Preventive Effects of a Single Bout of Exercise on Memory and Attention following One Night of Sleep Loss in Sports Students: Results of a Randomized Controlled Study
Abstract
:1. Introduction
2. Participants and Methods
2.1. Study Design
2.2. Participants
2.3. Exercise Intervention
2.4. Outcome Measures
3. Main Outcome Measure
4. Secondary Outcome Measure
5. Statistical Analysis
6. Results
7. Discussion
7.1. Generalizability of Effects
7.2. Implications of the Exercise Program
7.3. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Trial Registration
References
- Khan, M.S.; Aouad, R. The Effects of Insomnia and Sleep Loss on Cardiovascular Disease. Sleep Med. Clin. 2017, 12, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.M.; Hallschmid, M.; Schultes, B. The metabolic burden of sleep loss. Lancet Diabetes Endocrinol. 2015, 3, 52–62. [Google Scholar] [CrossRef]
- Marti, A.R.; Patil, S.; Mrdalj, J.; Meerlo, P.; Skrede, S.; Pallesen, S.; Pedersen, T.T.; Bramham, C.R.; Gronli, J. No escaping the rat race: Simulated night shift work alters the time-of-day variation in bmal1 translational activity in the prefrontal cortex. Front. Neural Circuits 2017, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H.I.; Larsen, J.W.; Thomsen, T.D. The impact of shift work on intensive care nurses’ lives outside work: A cross-sectional study. J. Clin. Nurs. 2018, 27, e703–e709. [Google Scholar] [CrossRef]
- Guglielmi, O.; Magnavita, N.; Garbarino, S. Sleep quality, obstructive sleep apnea, and psychological distress in truck drivers: A cross-sectional study. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 531–536. [Google Scholar] [CrossRef]
- Dorrian, J.; Baulk, S.D.; Dawson, D. Work hours, workload, sleep and fatigue in australian rail industry employees. Appl. Ergon. 2011, 42, 202–209. [Google Scholar] [CrossRef]
- Reid, K.J.; Abbott, S.M. Jet lag and shift work disorder. Sleep Med. Clin. 2015, 10, 523–535. [Google Scholar] [CrossRef]
- Engle-Friedman, M.; Riela, S.; Golan, R.; Ventuneac, A.M.; Davis, C.M.; Jefferson, A.D.; Major, D. The effect of sleep loss on next day effort. J. Sleep Res. 2003, 12, 113–124. [Google Scholar] [CrossRef]
- Castro, E.A.S.; de Almondes, K.M. Sleep pattern and decision-making in physicians from mobile emergency care service with 12-h work schedules. Int. J. Neurosci. 2018, 128, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Kaliyaperumal, D.; Elango, Y.; Alagesan, M.; Santhanakrishanan, I. Effects of sleep deprivation on the cognitive performance of nurses working in shift. J. Clin. Diagn. Res. JCDR 2017, 11, CC01–CC03. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.D.; Cooper, A.D.; Merullo, D.J.; Cohen, B.S.; Heaton, K.J.; Claro, P.J.; Smith, T. Sleep restriction and cognitive load affect performance on a simulated marksmanship task. J. Sleep Res. 2019, 28, e12637. [Google Scholar] [CrossRef]
- Narciso, F.V.; Barela, J.A.; Aguiar, S.A.; Carvalho, A.N.; Tufik, S.; de Mello, M.T. Effects of shift work on the postural and psychomotor performance of night workers. PLoS ONE 2016, 11, e0151609. [Google Scholar] [CrossRef]
- An, R.; Li, C.; Ai, S.; Wu, Y.; Luo, X.; Li, X.; Xu, Y.; He, C. Effect of shift work on fatigue, reaction time and accuracy of nurses in the department of neurology: A cross-sectional observational study. J. Nurs. Manag. 2022. [Google Scholar] [CrossRef] [PubMed]
- Elhami Athar, M.; Atef-Vahid, M.K.; Ashouri, A. The influence of shift work on the quality of sleep and executive functions. J. Circadian Rhythm. 2020, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, S.; Ruiz, F.; Prado, J.; Silva, A.; Frange, C.; Narciso, F.; Cruz, A.; Tufik, S.; de Mello, M.T. The consequences of partial sleep restriction for habitual sleep duration, sleepiness and reaction time in healthy males. Sleep Health 2020, 6, 814–821. [Google Scholar] [CrossRef] [PubMed]
- de Vries, J.D.; van Hooff, M.L.; Guerts, S.A.; Kompier, M.A. Exercise to reduce work-related fatigue among employees: A randomized controlled trial. Scand. J. Work Environ. Health 2017, 43, 337–349. [Google Scholar] [CrossRef]
- de Vries, J.D.; van Hooff, M.L.; Geurts, S.A.; Kompier, M.A. Exercise as an intervention to reduce study-related fatigue among university students: A two-arm parallel randomized controlled trial. PLoS ONE 2016, 11, e0152137. [Google Scholar] [CrossRef]
- Rodriguez-Blanque, R.; Sanchez-Garcia, J.C.; Sanchez-Lopez, A.M.; Mur-Villar, N.; Aguilar-Cordero, M.J. The influence of physical activity in water on sleep quality in pregnant women: A randomised trial. Women Birth J. Aust. Coll. Midwives 2018, 31, e51–e58. [Google Scholar] [CrossRef]
- Halliday, G.C.; Miles, G.C.P.; Marsh, J.A.; Kotecha, R.S.; Alessandri, A.J. Regular exercise improves the well-being of parents of children with cancer. Pediatr. Blood Cancer 2017, 64. [Google Scholar] [CrossRef]
- Hurdiel, R.; Watier, T.; Honn, K.; Peze, T.; Zunquin, G.; Theunynck, D. Effects of a 12-week physical activities programme on sleep in female university students. Res. Sports Med. (Print) 2017, 25, 191–196. [Google Scholar] [CrossRef]
- Reid, K.J.; Baron, K.G.; Lu, B.; Naylor, E.; Wolfe, L.; Zee, P.C. Aerobic exercise improves self-reported sleep and quality of life in older adults with insomnia. Sleep Med. 2010, 11, 934–940. [Google Scholar] [CrossRef]
- Koscak Tivadar, B. Physical activity improves cognition: Possible explanations. Biogerontology 2017, 18, 477–483. [Google Scholar] [CrossRef]
- Matura, S.; Fleckenstein, J.; Deichmann, R.; Engeroff, T.; Fuzeki, E.; Hattingen, E.; Hellweg, R.; Lienerth, B.; Pilatus, U.; Schwarz, S.; et al. Effects of aerobic exercise on brain metabolism and grey matter volume in older adults: Results of the randomised controlled smart trial. Transl. Psychiatry 2017, 7, e1172. [Google Scholar] [CrossRef]
- Brush, C.J.; Olson, R.L.; Ehmann, P.J.; Osovsky, S.; Alderman, B.L. Dose-response and time course effects of acute resistance exercise on executive function. J. Sport Exerc. Psychol. 2016, 38, 396–408. [Google Scholar] [CrossRef]
- Gerten, S.; Engeroff, T.; Fleckenstein, J.; Fuzeki, E.; Matura, S.; Pilatus, U.; Vogt, L.; Pantel, J.; Banzer, W. Deducing the impact of physical activity, sedentary behavior, and physical performance on cognitive function in healthy older adults. Front. Aging Neurosci. 2021, 13, 777490. [Google Scholar] [CrossRef] [PubMed]
- Kredlow, M.A.; Capozzoli, M.C.; Hearon, B.A.; Calkins, A.W.; Otto, M.W. The effects of physical activity on sleep: A meta-analytic review. J. Behav. Med. 2015, 38, 427–449. [Google Scholar] [CrossRef] [PubMed]
- Roediger, H.L.; McDermott, K.B. Creating false memories: Remembering words not presented in lists. J. Exp. Psychol. Learn. Mem. Cogn. 1995, 21, 803–814. [Google Scholar] [CrossRef]
- Diekelmann, S.; Landolt, H.P.; Lahl, O.; Born, J.; Wagner, U. Sleep loss produces false memories. PLoS ONE 2008, 3, e3512. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Brickenkamp, R. Test d2: Aufmerksamkeits-Belastungs-Test; Hogrefe: Göttingen, Germany, 1962. [Google Scholar]
- MacLean, A.W.; Fekken, G.C.; Saskin, P.; Knowles, J.B. Psychometric evaluation of the stanford sleepiness scale. J. Sleep Res. 1992, 1, 35–39. [Google Scholar] [CrossRef]
- Hinz, A.; Daig, I.; Petrowski, K.; Brahler, E. Mood in the german population: Norms of the multidimensional mood questionnaire mdbf. Psychother. Psychosom. Med. Psychol. 2012, 62, 52–57. [Google Scholar] [PubMed]
- Bell, D.R.; Guskiewicz, K.M.; Clark, M.A.; Padua, D.A. Systematic review of the balance error scoring system. Sports Health 2011, 3, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Blumert, P.A.; Crum, A.J.; Ernsting, M.; Volek, J.S.; Hollander, D.B.; Haff, E.E.; Haff, G.G. The acute effects of twenty-four hours of sleep loss on the performance of national-caliber male collegiate weightlifters. J. Strength Cond. Res. 2007, 21, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Lluch, A.; Hubert, P.; King, N.A.; Blundell, J.E. Selective effects of acute exercise and breakfast interventions on mood and motivation to eat. Physiol. Behav. 2000, 68, 515–520. [Google Scholar] [CrossRef]
- Tucker, M.A.; Morris, C.J.; Morgan, A.; Yang, J.; Myers, S.; Pierce, J.G.; Stickgold, R.; Scheer, F. The relative impact of sleep and circadian drive on motor skill acquisition and memory consolidation. Sleep 2017, 40. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Spijkers, W.; Kiesswetter, E.; Schmidtke, V. Effects of sleep loss, time of day, and extended mental work on implicit and explicit learning of sequences. J. Exp. Psychology. Appl. 1998, 4, 139–162. [Google Scholar] [CrossRef]
- Chu, C.H.; Kramer, A.F.; Song, T.F.; Wu, C.H.; Hung, T.M.; Chang, Y.K. Acute exercise and neurocognitive development in preadolescents and young adults: An erp study. Neural Plast. 2017, 2017, 2631909. [Google Scholar] [CrossRef]
- Steiber, N. Strong or weak handgrip? Normative reference values for the german population across the life course stratified by sex, age, and body height. PLoS ONE 2016, 11, e0163917. [Google Scholar] [CrossRef]
- Smith, M.T.; Wickwire, E.M.; Grace, E.G.; Edwards, R.R.; Buenaver, L.F.; Peterson, S.; Klick, B.; Haythornthwaite, J.A. Sleep disorders and their association with laboratory pain sensitivity in temporomandibular joint disorder. Sleep 2009, 32, 779–790. [Google Scholar] [CrossRef]
- Ensari, I.; Greenlee, T.A.; Motl, R.W.; Petruzzello, S.J. Meta-analysis of acute exercise effects on state anxiety: An update of randomized controlled trials over the past 25 years. Depress. Anxiety 2015, 32, 624–634. [Google Scholar] [CrossRef]
- Henriksen, M.; Klokker, L.; Graven-Nielsen, T.; Bartholdy, C.; Schjodt Jorgensen, T.; Bandak, E.; Danneskiold-Samsoe, B.; Christensen, R.; Bliddal, H. Association of exercise therapy and reduction of pain sensitivity in patients with knee osteoarthritis: A randomized controlled trial. Arthritis Care Res. 2014, 66, 1836–1843. [Google Scholar] [CrossRef] [PubMed]
- Sallon, S.; Katz-Eisner, D.; Yaffe, H.; Bdolah-Abram, T. Caring for the caregivers: Results of an extended, five-component stress-reduction intervention for hospital staff. Behav. Med. 2017, 43, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Subramaniapillai, M.; Tremblay, L.; Grassmann, V.; Remington, G.; Faulkner, G. The effect of an acute bout of exercise on executive function among individuals with schizophrenia. Psychiatry Res. 2016, 246, 637–643. [Google Scholar] [CrossRef]
- Kovac, K.; Vincent, G.E.; Paterson, J.L.; Aisbett, B.; Reynolds, A.C.; Ferguson, S.A. Can an increase in noradrenaline induced by brief exercise counteract sleep inertia? Chronobiol. Int. 2020, 37, 1474–1478. [Google Scholar] [CrossRef]
- Kovac, K.; Vincent, G.E.; Paterson, J.L.; Reynolds, A.; Aisbett, B.; Hilditch, C.J.; Ferguson, S.A. The impact of a short burst of exercise on sleep inertia. Physiol. Behav. 2021, 242, 113617. [Google Scholar] [CrossRef]
- Moreno Reyes, P.; Munoz Gutierrez, C.; Pizarro Mena, R.; Jimenez Torres, S. Effects of physical exercise on sleep quality, insomnia, and daytime sleepiness in the elderly: A literature review. Rev. Esp. Geriatr. Gerontol. 2020, 55, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Pezdek, K.; Lam, S. What research paradigms have cognitive psychologists used to study "false memory," and what are the implications of these choices? Conscious. Cogn. 2007, 16, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Chu, C.H.; Wang, C.C.; Song, T.F.; Wei, G.X. Effect of acute exercise and cardiovascular fitness on cognitive function: An event-related cortical desynchronization study. Psychophysiology 2015, 52, 342–351. [Google Scholar] [CrossRef]
- Schabus, M.; Hodlmoser, K.; Pecherstorfer, T.; Klosch, G. Influence of midday naps on declarative memory performance and motivation. Der einfluss von mittagsschlafchen auf deklarative gedachtnisleistung und motivation. Somnologie 2005, 9, 148–153. [Google Scholar] [CrossRef]
- Valdez, P. Circadian rhythms in attention. Yale J. Biol. Med. 2019, 92, 81–92. [Google Scholar]
Exercise Group (n = 11) | Control Group (n = 11) | p-Value | |||
---|---|---|---|---|---|
age (years) | 23.64 ± 1.8 | 24.18 ± 1.89 | 0.496 | ||
gender (female/male) | 4/7 | 4/7 | 0.670 | ||
height (cm) | 175.91 ± 9.51 | 175.18 ± 8.35 | 0.702 | ||
weight (kg) | 72.27 ± 9.45 | 70.91 ± 12.3 | 0.851 | ||
BMI | 23.37 ± 2.63 | 22.95 ± 2.35 | 0.774 | ||
lifestyle factors | |||||
alcohol (yes/no) | 11/0 | 10/1 | 1.0 | ||
irregularly | 1 | 1 | 0.663 | ||
1 days/week | 7 | 8 | |||
2 days/week | 2 | 1 | |||
3 days/week | 1 | 0 | |||
4 days/week | 0 | 1 | |||
caffeine products (yes/no) | 3/8 | 3/8 | 0.682 | ||
coffee | never | 7 | 3 | 0.554 | |
<1 cup/day | 1 | 2 | |||
1 cup/day | 1 | 2 | |||
2 cups/day | 2 | 2 | |||
amount (l) | 0.28 ± 0.2 | 0.25 ± 0.05 | 0.795 | ||
caffeine-containing soft drinks | never | 5 | 7 | 0.670 | |
<0.5l/day | 6 | 4 | |||
energy drinks | never | 8 | 11 | 0.214 | |
<1 tin/day | 3 | 0 | |||
nicotine | none | 10 | 11 | 1.0 | |
<5 cigarettes | 1 | 0 | |||
training activity | hours/week | ||||
2–3 | 2 | 0 | 0.552 | ||
4–5 | 3 | 5 | |||
6–7 | 2 | 3 | |||
8–9 | 2 | 2 | |||
10–11 | 0 | 0 | |||
>11 | 2 | 1 | |||
Handedness (left/right) | 3/8 | 3/8 | 1.0 | ||
PSQI (0–21 points) | 4.45 ± 2.66 | 4.64 ± 1.63 | 0.849 |
At Baseline | Following Sleep Loss | Between Subject Effects# | Inner-Subject Effects | ||
---|---|---|---|---|---|
Main outcome | unpaired t-test | ||||
false memory rate | EXE (n = 11) | 0.8 ± 0.12 | 0.456 | ||
CON (n = 11) | 0.76 ± 0.16 | ||||
false alarm rate | EXE (n = 11) | 0.4 ± 0.12 | 0.402 | ||
CON (n = 11) | 0.43 ± 0.08 | ||||
true recognition rate | EXE (n = 11) | 0.7 ± 0.13 | 0.565 | ||
CON (n = 11) | 0.66 ± 0.15 | ||||
Secondary outcome | time × group analysis | ||||
Sleepiness (cm VAS) | EXE (n = 11) | 3.94 ± 2.98 | 4.53 ± 2.32 | 0.171 | 0.357 |
CON (n = 11) | 4.64 ± 1.83 | 7.61 ± 2.64 | 0.019 | ||
Attention (%) | EXE (n = 11) | 44.84 ± 31.4 | 27.62 ± 17.53 | 0.091 | <0.001 |
CON (n = 11) | 42.02 ± 21.52 | 38.48 ± 25.4 | 0.581 | ||
Concentration performance (n) | EXE (n = 11) | 214.45 ± 43.65 | 237.91 ± 31.46 | 0.088 | <0.001 |
CON (n = 11) | 214.27 ± 30.3 | 221.55 ± 38.01 | 0.365 | ||
Performance speed (n) | EXE (n = 11) | 215.73 ± 43.87 | 239.00 ± 31.07 | 0.109 | <0.001 |
CON (n = 11) | 215.91 ± 30.98 | 224.00 ± 38.44 | 0.314 | ||
MDBF mood | EXE (n = 11) | 11.55 ± 0.69 | 11.82 ± 1.54 | 0.673 | 0.763 |
CON (n = 11) | 11.00 ± 1.55 | 10.91 ± 1.87 | 0.898 | ||
MDBF mental fatigue | EXE (n = 11) | 11.45 ± 1.21 | 10.27 ± 0.9 | 0.335 | 0.923 |
CON (n = 11) | 10.45 ± 1.63 | 10.09 ± 2.21 | 0.629 | ||
MDBF restlessness | EXE (n = 11) | 12.09 ± 1.38 | 10.82 ± 1.47 | 0.313 | 0.311 |
CON (n = 11) | 11.00 ± 1.55 | 11.09 ± 2.51 | 0.937 | ||
BESS-Score (0–60) | EXE (n = 11) | 13.82 ± 9.03 | 12.55 ± 5.34 | 0.940 | 0.219 |
CON (n = 11) | 16.91 ± 7.03 | 15.36 ± 8.85 | 0.555 | ||
Grip strength D (kg) | EXE (n = 11) | 41.27 ± 9.56 | 41.55 ± 11.42 | 0.699 | <0.001 |
CON (n = 11) | 42.64 ± 11.47 | 41.09 ± 12.14 | 0.306 | ||
Grip strength ND (kg) | EXE (n = 11) | 43.64 ± 10.89 | 43.00 ± 11.16 | 0.054 | <0.001 |
CON (n = 11) | 44.27 ± 11.71 | 39.55 ± 12.09 | 0.098 | ||
PPT D (kg/cm2) | EXE (n = 11) | 9.24 ± 4.31 | 9.05 ± 3.78 | 0.899 | 0.028 |
CON (n = 11) | 8.27 ± 3.19 | 7.95 ± 2.7 | 0.005 | ||
PPT ND (kg/cm2) | EXE (n = 11) | 7.38 ± 2.45 | 6.87 ± 1.81 | 0.510 | <0.001 |
CON (n = 11) | 6.27 ± 1.91 | 6.33 ± 1.96 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleckenstein, J.; Gerten, S.; Banzer, W. Preventive Effects of a Single Bout of Exercise on Memory and Attention following One Night of Sleep Loss in Sports Students: Results of a Randomized Controlled Study. Behav. Sci. 2022, 12, 350. https://doi.org/10.3390/bs12100350
Fleckenstein J, Gerten S, Banzer W. Preventive Effects of a Single Bout of Exercise on Memory and Attention following One Night of Sleep Loss in Sports Students: Results of a Randomized Controlled Study. Behavioral Sciences. 2022; 12(10):350. https://doi.org/10.3390/bs12100350
Chicago/Turabian StyleFleckenstein, Johannes, Sina Gerten, and Winfried Banzer. 2022. "Preventive Effects of a Single Bout of Exercise on Memory and Attention following One Night of Sleep Loss in Sports Students: Results of a Randomized Controlled Study" Behavioral Sciences 12, no. 10: 350. https://doi.org/10.3390/bs12100350
APA StyleFleckenstein, J., Gerten, S., & Banzer, W. (2022). Preventive Effects of a Single Bout of Exercise on Memory and Attention following One Night of Sleep Loss in Sports Students: Results of a Randomized Controlled Study. Behavioral Sciences, 12(10), 350. https://doi.org/10.3390/bs12100350