.; Honke, T.; Kimura, M.; Iwase, Y.; Horimoto, Y.; Yoshida, K.; et al. Acquisition of chopstick-operation skills with the non-dominant hand and concomitant changes in brain activity. Sci. Rep. 2019, 9, 20397. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-P. Effects of the handle diameter and tip angle of chopsticks on the food-serving performance of male subjects. Appl. Ergon. 1995, 26, 379–385. [Google Scholar] [CrossRef]
- Chen, H.-M.; Chang, J.-J. The skill components of a therapeutic chopsticks task and their relationship with hand function tests. Kaohsiung J. Med. Sci. 1999, 15, 704–709. [Google Scholar]
- Lee, R.-N.; Chae, S.-Y.; Song, B.-K. Combined Study on between Hand Dexterity and Grip Strength in Students of Colleges and Elementary School. J. Korea Converg. Soc. 2019, 10, 55–61. [Google Scholar]
- Chia, F.-Y.; Saakes, D. Interactive training chopsticks to improve fine motor skills. In Proceedings of the 11th Conference on Advances in Computer Entertainment Technology, Funchal, Madeira, Portugal, 11–14 November 2014; pp. 1–4. [Google Scholar]
- Bang, Y.; Kim, H. Effect of Real Environment and Structured Environment on Acquisition of Chopstick Skill with Non-Dominant Hand. J. Korean Growth Dev. 2008, 16, 181–185. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Chang, J.; Chien, T.; Lin, Y. Comparison of various patterns of chopstick use and functional performance. Kaohsiung J. Med. Sci. 1993, 9, 428–434. [Google Scholar]
- Tiffin, J.; Asher, E.J. The Purdue Pegboard: Norms and studies of reliability and validity. J. Appl. Psychol. 1948, 32, 234. [Google Scholar] [CrossRef] [PubMed]
- Järveläinen, J.; Schürmann, M.; Hari, R. Activation of the human primary motor cortex during observation of tool use. Neuroimage 2004, 23, 187–192. [Google Scholar] [CrossRef]
- Morishita, T.; Uehara, K.; Funase, K. Changes in interhemispheric inhibition from active to resting primary motor cortex during a fine-motor manipulation task. J. Neurophysiol. 2012, 107, 3086–3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, M.; Iso, N.; Fujiwara, K.; Moriuchi, T.; Tanaka, G.; Honda, S.; Matsuda, D.; Higashi, T. Cerebral haemodynamics during motor imagery of self-feeding with chopsticks: Differences between dominant and non-dominant hand. Somatosens. Mot. Res. 2020, 37, 6–13. [Google Scholar] [CrossRef]
- Kirby, K.M.; Pillai, S.R.; Carmichael, O.T.; Van Gemmert, A.W. Brain functional differences in visuo-motor task adaptation between dominant and non-dominant hand training. Exp. Brain Res. 2019, 237, 3109–3121. [Google Scholar] [CrossRef]
- Matthys, K.; Smits, M.; Van der Geest, J.N.; Seurinck, R.; Stam, H.J.; Selles, R.W. Mirror-induced visual illusion of hand movements: A functional magnetic resonance imaging study. Arch. Phys. Med. Rehabil. 2009, 90, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Munn, J.; Herbert, R.D.; Gandevia, S.C. Contralateral effects of unilateral resistance training: A meta-analysis. J. Appl. Physiol. 2004, 96, 1861–1866. [Google Scholar] [CrossRef] [Green Version]
- Carson, R. Neural pathways mediating bilateral interactions between the upper limbs. Brain Res. Rev. 2005, 49, 641–662. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.J.; Herbert, R.D.; Munn, J.; Lee, M.; Gandevia, S.C. Contralateral effects of unilateral strength training: Evidence and possible mechanisms. J. Appl. Physiol. 2006, 101, 1514–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzolatti, G.; Fogassi, L.; Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2001, 2, 661–670. [Google Scholar] [CrossRef] [PubMed]
Characteristic | EG (n = 50) | CG (n = 50) | p |
---|---|---|---|
Gender (male/female) | 28/22 | 27/23 | 0.843 |
Age (years) | 29.94 ± 4.02 | 30.32 ± 4.01 | 0.637 |
Height (cm) | 169.92 ± 9.70 | 169.00 ± 7.74 | 0.601 |
Weight (kg) | 67.28 ± 12.88 | 66.98 ± 14.35 | 0.913 |
Dominance hand (L./R.) | 1/49 | 3/47 | 0.312 |
EG (n = 50) | CG (n = 50) | t | p | |
---|---|---|---|---|
Pre | 59.62 ± 15.02 | 61.91 ± 15.14 | 0.759 | 0.450 |
Post | 51.67 ± 9.73 | 50.30 ± 14.50 | 0.555 | 0.580 |
t | 3.541 | 5.346 | ||
p | 0.001 * | <0.001 * |
EG (n = 50) | CG (n = 50) | t | p | |
---|---|---|---|---|
Pre | 58.13 ± 10.86 | 58.30 ± 7.80 | 0.088 | 0.930 |
Post | 52.80 ± 6.31 | 54.58 ± 6.23 | 1.420 | 0.159 |
t | 5.616 | 4.500 | ||
p | <0.001 * | <0.001 * |
EG (n = 50) | CG (n = 50) | t | p | |
---|---|---|---|---|
CMT | −7.95 ± 15.88 | −11.61 ± 15.36 | −1.172 | 0.244 |
PPT | −5.34 ± 6.72 | −3.72 ± 5.85 | 1.282 | 0.203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Son, H. Immediate Effects of Fine-Motor Training on Coordination and Dexterity of the Non-Dominant Hand in Healthy Adults: A Randomized Controlled Trial. Behav. Sci. 2022, 12, 446. https://doi.org/10.3390/bs12110446
Park C, Son H. Immediate Effects of Fine-Motor Training on Coordination and Dexterity of the Non-Dominant Hand in Healthy Adults: A Randomized Controlled Trial. Behavioral Sciences. 2022; 12(11):446. https://doi.org/10.3390/bs12110446
Chicago/Turabian StylePark, Chanhyun, and Hohee Son. 2022. "Immediate Effects of Fine-Motor Training on Coordination and Dexterity of the Non-Dominant Hand in Healthy Adults: A Randomized Controlled Trial" Behavioral Sciences 12, no. 11: 446. https://doi.org/10.3390/bs12110446
APA StylePark, C., & Son, H. (2022). Immediate Effects of Fine-Motor Training on Coordination and Dexterity of the Non-Dominant Hand in Healthy Adults: A Randomized Controlled Trial. Behavioral Sciences, 12(11), 446. https://doi.org/10.3390/bs12110446